1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
/*
Test the library maths functions using trusted precomputed test
vectors.
These vectors were originally generated on a sun3 with a 68881 using
80 bit precision, but ...
Each function is called with a variety of interesting arguments.
Note that many of the polynomials we use behave badly when the
domain is stressed, so the numbers in the vectors depend on what is
useful to test - eg sin(1e30) is pointless - the arg has to be
reduced modulo pi, and after that there's no bits of significance
left to evaluate with - any number would be just as precise as any
other.
*/
#include "test.h"
#include <math.h>
#include <ieeefp.h>
#include <float.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
int inacc;
int merror;
double mretval = 64;
int traperror = 1;
char *mname;
int verbose;
/* To test exceptions - we trap them all and return a known value */
int
matherr (struct exception *e)
{
if (traperror)
{
merror = e->type + 12;
mname = e->name;
e->retval = mretval;
errno = merror + 24;
return 1;
}
return 0;
}
void translate_to (FILE *file,
double r)
{
__ieee_double_shape_type bits;
bits.value = r;
fprintf(file, "0x%08x, 0x%08x", bits.parts.msw, bits.parts.lsw);
}
int
ffcheck (double is,
one_line_type *p,
char *name,
int serrno,
int merror)
{
/* Make sure the answer isn't to far wrong from the correct value */
__ieee_double_shape_type correct, isbits;
int mag;
isbits.value = is;
correct.parts.msw = p->qs[0].msw;
correct.parts.lsw = p->qs[0].lsw;
mag = mag_of_error(correct.value, is);
if (mag < p->error_bit)
{
inacc ++;
printf("%s:%d, inaccurate answer: bit %d (%08x%08x %08x%08x) (%g %g)\n",
name, p->line, mag,
correct.parts.msw,
correct.parts.lsw,
isbits.parts.msw,
isbits.parts.lsw,
correct.value, is);
}
#if 0
if (p->qs[0].merror != merror)
{
printf("testing %s_vec.c:%d, matherr wrong: %d %d\n",
name, p->line, merror, p->qs[0].merror);
}
if (p->qs[0].errno_val != errno)
{
printf("testing %s_vec.c:%d, errno wrong: %d %d\n",
name, p->line, errno, p->qs[0].errno_val);
}
#endif
return mag;
}
double
thedouble (long msw,
long lsw)
{
__ieee_double_shape_type x;
x.parts.msw = msw;
x.parts.lsw = lsw;
return x.value;
}
int calc;
int reduce;
frontline (FILE *f,
int mag,
one_line_type *p,
double result,
int merror,
int errno,
char *args,
char *name)
{
if (reduce && p->error_bit < mag)
{
fprintf(f, "{%2d,", p->error_bit);
}
else
{
fprintf(f, "{%2d,",mag);
}
fprintf(f,"%2d,%3d,", merror,errno);
fprintf(f, "__LINE__, ");
if (calc)
{
translate_to(f, result);
}
else
{
translate_to(f, thedouble(p->qs[0].msw, p->qs[0].lsw));
}
fprintf(f, ", ");
fprintf(f,"0x%08x, 0x%08x", p->qs[1].msw, p->qs[1].lsw);
if (args[2])
{
fprintf(f, ", ");
fprintf(f,"0x%08x, 0x%08x", p->qs[2].msw, p->qs[2].lsw);
}
fprintf(f,"}, /* %g=f(%g",result,
thedouble(p->qs[1].msw, p->qs[1].lsw));
if (args[2])
{
fprintf(f,", %g", thedouble(p->qs[2].msw,p->qs[2].lsw));
}
fprintf(f, ")*/\n");
}
finish (FILE *f,
int vector,
double result,
one_line_type *p,
char *args,
char *name)
{
int mag;
mag = ffcheck(result, p,name, merror, errno);
if (vector)
{
frontline(f, mag, p, result, merror, errno, args , name);
}
}
int redo;
run_vector_1 (int vector,
one_line_type *p,
char *func,
char *name,
char *args)
{
FILE *f;
int mag;
double result;
if (vector)
{
VECOPEN(name, f);
if (redo)
{
double k;
for (k = -.2; k < .2; k+= 0.00132)
{
fprintf(f,"{1,1, 1,1, 0,0,0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
for (k = -1.2; k < 1.2; k+= 0.01)
{
fprintf(f,"{1,1, 1,1, 0,0,0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
for (k = -M_PI *2; k < M_PI *2; k+= M_PI/2)
{
fprintf(f,"{1,1, 1,1, 0,0,0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
for (k = -30; k < 30; k+= 1.7)
{
fprintf(f,"{2,2, 1,1, 0,0, 0x%08x,0x%08x, 0x%08x, 0x%08x},\n",
k,k+4);
}
VECCLOSE(f, name, args);
return;
}
}
newfunc(name);
while (p->line)
{
double arg1 = thedouble(p->qs[1].msw, p->qs[1].lsw);
double arg2 = thedouble(p->qs[2].msw, p->qs[2].lsw);
double r;
double rf;
errno = 0;
merror = 0;
mname = 0;
line(p->line);
merror = 0;
errno = 123;
if (strcmp(args,"dd")==0)
{
typedef double _EXFUN((*pdblfunc),(double));
/* Double function returning a double */
result = ((pdblfunc)(func))(arg1);
finish(f,vector, result, p, args, name);
}
else if (strcmp(args,"ff")==0)
{
float arga;
double a;
typedef float _EXFUN((*pdblfunc),(float));
/* Double function returning a double */
if (arg1 < FLT_MAX )
{
arga = arg1;
result = ((pdblfunc)(func))(arga);
finish(f, vector, result, p,args, name);
}
}
else if (strcmp(args,"ddd")==0)
{
typedef double _EXFUN((*pdblfunc),(double,double));
result = ((pdblfunc)(func))(arg1,arg2);
finish(f, vector, result, p,args, name);
}
else if (strcmp(args,"fff")==0)
{
double a,b;
float arga;
float argb;
typedef float _EXFUN((*pdblfunc),(float,float));
if (arg1 < FLT_MAX && arg2 < FLT_MAX)
{
arga = arg1;
argb = arg2;
result = ((pdblfunc)(func))(arga, argb);
finish(f, vector, result, p,args, name);
}
}
else if (strcmp(args,"did")==0)
{
typedef double _EXFUN((*pdblfunc),(int,double));
result = ((pdblfunc)(func))((int)arg1,arg2);
finish(f, vector, result, p,args, name);
}
else if (strcmp(args,"fif")==0)
{
double a,b;
float arga;
float argb;
typedef float _EXFUN((*pdblfunc),(int,float));
if (arg1 < FLT_MAX && arg2 < FLT_MAX)
{
arga = arg1;
argb = arg2;
result = ((pdblfunc)(func))((int)arga, argb);
finish(f, vector, result, p,args, name);
}
}
p++;
}
if (vector)
{
VECCLOSE(f, name, args);
}
}
void
test_math (void)
{
test_acos(0);
test_acosf(0);
test_acosh(0);
test_acoshf(0);
test_asin(0);
test_asinf(0);
test_asinh(0);
test_asinhf(0);
test_atan(0);
test_atan2(0);
test_atan2f(0);
test_atanf(0);
test_atanh(0);
test_atanhf(0);
test_ceil(0);
test_ceilf(0);
test_cos(0);
test_cosf(0);
test_cosh(0);
test_coshf(0);
test_erf(0);
test_erfc(0);
test_erfcf(0);
test_erff(0);
test_exp(0);
test_expf(0);
test_fabs(0);
test_fabsf(0);
test_floor(0);
test_floorf(0);
test_fmod(0);
test_fmodf(0);
test_gamma(0);
test_gammaf(0);
test_hypot(0);
test_hypotf(0);
test_j0(0);
test_j0f(0);
test_j1(0);
test_j1f(0);
test_jn(0);
test_jnf(0);
test_log(0);
test_log10(0);
test_log10f(0);
test_log1p(0);
test_log1pf(0);
test_log2(0);
test_log2f(0);
test_logf(0);
test_sin(0);
test_sinf(0);
test_sinh(0);
test_sinhf(0);
test_sqrt(0);
test_sqrtf(0);
test_tan(0);
test_tanf(0);
test_tanh(0);
test_tanhf(0);
test_y0(0);
test_y0f(0);
test_y1(0);
test_y1f(0);
test_y1f(0);
test_ynf(0);
}
/* These have to be played with to get to compile on machines which
don't have the fancy <foo>f entry points
*/
#if 0
float cosf (float a) { return cos((double)a); }
float sinf (float a) { return sin((double)a); }
float log1pf (float a) { return log1p((double)a); }
float tanf (float a) { return tan((double)a); }
float ceilf (float a) { return ceil(a); }
float floorf (float a) { return floor(a); }
#endif
/*ndef HAVE_FLOAT*/
#if 0
float fmodf(a,b) float a,b; { return fmod(a,b); }
float hypotf(a,b) float a,b; { return hypot(a,b); }
float acosf(a) float a; { return acos(a); }
float acoshf(a) float a; { return acosh(a); }
float asinf(a) float a; { return asin(a); }
float asinhf(a) float a; { return asinh(a); }
float atanf(a) float a; { return atan(a); }
float atanhf(a) float a; { return atanh(a); }
float coshf(a) float a; { return cosh(a); }
float erff(a) float a; { return erf(a); }
float erfcf(a) float a; { return erfc(a); }
float expf(a) float a; { return exp(a); }
float fabsf(a) float a; { return fabs(a); }
float gammaf(a) float a; { return gamma(a); }
float j0f(a) float a; { return j0(a); }
float j1f(a) float a; { return j1(a); }
float log10f(a) float a; { return log10(a); }
float logf(a) float a; { return log(a); }
float sinhf(a) float a; { return sinh(a); }
float sqrtf(a) float a; { return sqrt(a); }
float tanhf(a) float a; { return tanh(a); }
float y0f(a) float a; { return y0(a); }
float y1f(a) float a; { return y1(a); }
#endif
|