1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
/* @(#)s_lrint.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
FUNCTION
<<lrint>>, <<lrintf>>, <<llrint>>, <<llrintf>>--round to integer
INDEX
lrint
INDEX
lrintf
INDEX
llrint
INDEX
llrintf
ANSI_SYNOPSIS
#include <math.h>
long int lrint(double <[x]>);
long int lrintf(float <[x]>);
long long int llrint(double <[x]>);
long long int llrintf(float <[x]>);
DESCRIPTION
The <<lrint>> and <<llrint>> functions round their argument to the nearest
integer value, using the current rounding direction. If the rounded value is
outside the range of the return type, the numeric result is unspecified. A
range error may occur if the magnitude of <[x]> is too large.
The "inexact" floating-point exception is raised in implementations that
support it when the result differs in value from the argument (i.e., when
a fraction actually has been truncated).
RETURNS
<[x]> rounded to an integral value, using the current rounding direction.
SEEALSO
<<lround>>
PORTABILITY
ANSI C, POSIX
*/
/*
* lrint(x)
* Return x rounded to integral value according to the prevailing
* rounding mode.
* Method:
* Using floating addition.
* Exception:
* Inexact flag raised if x not equal to lrint(x).
*/
#include "fdlibm.h"
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
static const double
#else
static double
#endif
/* Adding a double, x, to 2^52 will cause the result to be rounded based on
the fractional part of x, according to the implementation's current rounding
mode. 2^52 is the smallest double that can be represented using all 52 significant
digits. */
TWO52[2]={
4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
-4.50359962737049600000e+15, /* 0xC3300000, 0x00000000 */
};
#ifdef __STDC__
long int lrint(double x)
#else
long int lrint(x)
double x;
#endif
{
__int32_t i0,j0,sx;
__uint32_t i1;
double t;
volatile double w;
long int result;
EXTRACT_WORDS(i0,i1,x);
/* Extract sign bit. */
sx = (i0>>31)&1;
/* Extract exponent field. */
j0 = ((i0 & 0x7ff00000) >> 20) - 1023;
/* j0 in [-1023,1024] */
if(j0 < 20)
{
/* j0 in [-1023,19] */
if(j0 < -1)
return 0;
else
{
/* j0 in [0,19] */
/* shift amt in [0,19] */
w = TWO52[sx] + x;
t = w - TWO52[sx];
GET_HIGH_WORD(i0, t);
/* Detect the all-zeros representation of plus and
minus zero, which fails the calculation below. */
if ((i0 & ~(1L << 31)) == 0)
return 0;
/* After round: j0 in [0,20] */
j0 = ((i0 & 0x7ff00000) >> 20) - 1023;
i0 &= 0x000fffff;
i0 |= 0x00100000;
/* shift amt in [20,0] */
result = i0 >> (20 - j0);
}
}
else if (j0 < (int)(8 * sizeof (long int)) - 1)
{
/* 32bit return: j0 in [20,30] */
/* 64bit return: j0 in [20,62] */
if (j0 >= 52)
/* 64bit return: j0 in [52,62] */
/* 64bit return: left shift amt in [32,42] */
result = ((long int) ((i0 & 0x000fffff) | 0x0010000) << (j0 - 20)) |
/* 64bit return: right shift amt in [0,10] */
(i1 << (j0 - 52));
else
{
/* 32bit return: j0 in [20,30] */
/* 64bit return: j0 in [20,51] */
w = TWO52[sx] + x;
t = w - TWO52[sx];
EXTRACT_WORDS (i0, i1, t);
j0 = ((i0 & 0x7ff00000) >> 20) - 1023;
i0 &= 0x000fffff;
i0 |= 0x00100000;
/* After round:
* 32bit return: j0 in [20,31];
* 64bit return: j0 in [20,52] */
/* 32bit return: left shift amt in [0,11] */
/* 64bit return: left shift amt in [0,32] */
/* ***32bit return: right shift amt in [32,21] */
/* ***64bit return: right shift amt in [32,0] */
result = ((long int) i0 << (j0 - 20))
| SAFE_RIGHT_SHIFT (i1, (52 - j0));
}
}
else
{
return (long int) x;
}
return sx ? -result : result;
}
#endif /* _DOUBLE_IS_32BITS */
|