1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
/* @(#)w_jn.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
FUNCTION
<<jN>>, <<jNf>>, <<yN>>, <<yNf>>---Bessel functions
INDEX
j0
INDEX
j0f
INDEX
j1
INDEX
j1f
INDEX
jn
INDEX
jnf
INDEX
y0
INDEX
y0f
INDEX
y1
INDEX
y1f
INDEX
yn
INDEX
ynf
SYNOPSIS
#include <math.h>
double j0(double <[x]>);
float j0f(float <[x]>);
double j1(double <[x]>);
float j1f(float <[x]>);
double jn(int <[n]>, double <[x]>);
float jnf(int <[n]>, float <[x]>);
double y0(double <[x]>);
float y0f(float <[x]>);
double y1(double <[x]>);
float y1f(float <[x]>);
double yn(int <[n]>, double <[x]>);
float ynf(int <[n]>, float <[x]>);
DESCRIPTION
The Bessel functions are a family of functions that solve the
differential equation
@ifnottex
. 2 2 2
. x y'' + xy' + (x - p )y = 0
@end ifnottex
@tex
$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$
@end tex
These functions have many applications in engineering and physics.
<<jn>> calculates the Bessel function of the first kind of order
<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order
1 respectively.
Similarly, <<yn>> calculates the Bessel function of the second kind of
order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and
1.
<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the
same calculations, but on <<float>> rather than <<double>> values.
RETURNS
The value of each Bessel function at <[x]> is returned.
PORTABILITY
None of the Bessel functions are in ANSI C.
*/
/*
* wrapper jn(int n, double x), yn(int n, double x)
* floating point Bessel's function of the 1st and 2nd kind
* of order n
*
* Special cases:
* y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
* y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
* Note 2. About jn(n,x), yn(n,x)
* For n=0, j0(x) is called,
* for n=1, j1(x) is called,
* for n<x, forward recursion us used starting
* from values of j0(x) and j1(x).
* for n>x, a continued fraction approximation to
* j(n,x)/j(n-1,x) is evaluated and then backward
* recursion is used starting from a supposed value
* for j(n,x). The resulting value of j(0,x) is
* compared with the actual value to correct the
* supposed value of j(n,x).
*
* yn(n,x) is similar in all respects, except
* that forward recursion is used for all
* values of n>1.
*
*/
#include "fdlibm.h"
#include <errno.h>
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
double jn(int n, double x) /* wrapper jn */
#else
double jn(n,x) /* wrapper jn */
double x; int n;
#endif
{
#ifdef _IEEE_LIBM
return jn(n,x);
#else
double z;
struct exception exc;
z = jn(n,x);
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
if(fabs(x)>X_TLOSS) {
/* jn(|x|>X_TLOSS) */
exc.type = TLOSS;
exc.name = "jn";
exc.err = 0;
exc.arg1 = n;
exc.arg2 = x;
exc.retval = 0.0;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!matherr(&exc)) {
errno = ERANGE;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
} else
return z;
#endif
}
#ifdef __STDC__
double yn(int n, double x) /* wrapper yn */
#else
double yn(n,x) /* wrapper yn */
double x; int n;
#endif
{
#ifdef _IEEE_LIBM
return yn(n,x);
#else
double z;
struct exception exc;
z = yn(n,x);
if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
if(x <= 0.0){
/* yn(n,0) = -inf or yn(x<0) = NaN */
#ifndef HUGE_VAL
#define HUGE_VAL inf
double inf = 0.0;
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
#endif
exc.type = DOMAIN; /* should be SING for IEEE */
exc.name = "yn";
exc.err = 0;
exc.arg1 = n;
exc.arg2 = x;
if (_LIB_VERSION == _SVID_)
exc.retval = -HUGE;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
if(x>X_TLOSS) {
/* yn(x>X_TLOSS) */
exc.type = TLOSS;
exc.name = "yn";
exc.err = 0;
exc.arg1 = n;
exc.arg2 = x;
exc.retval = 0.0;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!matherr(&exc)) {
errno = ERANGE;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
} else
return z;
#endif
}
#endif /* defined(_DOUBLE_IS_32BITS) */
|