aboutsummaryrefslogtreecommitdiff
path: root/newlib/libc/stdlib/nano-mallocr.c
blob: 18a16c924a27b14a5f9e11d81332cfac75fc91e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
/*
 * Copyright (c) 2012, 2013 ARM Ltd
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the company may not be used to endorse or promote
 *    products derived from this software without specific prior written
 *    permission.
 *
 * THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* Implementation of <<malloc>> <<free>> <<calloc>> <<realloc>>, optional
 * as to be reenterable.
 *
 * Interface documentation refer to malloc.c.
 */

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <malloc.h>

#if DEBUG
#include <assert.h>
#else
#define assert(x) ((void)0)
#endif

#ifndef MAX
#define MAX(a,b) ((a) >= (b) ? (a) : (b))
#endif

#define _SBRK_R(X) _sbrk_r(X)

#ifdef INTERNAL_NEWLIB

#include <sys/config.h>
#include <reent.h>

#define RARG struct _reent *reent_ptr,
#define RONEARG struct _reent *reent_ptr
#define RCALL reent_ptr,
#define RONECALL reent_ptr

#define MALLOC_LOCK __malloc_lock(reent_ptr)
#define MALLOC_UNLOCK __malloc_unlock(reent_ptr)

#define RERRNO reent_ptr->_errno

#define nano_malloc		_malloc_r
#define nano_free		_free_r
#define nano_realloc		_realloc_r
#define nano_memalign		_memalign_r
#define nano_valloc		_valloc_r
#define nano_pvalloc		_pvalloc_r
#define nano_calloc		_calloc_r
#define nano_cfree		_cfree_r
#define nano_malloc_usable_size _malloc_usable_size_r
#define nano_malloc_stats	_malloc_stats_r
#define nano_mallinfo		_mallinfo_r
#define nano_mallopt		_mallopt_r

#else /* ! INTERNAL_NEWLIB */

#define RARG
#define RONEARG
#define RCALL
#define RONECALL
#define MALLOC_LOCK
#define MALLOC_UNLOCK
#define RERRNO errno

#define nano_malloc		malloc
#define nano_free		free
#define nano_realloc		realloc
#define nano_memalign		memalign
#define nano_valloc		valloc
#define nano_pvalloc		pvalloc
#define nano_calloc		calloc
#define nano_cfree		cfree
#define nano_malloc_usable_size malloc_usable_size
#define nano_malloc_stats	malloc_stats
#define nano_mallinfo		mallinfo
#define nano_mallopt		mallopt
#endif /* ! INTERNAL_NEWLIB */

/* Redefine names to avoid conflict with user names */
#define free_list __malloc_free_list
#define sbrk_start __malloc_sbrk_start
#define current_mallinfo __malloc_current_mallinfo

#define ALIGN_PTR(ptr, align) \
    (((ptr) + (align) - (intptr_t)1) & ~((align) - (intptr_t)1))
#define ALIGN_SIZE(size, align) \
    (((size) + (align) - (size_t)1) & ~((align) - (size_t)1))

/* Alignment of allocated block */
#define MALLOC_ALIGN (8U)
#define CHUNK_ALIGN (sizeof(void*))
#define MALLOC_PADDING ((MAX(MALLOC_ALIGN, CHUNK_ALIGN)) - CHUNK_ALIGN)

/* as well as the minimal allocation size
 * to hold a free pointer */
#define MALLOC_MINSIZE (sizeof(void *))
#define MALLOC_PAGE_ALIGN (0x1000)
#define MAX_ALLOC_SIZE (0x80000000U)

typedef size_t malloc_size_t;

typedef struct malloc_chunk
{
    /*          --------------------------------------
     *   chunk->| size                               |
     *          --------------------------------------
     *          | Padding for alignment              |
     *          | This includes padding inserted by  |
     *          | the compiler (to align fields) and |
     *          | explicit padding inserted by this  |
     *          | implementation. If any explicit    |
     *          | padding is being used then the     |
     *          | sizeof (size) bytes at             |
     *          | mem_ptr - CHUNK_OFFSET must be     |
     *          | initialized with the negative      |
     *          | offset to size.                    |
     *          --------------------------------------
     * mem_ptr->| When allocated: data               |
     *          | When freed: pointer to next free   |
     *          | chunk                              |
     *          --------------------------------------
     */
    /* size of the allocated payload area, including size before
       CHUNK_OFFSET */
    long size;

    /* since here, the memory is either the next free block, or data load */
    struct malloc_chunk * next;
}chunk;


#define CHUNK_OFFSET ((malloc_size_t)(&(((struct malloc_chunk *)0)->next)))

/* size of smallest possible chunk. A memory piece smaller than this size
 * won't be able to create a chunk */
#define MALLOC_MINCHUNK (CHUNK_OFFSET + MALLOC_PADDING + MALLOC_MINSIZE)

/* Forward data declarations */
extern chunk * free_list;
extern char * sbrk_start;
extern struct mallinfo current_mallinfo;

/* Forward function declarations */
extern void * nano_malloc(RARG malloc_size_t);
extern void nano_free (RARG void * free_p);
extern void nano_cfree(RARG void * ptr);
extern void * nano_calloc(RARG malloc_size_t n, malloc_size_t elem);
extern void nano_malloc_stats(RONEARG);
extern malloc_size_t nano_malloc_usable_size(RARG void * ptr);
extern void * nano_realloc(RARG void * ptr, malloc_size_t size);
extern void * nano_memalign(RARG size_t align, size_t s);
extern int nano_mallopt(RARG int parameter_number, int parameter_value);
extern void * nano_valloc(RARG size_t s);
extern void * nano_pvalloc(RARG size_t s);

static inline chunk * get_chunk_from_ptr(void * ptr)
{
    /* Assume that there is no explicit padding in the
       chunk, and that the chunk starts at ptr - CHUNK_OFFSET.  */
    chunk * c = (chunk *)((char *)ptr - CHUNK_OFFSET);

    /* c->size being negative indicates that there is explicit padding in
       the chunk. In which case, c->size is currently the negative offset to
       the true size.  */
    if (c->size < 0) c = (chunk *)((char *)c + c->size);
    return c;
}

#ifdef DEFINE_MALLOC
/* List list header of free blocks */
chunk * free_list = NULL;

/* Starting point of memory allocated from system */
char * sbrk_start = NULL;

/** Function sbrk_aligned
  * Algorithm:
  *   Use sbrk() to obtain more memory and ensure it is CHUNK_ALIGN aligned
  *   Optimise for the case that it is already aligned - only ask for extra
  *   padding after we know we need it
  */
static void* sbrk_aligned(RARG malloc_size_t s)
{
    char *p, *align_p;

    if (sbrk_start == NULL) sbrk_start = _SBRK_R(RCALL 0);

    p = _SBRK_R(RCALL s);

    /* sbrk returns -1 if fail to allocate */
    if (p == (void *)-1)
        return p;

    align_p = (char*)ALIGN_PTR((uintptr_t)p, CHUNK_ALIGN);
    if (align_p != p)
    {
        /* p is not aligned, ask for a few more bytes so that we have s
         * bytes reserved from align_p. */
        p = _SBRK_R(RCALL align_p - p);
        if (p == (void *)-1)
            return p;
    }
    return align_p;
}

/** Function nano_malloc
  * Algorithm:
  *   Walk through the free list to find the first match. If fails to find
  *   one, call sbrk to allocate a new chunk.
  */
void * nano_malloc(RARG malloc_size_t s)
{
    chunk *p, *r;
    char * ptr, * align_ptr;
    int offset;

    malloc_size_t alloc_size;

    alloc_size = ALIGN_SIZE(s, CHUNK_ALIGN); /* size of aligned data load */
    alloc_size += MALLOC_PADDING; /* padding */
    alloc_size += CHUNK_OFFSET; /* size of chunk head */
    alloc_size = MAX(alloc_size, MALLOC_MINCHUNK);

    if (alloc_size >= MAX_ALLOC_SIZE || alloc_size < s)
    {
        RERRNO = ENOMEM;
        return NULL;
    }

    MALLOC_LOCK;

    p = free_list;
    r = p;

    while (r)
    {
        int rem = r->size - alloc_size;
        if (rem >= 0)
        {
            if (rem >= MALLOC_MINCHUNK)
            {
                if (p == r)
                {
                    /* First item in the list, break it into two chunks
                    *  and return the first one */
                    r->size = alloc_size;
                    free_list = (chunk *)((char *)r + alloc_size);
                    free_list->size = rem;
                    free_list->next = r->next;
                } else {
                    /* Any other item in the list. Split and return
                    * the first one */
                    r->size = alloc_size;
                    p->next = (chunk *)((char *)r + alloc_size);
                    p->next->size = rem;
                    p->next->next = r->next;
                }
            }
            /* Find a chunk that is exactly the size or slightly bigger
             * than requested size, just return this chunk */
            else if (p == r)
            {
                /* Now it implies p==r==free_list. Move the free_list
                 * to next chunk */
                free_list = r->next;
            }
            else
            {
                /* Normal case. Remove it from free_list */
                p->next = r->next;
            }
            break;
        }
        p=r;
        r=r->next;
    }

    /* Failed to find a appropriate chunk. Ask for more memory */
    if (r == NULL)
    {
        r = sbrk_aligned(RCALL alloc_size);

        /* sbrk returns -1 if fail to allocate */
        if (r == (void *)-1)
        {
            /* sbrk didn't have the requested amount. Let's check
             * if the last item in the free list is adjacent to the
             * current heap end (sbrk(0)). In that case, only ask
             * for the difference in size and merge them */
            p = free_list;
            r = p;

            while (r)
            {
                p=r;
                r=r->next;
            }

            if ((char *)p + p->size == (char *)_SBRK_R(RCALL 0))
            {
               /* The last free item has the heap end as neighbour.
                * Let's ask for a smaller amount and merge */
               alloc_size -= p->size;
               alloc_size = ALIGN_SIZE(alloc_size, CHUNK_ALIGN); /* size of aligned data load */
               alloc_size += MALLOC_PADDING; /* padding */
               alloc_size += CHUNK_OFFSET; /* size of chunk head */
               alloc_size = MAX(alloc_size, MALLOC_MINCHUNK);

               if (sbrk_aligned(RCALL alloc_size) != (void *)-1)
               {
                   p->size += alloc_size;
                   r = p;
               }
               else
               {
                   RERRNO = ENOMEM;
                   MALLOC_UNLOCK;
                   return NULL;
               }
            }
            else
            {
                RERRNO = ENOMEM;
                MALLOC_UNLOCK;
                return NULL;
            }
        }
        else
        {
            r->size = alloc_size;
        }
    }
    MALLOC_UNLOCK;

    ptr = (char *)r + CHUNK_OFFSET;

    align_ptr = (char *)ALIGN_PTR((uintptr_t)ptr, MALLOC_ALIGN);
    offset = align_ptr - ptr;

    if (offset)
    {
        /* Initialize sizeof (malloc_chunk.size) bytes at
           align_ptr - CHUNK_OFFSET with negative offset to the
           size field (at the start of the chunk).

           The negative offset to size from align_ptr - CHUNK_OFFSET is
           the size of any remaining padding minus CHUNK_OFFSET.  This is
           equivalent to the total size of the padding, because the size of
           any remaining padding is the total size of the padding minus
           CHUNK_OFFSET.

           Note that the size of the padding must be at least CHUNK_OFFSET.

           The rest of the padding is not initialized.  */
        *(long *)((char *)r + offset) = -offset;
    }

    assert(align_ptr + size <= (char *)r + alloc_size);
    return align_ptr;
}
#endif /* DEFINE_MALLOC */

#ifdef DEFINE_FREE
#define MALLOC_CHECK_DOUBLE_FREE

/** Function nano_free
  * Implementation of libc free.
  * Algorithm:
  *  Maintain a global free chunk single link list, headed by global
  *  variable free_list.
  *  When free, insert the to-be-freed chunk into free list. The place to
  *  insert should make sure all chunks are sorted by address from low to
  *  high.  Then merge with neighbor chunks if adjacent.
  */
void nano_free (RARG void * free_p)
{
    chunk * p_to_free;
    chunk * p, * q;

    if (free_p == NULL) return;

    p_to_free = get_chunk_from_ptr(free_p);

    MALLOC_LOCK;
    if (free_list == NULL)
    {
        /* Set first free list element */
        p_to_free->next = free_list;
        free_list = p_to_free;
        MALLOC_UNLOCK;
        return;
    }

    if (p_to_free < free_list)
    {
        if ((char *)p_to_free + p_to_free->size == (char *)free_list)
        {
            /* Chunk to free is just before the first element of
             * free list  */
            p_to_free->size += free_list->size;
            p_to_free->next = free_list->next;
        }
        else
        {
            /* Insert before current free_list */
            p_to_free->next = free_list;
        }
        free_list = p_to_free;
        MALLOC_UNLOCK;
        return;
    }

    q = free_list;
    /* Walk through the free list to find the place for insert. */
    do
    {
        p = q;
        q = q->next;
    } while (q && q <= p_to_free);

    /* Now p <= p_to_free and either q == NULL or q > p_to_free
     * Try to merge with chunks immediately before/after it. */

    if ((char *)p + p->size == (char *)p_to_free)
    {
        /* Chunk to be freed is adjacent
         * to a free chunk before it */
        p->size += p_to_free->size;
        /* If the merged chunk is also adjacent
         * to the chunk after it, merge again */
        if ((char *)p + p->size == (char *) q)
        {
            p->size += q->size;
            p->next = q->next;
        }
    }
#ifdef MALLOC_CHECK_DOUBLE_FREE
    else if ((char *)p + p->size > (char *)p_to_free)
    {
        /* Report double free fault */
        RERRNO = ENOMEM;
        MALLOC_UNLOCK;
        return;
    }
#endif
    else if ((char *)p_to_free + p_to_free->size == (char *) q)
    {
        /* Chunk to be freed is adjacent
         * to a free chunk after it */
        p_to_free->size += q->size;
        p_to_free->next = q->next;
        p->next = p_to_free;
    }
    else
    {
        /* Not adjacent to any chunk. Just insert it. Resulting
         * a fragment. */
        p_to_free->next = q;
        p->next = p_to_free;
    }
    MALLOC_UNLOCK;
}
#endif /* DEFINE_FREE */

#ifdef DEFINE_CFREE
void nano_cfree(RARG void * ptr)
{
    nano_free(RCALL ptr);
}
#endif /* DEFINE_CFREE */

#ifdef DEFINE_CALLOC
/* Function nano_calloc
 * Implement calloc simply by calling malloc and set zero */
void * nano_calloc(RARG malloc_size_t n, malloc_size_t elem)
{
    malloc_size_t bytes;
    void * mem;

    if (__builtin_mul_overflow (n, elem, &bytes))
    {
        RERRNO = ENOMEM;
        return NULL;
    }
    mem = nano_malloc(RCALL bytes);
    if (mem != NULL) memset(mem, 0, bytes);
    return mem;
}
#endif /* DEFINE_CALLOC */

#ifdef DEFINE_REALLOC
/* Function nano_realloc
 * Implement realloc by malloc + memcpy */
void * nano_realloc(RARG void * ptr, malloc_size_t size)
{
    void * mem;
    chunk * p_to_realloc;
    malloc_size_t old_size;

    if (ptr == NULL) return nano_malloc(RCALL size);

    if (size == 0)
    {
        nano_free(RCALL ptr);
        return NULL;
    }

    old_size = nano_malloc_usable_size(RCALL ptr);
    if (size <= old_size && (old_size >> 1) < size)
      return ptr;

    mem = nano_malloc(RCALL size);
    if (mem != NULL)
    {
	if (old_size > size)
	    old_size = size;
        memcpy(mem, ptr, old_size);
        nano_free(RCALL ptr);
    }
    return mem;
}
#endif /* DEFINE_REALLOC */

#ifdef DEFINE_MALLINFO
struct mallinfo current_mallinfo={0,0,0,0,0,0,0,0,0,0};

struct mallinfo nano_mallinfo(RONEARG)
{
    char * sbrk_now;
    chunk * pf;
    size_t free_size = 0;
    size_t total_size;

    MALLOC_LOCK;

    if (sbrk_start == NULL) total_size = 0;
    else {
        sbrk_now = _SBRK_R(RCALL 0);

        if (sbrk_now == (void *)-1)
            total_size = (size_t)-1;
        else
            total_size = (size_t) (sbrk_now - sbrk_start);
    }

    for (pf = free_list; pf; pf = pf->next)
        free_size += pf->size;

    current_mallinfo.arena = total_size;
    current_mallinfo.fordblks = free_size;
    current_mallinfo.uordblks = total_size - free_size;

    MALLOC_UNLOCK;
    return current_mallinfo;
}
#endif /* DEFINE_MALLINFO */

#ifdef DEFINE_MALLOC_STATS
void nano_malloc_stats(RONEARG)
{
    nano_mallinfo(RONECALL);
    fiprintf(stderr, "max system bytes = %10u\n",
             current_mallinfo.arena);
    fiprintf(stderr, "system bytes     = %10u\n",
             current_mallinfo.arena);
    fiprintf(stderr, "in use bytes     = %10u\n",
             current_mallinfo.uordblks);
}
#endif /* DEFINE_MALLOC_STATS */

#ifdef DEFINE_MALLOC_USABLE_SIZE
malloc_size_t nano_malloc_usable_size(RARG void * ptr)
{
    chunk * c = (chunk *)((char *)ptr - CHUNK_OFFSET);
    int size_or_offset = c->size;

    if (size_or_offset < 0)
    {
        /* Padding is used. Excluding the padding size */
        c = (chunk *)((char *)c + c->size);
        return c->size - CHUNK_OFFSET + size_or_offset;
    }
    return c->size - CHUNK_OFFSET;
}
#endif /* DEFINE_MALLOC_USABLE_SIZE */

#ifdef DEFINE_MEMALIGN
/* Function nano_memalign
 * Allocate memory block aligned at specific boundary.
 *   align: required alignment. Must be power of 2. Return NULL
 *          if not power of 2. Undefined behavior is bigger than
 *          pointer value range.
 *   s: required size.
 * Return: allocated memory pointer aligned to align
 * Algorithm: Malloc a big enough block, padding pointer to aligned
 *            address, then truncate and free the tail if too big.
 *            Record the offset of align pointer and original pointer
 *            in the padding area.
 */
void * nano_memalign(RARG size_t align, size_t s)
{
    chunk * chunk_p;
    malloc_size_t size_allocated, offset, ma_size, size_with_padding;
    char * allocated, * aligned_p;

    /* Return NULL if align isn't power of 2 */
    if ((align & (align-1)) != 0) return NULL;

    align = MAX(align, MALLOC_ALIGN);

    /* Make sure ma_size does not overflow */
    if (s > __SIZE_MAX__ - CHUNK_ALIGN)
    {
	RERRNO = ENOMEM;
	return NULL;
    }
    ma_size = ALIGN_SIZE(MAX(s, MALLOC_MINSIZE), CHUNK_ALIGN);

    /* Make sure size_with_padding does not overflow */
    if (ma_size > __SIZE_MAX__ - (align - MALLOC_ALIGN))
    {
	RERRNO = ENOMEM;
	return NULL;
    }
    size_with_padding = ma_size + (align - MALLOC_ALIGN);

    allocated = nano_malloc(RCALL size_with_padding);
    if (allocated == NULL) return NULL;

    chunk_p = get_chunk_from_ptr(allocated);
    aligned_p = (char *)ALIGN_PTR(
                  (uintptr_t)((char *)chunk_p + CHUNK_OFFSET),
                  (uintptr_t)align);
    offset = aligned_p - ((char *)chunk_p + CHUNK_OFFSET);

    if (offset)
    {
        if (offset >= MALLOC_MINCHUNK)
        {
            /* Padding is too large, free it */
            chunk * front_chunk = chunk_p;
            chunk_p = (chunk *)((char *)chunk_p + offset);
            chunk_p->size = front_chunk->size - offset;
            front_chunk->size = offset;
            nano_free(RCALL (char *)front_chunk + CHUNK_OFFSET);
        }
        else
        {
            /* Padding is used. Need to set a jump offset for aligned pointer
            * to get back to chunk head */
            assert(offset >= sizeof(int));
            *(long *)((char *)chunk_p + offset) = -offset;
        }
    }

    size_allocated = chunk_p->size;
    if ((char *)chunk_p + size_allocated >
         (aligned_p + ma_size + MALLOC_MINCHUNK))
    {
        /* allocated much more than what's required for padding, free
         * tail part */
        chunk * tail_chunk = (chunk *)(aligned_p + ma_size);
        chunk_p->size = aligned_p + ma_size - (char *)chunk_p;
        tail_chunk->size = size_allocated - chunk_p->size;
        nano_free(RCALL (char *)tail_chunk + CHUNK_OFFSET);
    }
    return aligned_p;
}
#endif /* DEFINE_MEMALIGN */

#ifdef DEFINE_MALLOPT
int nano_mallopt(RARG int parameter_number, int parameter_value)
{
    return 0;
}
#endif /* DEFINE_MALLOPT */

#ifdef DEFINE_VALLOC
void * nano_valloc(RARG size_t s)
{
    return nano_memalign(RCALL MALLOC_PAGE_ALIGN, s);
}
#endif /* DEFINE_VALLOC */

#ifdef DEFINE_PVALLOC
void * nano_pvalloc(RARG size_t s)
{
    /* Make sure size given to nano_valloc does not overflow */
    if (s > __SIZE_MAX__ - MALLOC_PAGE_ALIGN)
    {
	RERRNO = ENOMEM;
	return NULL;
    }
    return nano_valloc(RCALL ALIGN_SIZE(s, MALLOC_PAGE_ALIGN));
}
#endif /* DEFINE_PVALLOC */