1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
/* @(#)z_tan.c 1.0 98/08/13 */
/******************************************************************
* The following routines are coded directly from the algorithms
* and coefficients given in "Software Manual for the Elementary
* Functions" by William J. Cody, Jr. and William Waite, Prentice
* Hall, 1980.
******************************************************************/
/*
FUNCTION
<<tan>>, <<tanf>>---tangent
INDEX
tan
INDEX
tanf
ANSI_SYNOPSIS
#include <math.h>
double tan(double <[x]>);
float tanf(float <[x]>);
TRAD_SYNOPSIS
#include <math.h>
double tan(<[x]>)
double <[x]>;
float tanf(<[x]>)
float <[x]>;
DESCRIPTION
<<tan>> computes the tangent of the argument <[x]>.
Angles are specified in radians.
<<tanf>> is identical, save that it takes and returns <<float>> values.
RETURNS
The tangent of <[x]> is returned.
PORTABILITY
<<tan>> is ANSI. <<tanf>> is an extension.
*/
/******************************************************************
* Tangent
*
* Input:
* x - floating point value
*
* Output:
* tangent of x
*
* Description:
* This routine calculates the tangent of x.
*
*****************************************************************/
#include "fdlibm.h"
#include "zmath.h"
#ifndef _DOUBLE_IS_32BITS
static const double TWO_OVER_PI = 0.63661977236758134308;
static const double p[] = { -0.13338350006421960681,
0.34248878235890589960e-2,
-0.17861707342254426711e-4 };
static const double q[] = { -0.46671683339755294240,
0.25663832289440112864e-1,
-0.31181531907010027307e-3,
0.49819433993786512270e-6 };
double
_DEFUN (tan, (double),
double x)
{
double y, f, g, XN, xnum, xden, res;
int N;
/* Check for special values. */
switch (numtest (x))
{
case NAN:
errno = EDOM;
return (x);
case INF:
errno = EDOM;
return (z_notanum.d);
}
y = fabs (x);
/* Check for values that are out of our range. */
if (y > 105414357.0)
{
errno = ERANGE;
return (y);
}
if (x < 0.0)
N = (int) (x * TWO_OVER_PI - 0.5);
else
N = (int) (x * TWO_OVER_PI + 0.5);
XN = (double) N;
f = x - N * __PI_OVER_TWO;
/* Check for values that are too small. */
if (-z_rooteps < f && f < z_rooteps)
{
xnum = f;
xden = 1.0;
}
/* Calculate the polynomial. */
else
{
g = f * f;
xnum = f * ((p[2] * g + p[1]) * g + p[0]) * g + f;
xden = (((q[3] * g + q[2]) * g + q[1]) * g + q[0]) * g + 1.0;
}
if (N & 1)
{
xnum = -xnum;
res = xden / xnum;
}
else
{
res = xnum / xden;
}
return (res);
}
#endif /* _DOUBLE_IS_32BITS */
|