aboutsummaryrefslogtreecommitdiff
path: root/newlib/libm/math
diff options
context:
space:
mode:
Diffstat (limited to 'newlib/libm/math')
-rw-r--r--newlib/libm/math/Makefile.am183
-rw-r--r--newlib/libm/math/Makefile.in564
-rw-r--r--newlib/libm/math/e_acos.c111
-rw-r--r--newlib/libm/math/e_acosh.c70
-rw-r--r--newlib/libm/math/e_asin.c121
-rw-r--r--newlib/libm/math/e_atan2.c131
-rw-r--r--newlib/libm/math/e_atanh.c75
-rw-r--r--newlib/libm/math/e_cosh.c93
-rw-r--r--newlib/libm/math/e_exp.c167
-rw-r--r--newlib/libm/math/e_fmod.c140
-rw-r--r--newlib/libm/math/e_hypot.c128
-rw-r--r--newlib/libm/math/e_j0.c487
-rw-r--r--newlib/libm/math/e_j1.c486
-rw-r--r--newlib/libm/math/e_jn.c281
-rw-r--r--newlib/libm/math/e_log.c146
-rw-r--r--newlib/libm/math/e_log10.c98
-rw-r--r--newlib/libm/math/e_pow.c312
-rw-r--r--newlib/libm/math/e_rem_pio2.c185
-rw-r--r--newlib/libm/math/e_remainder.c80
-rw-r--r--newlib/libm/math/e_scalb.c55
-rw-r--r--newlib/libm/math/e_sinh.c86
-rw-r--r--newlib/libm/math/e_sqrt.c452
-rw-r--r--newlib/libm/math/ef_acos.c84
-rw-r--r--newlib/libm/math/ef_acosh.c53
-rw-r--r--newlib/libm/math/ef_asin.c88
-rw-r--r--newlib/libm/math/ef_atan2.c101
-rw-r--r--newlib/libm/math/ef_atanh.c54
-rw-r--r--newlib/libm/math/ef_cosh.c71
-rw-r--r--newlib/libm/math/ef_exp.c100
-rw-r--r--newlib/libm/math/ef_fmod.c113
-rw-r--r--newlib/libm/math/ef_hypot.c83
-rw-r--r--newlib/libm/math/ef_j0.c439
-rw-r--r--newlib/libm/math/ef_j1.c439
-rw-r--r--newlib/libm/math/ef_jn.c207
-rw-r--r--newlib/libm/math/ef_log.c92
-rw-r--r--newlib/libm/math/ef_log10.c62
-rw-r--r--newlib/libm/math/ef_pow.c253
-rw-r--r--newlib/libm/math/ef_rem_pio2.c193
-rw-r--r--newlib/libm/math/ef_remainder.c68
-rw-r--r--newlib/libm/math/ef_scalb.c53
-rw-r--r--newlib/libm/math/ef_sinh.c63
-rw-r--r--newlib/libm/math/ef_sqrt.c90
-rw-r--r--newlib/libm/math/er_gamma.c32
-rw-r--r--newlib/libm/math/er_lgamma.c309
-rw-r--r--newlib/libm/math/erf_gamma.c34
-rw-r--r--newlib/libm/math/erf_lgamma.c244
-rw-r--r--newlib/libm/math/k_cos.c96
-rw-r--r--newlib/libm/math/k_rem_pio2.c320
-rw-r--r--newlib/libm/math/k_sin.c79
-rw-r--r--newlib/libm/math/k_standard.c784
-rw-r--r--newlib/libm/math/k_tan.c132
-rw-r--r--newlib/libm/math/kf_cos.c59
-rw-r--r--newlib/libm/math/kf_rem_pio2.c208
-rw-r--r--newlib/libm/math/kf_sin.c49
-rw-r--r--newlib/libm/math/kf_tan.c96
-rw-r--r--newlib/libm/math/math.tex199
-rw-r--r--newlib/libm/math/s_asinh.c107
-rw-r--r--newlib/libm/math/s_atan.c181
-rw-r--r--newlib/libm/math/s_ceil.c80
-rw-r--r--newlib/libm/math/s_cos.c82
-rw-r--r--newlib/libm/math/s_erf.c373
-rw-r--r--newlib/libm/math/s_fabs.c73
-rw-r--r--newlib/libm/math/s_floor.c134
-rw-r--r--newlib/libm/math/s_frexp.c114
-rw-r--r--newlib/libm/math/s_infconst.c15
-rw-r--r--newlib/libm/math/s_isinf.c26
-rw-r--r--newlib/libm/math/s_isnan.c122
-rw-r--r--newlib/libm/math/s_ldexp.c81
-rw-r--r--newlib/libm/math/s_signif.c34
-rw-r--r--newlib/libm/math/s_sin.c132
-rw-r--r--newlib/libm/math/s_tan.c114
-rw-r--r--newlib/libm/math/s_tanh.c128
-rw-r--r--newlib/libm/math/sf_asinh.c66
-rw-r--r--newlib/libm/math/sf_atan.c129
-rw-r--r--newlib/libm/math/sf_ceil.c70
-rw-r--r--newlib/libm/math/sf_cos.c68
-rw-r--r--newlib/libm/math/sf_erf.c246
-rw-r--r--newlib/libm/math/sf_fabs.c47
-rw-r--r--newlib/libm/math/sf_floor.c80
-rw-r--r--newlib/libm/math/sf_frexp.c61
-rw-r--r--newlib/libm/math/sf_isinf.c33
-rw-r--r--newlib/libm/math/sf_isnan.c47
-rw-r--r--newlib/libm/math/sf_ldexp.c44
-rw-r--r--newlib/libm/math/sf_signif.c40
-rw-r--r--newlib/libm/math/sf_sin.c62
-rw-r--r--newlib/libm/math/sf_tan.c57
-rw-r--r--newlib/libm/math/sf_tanh.c73
-rw-r--r--newlib/libm/math/w_acos.c118
-rw-r--r--newlib/libm/math/w_acosh.c122
-rw-r--r--newlib/libm/math/w_asin.c121
-rw-r--r--newlib/libm/math/w_atan2.c117
-rw-r--r--newlib/libm/math/w_atanh.c140
-rw-r--r--newlib/libm/math/w_cabs.c20
-rw-r--r--newlib/libm/math/w_cosh.c116
-rw-r--r--newlib/libm/math/w_drem.c15
-rw-r--r--newlib/libm/math/w_exp.c136
-rw-r--r--newlib/libm/math/w_fmod.c107
-rw-r--r--newlib/libm/math/w_gamma.c193
-rw-r--r--newlib/libm/math/w_hypot.c109
-rw-r--r--newlib/libm/math/w_j0.c229
-rw-r--r--newlib/libm/math/w_j1.c121
-rw-r--r--newlib/libm/math/w_jn.c141
-rw-r--r--newlib/libm/math/w_lgamma.c89
-rw-r--r--newlib/libm/math/w_log.c115
-rw-r--r--newlib/libm/math/w_log10.c115
-rw-r--r--newlib/libm/math/w_pow.c231
-rw-r--r--newlib/libm/math/w_remainder.c108
-rw-r--r--newlib/libm/math/w_scalb.c94
-rw-r--r--newlib/libm/math/w_sinh.c120
-rw-r--r--newlib/libm/math/w_sqrt.c93
-rw-r--r--newlib/libm/math/wf_acos.c69
-rw-r--r--newlib/libm/math/wf_acosh.c70
-rw-r--r--newlib/libm/math/wf_asin.c71
-rw-r--r--newlib/libm/math/wf_atan2.c71
-rw-r--r--newlib/libm/math/wf_atanh.c83
-rw-r--r--newlib/libm/math/wf_cabs.c20
-rw-r--r--newlib/libm/math/wf_cosh.c78
-rw-r--r--newlib/libm/math/wf_drem.c19
-rw-r--r--newlib/libm/math/wf_exp.c103
-rw-r--r--newlib/libm/math/wf_fmod.c73
-rw-r--r--newlib/libm/math/wf_gamma.c93
-rw-r--r--newlib/libm/math/wf_hypot.c79
-rw-r--r--newlib/libm/math/wf_j0.c137
-rw-r--r--newlib/libm/math/wf_j1.c139
-rw-r--r--newlib/libm/math/wf_jn.c138
-rw-r--r--newlib/libm/math/wf_lgamma.c87
-rw-r--r--newlib/libm/math/wf_log.c85
-rw-r--r--newlib/libm/math/wf_log10.c88
-rw-r--r--newlib/libm/math/wf_pow.c179
-rw-r--r--newlib/libm/math/wf_remainder.c74
-rw-r--r--newlib/libm/math/wf_scalb.c118
-rw-r--r--newlib/libm/math/wf_sinh.c78
-rw-r--r--newlib/libm/math/wf_sqrt.c72
-rw-r--r--newlib/libm/math/wr_gamma.c76
-rw-r--r--newlib/libm/math/wr_lgamma.c77
-rw-r--r--newlib/libm/math/wrf_gamma.c74
-rw-r--r--newlib/libm/math/wrf_lgamma.c75
137 files changed, 0 insertions, 17813 deletions
diff --git a/newlib/libm/math/Makefile.am b/newlib/libm/math/Makefile.am
deleted file mode 100644
index 5ec734a..0000000
--- a/newlib/libm/math/Makefile.am
+++ /dev/null
@@ -1,183 +0,0 @@
-## Process this file with automake to generate Makefile.in
-
-AUTOMAKE_OPTIONS = cygnus
-
-INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS)
-
-src = k_standard.c k_rem_pio2.c \
- k_cos.c k_sin.c k_tan.c \
- e_acos.c e_acosh.c e_asin.c e_atan2.c \
- e_atanh.c e_cosh.c e_exp.c e_fmod.c \
- er_gamma.c e_hypot.c e_j0.c \
- e_j1.c e_jn.c er_lgamma.c \
- e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \
- e_scalb.c e_sinh.c e_sqrt.c \
- w_acos.c w_acosh.c w_asin.c w_atan2.c \
- w_atanh.c w_cosh.c w_exp.c w_fmod.c \
- w_gamma.c wr_gamma.c w_hypot.c w_j0.c \
- w_j1.c w_jn.c w_lgamma.c wr_lgamma.c \
- w_log.c w_log10.c w_pow.c w_remainder.c \
- w_scalb.c w_sinh.c w_sqrt.c \
- w_cabs.c w_drem.c \
- s_asinh.c s_atan.c s_ceil.c \
- s_cos.c s_erf.c s_fabs.c s_floor.c \
- s_frexp.c s_isnan.c s_ldexp.c \
- s_signif.c s_sin.c \
- s_tan.c s_tanh.c \
- s_isinf.c s_infconst.c
-
-fsrc = kf_rem_pio2.c \
- kf_cos.c kf_sin.c kf_tan.c \
- ef_acos.c ef_acosh.c ef_asin.c ef_atan2.c \
- ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c \
- erf_gamma.c ef_hypot.c ef_j0.c \
- ef_j1.c ef_jn.c erf_lgamma.c \
- ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c \
- ef_scalb.c ef_sinh.c ef_sqrt.c \
- wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c \
- wf_atanh.c wf_cosh.c wf_exp.c wf_fmod.c \
- wf_gamma.c wrf_gamma.c wf_hypot.c wf_j0.c \
- wf_j1.c wf_jn.c wf_lgamma.c wrf_lgamma.c \
- wf_log.c wf_log10.c wf_pow.c wf_remainder.c \
- wf_scalb.c wf_sinh.c wf_sqrt.c \
- wf_cabs.c wf_drem.c \
- sf_asinh.c sf_atan.c sf_ceil.c \
- sf_cos.c sf_erf.c sf_fabs.c sf_floor.c \
- sf_frexp.c sf_isnan.c sf_ldexp.c \
- sf_signif.c sf_sin.c \
- sf_tan.c sf_tanh.c \
- sf_isinf.c
-
-libmath_la_LDFLAGS = -Xcompiler -nostdlib
-
-if USE_LIBTOOL
-noinst_LTLIBRARIES = libmath.la
-libmath_la_SOURCES = $(src) $(fsrc)
-noinst_DATA = objectlist.awk.in
-else
-noinst_LIBRARIES = lib.a
-lib_a_SOURCES = $(src) $(fsrc)
-noinst_DATA =
-endif # USE_LIBTOOL
-
-include $(srcdir)/../../Makefile.shared
-
-chobj = wacos.def wacosh.def wasin.def sasinh.def \
- satan.def watan2.def watanh.def wj0.def \
- wcosh.def serf.def wexp.def \
- sfabs.def sfloor.def wfmod.def sfrexp.def \
- wgamma.def whypot.def sldexp.def wlog.def \
- wlog10.def \
- wpow.def wremainder.def ssin.def wsinh.def \
- wsqrt.def stan.def stanh.def \
- sisnan.def
-
-SUFFIXES = .def
-
-CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str
-
-.c.def:
- $(CHEW) < $< > $*.def 2> $*.ref
- touch stmp-def
-
-TARGETDOC = ../tmp.texi
-
-doc: $(chobj)
- cat $(srcdir)/math.tex >> $(TARGETDOC)
-
-CLEANFILES = $(chobj) *.ref
-
-# Texinfo does not appear to support underscores in file names, so we
-# name the .def files without underscores.
-
-wacos.def: w_acos.c
- $(CHEW) < $(srcdir)/w_acos.c >$@ 2>/dev/null
- touch stmp-def
-wacosh.def: w_acosh.c
- $(CHEW) < $(srcdir)/w_acosh.c >$@ 2>/dev/null
- touch stmp-def
-wasin.def: w_asin.c
- $(CHEW) < $(srcdir)/w_asin.c >$@ 2>/dev/null
- touch stmp-def
-sasinh.def: s_asinh.c
- $(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null
- touch stmp-def
-satan.def: s_atan.c
- $(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null
- touch stmp-def
-watan2.def: w_atan2.c
- $(CHEW) < $(srcdir)/w_atan2.c >$@ 2>/dev/null
- touch stmp-def
-watanh.def: w_atanh.c
- $(CHEW) < $(srcdir)/w_atanh.c >$@ 2>/dev/null
- touch stmp-def
-wj0.def: w_j0.c
- $(CHEW) < $(srcdir)/w_j0.c >$@ 2>/dev/null
- touch stmp-def
-scopysign.def: s_copysign.c
- $(CHEW) < $(srcdir)/../common/s_copysign.c >$@ 2>/dev/null
- touch stmp-def
-wcosh.def: w_cosh.c
- $(CHEW) < $(srcdir)/w_cosh.c >$@ 2>/dev/null
- touch stmp-def
-serf.def: s_erf.c
- $(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null
- touch stmp-def
-wexp.def: w_exp.c
- $(CHEW) < $(srcdir)/w_exp.c >$@ 2>/dev/null
- touch stmp-def
-sfabs.def: s_fabs.c
- $(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null
- touch stmp-def
-sfloor.def: s_floor.c
- $(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null
- touch stmp-def
-wfmod.def: w_fmod.c
- $(CHEW) < $(srcdir)/w_fmod.c >$@ 2>/dev/null
- touch stmp-def
-sfrexp.def: s_frexp.c
- $(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null
- touch stmp-def
-wgamma.def: w_gamma.c
- $(CHEW) < $(srcdir)/w_gamma.c >$@ 2>/dev/null
- touch stmp-def
-whypot.def: w_hypot.c
- $(CHEW) < $(srcdir)/w_hypot.c >$@ 2>/dev/null
- touch stmp-def
-sldexp.def: s_ldexp.c
- $(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null
- touch stmp-def
-wlog.def: w_log.c
- $(CHEW) < $(srcdir)/w_log.c >$@ 2>/dev/null
- touch stmp-def
-wlog10.def: w_log10.c
- $(CHEW) < $(srcdir)/w_log10.c >$@ 2>/dev/null
- touch stmp-def
-wpow.def: w_pow.c
- $(CHEW) < $(srcdir)/w_pow.c >$@ 2>/dev/null
- touch stmp-def
-wremainder.def: w_remainder.c
- $(CHEW) < $(srcdir)/w_remainder.c >$@ 2>/dev/null
- touch stmp-def
-ssin.def: s_sin.c
- $(CHEW) < $(srcdir)/s_sin.c >$@ 2>/dev/null
- touch stmp-def
-wsinh.def: w_sinh.c
- $(CHEW) < $(srcdir)/w_sinh.c >$@ 2>/dev/null
- touch stmp-def
-wsqrt.def: w_sqrt.c
- $(CHEW) < $(srcdir)/w_sqrt.c >$@ 2>/dev/null
- touch stmp-def
-stan.def: s_tan.c
- $(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null
- touch stmp-def
-stanh.def: s_tanh.c
- $(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null
- touch stmp-def
-sisnan.def: s_isnan.c
- $(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null
- touch stmp-def
-
-# A partial dependency list.
-
-$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h
diff --git a/newlib/libm/math/Makefile.in b/newlib/libm/math/Makefile.in
deleted file mode 100644
index f8003e7..0000000
--- a/newlib/libm/math/Makefile.in
+++ /dev/null
@@ -1,564 +0,0 @@
-# Makefile.in generated automatically by automake 1.4 from Makefile.am
-
-# Copyright (C) 1994, 1995-8, 1999 Free Software Foundation, Inc.
-# This Makefile.in is free software; the Free Software Foundation
-# gives unlimited permission to copy and/or distribute it,
-# with or without modifications, as long as this notice is preserved.
-
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY, to the extent permitted by law; without
-# even the implied warranty of MERCHANTABILITY or FITNESS FOR A
-# PARTICULAR PURPOSE.
-
-
-
-SHELL = @SHELL@
-
-srcdir = @srcdir@
-top_srcdir = @top_srcdir@
-VPATH = @srcdir@
-prefix = @prefix@
-exec_prefix = @exec_prefix@
-
-bindir = @bindir@
-sbindir = @sbindir@
-libexecdir = @libexecdir@
-datadir = @datadir@
-sysconfdir = @sysconfdir@
-sharedstatedir = @sharedstatedir@
-localstatedir = @localstatedir@
-libdir = @libdir@
-infodir = @infodir@
-mandir = @mandir@
-includedir = @includedir@
-oldincludedir = /usr/include
-
-DESTDIR =
-
-pkgdatadir = $(datadir)/@PACKAGE@
-pkglibdir = $(libdir)/@PACKAGE@
-pkgincludedir = $(includedir)/@PACKAGE@
-
-top_builddir = ..
-
-ACLOCAL = @ACLOCAL@
-AUTOCONF = @AUTOCONF@
-AUTOMAKE = @AUTOMAKE@
-AUTOHEADER = @AUTOHEADER@
-
-INSTALL = @INSTALL@
-INSTALL_PROGRAM = @INSTALL_PROGRAM@ $(AM_INSTALL_PROGRAM_FLAGS)
-INSTALL_DATA = @INSTALL_DATA@
-INSTALL_SCRIPT = @INSTALL_SCRIPT@
-transform = @program_transform_name@
-
-NORMAL_INSTALL = :
-PRE_INSTALL = :
-POST_INSTALL = :
-NORMAL_UNINSTALL = :
-PRE_UNINSTALL = :
-POST_UNINSTALL = :
-host_alias = @host_alias@
-host_triplet = @host@
-AR = @AR@
-AS = @AS@
-CC = @CC@
-CPP = @CPP@
-DLLTOOL = @DLLTOOL@
-EXEEXT = @EXEEXT@
-LDFLAGS = @LDFLAGS@
-LIBM_MACHINE_LIB = @LIBM_MACHINE_LIB@
-LIBTOOL = @LIBTOOL@
-LN_S = @LN_S@
-MAINT = @MAINT@
-MAKEINFO = @MAKEINFO@
-NEWLIB_CFLAGS = @NEWLIB_CFLAGS@
-OBJDUMP = @OBJDUMP@
-PACKAGE = @PACKAGE@
-RANLIB = @RANLIB@
-VERSION = @VERSION@
-aext = @aext@
-libm_machine_dir = @libm_machine_dir@
-machine_dir = @machine_dir@
-newlib_basedir = @newlib_basedir@
-oext = @oext@
-sys_dir = @sys_dir@
-
-AUTOMAKE_OPTIONS = cygnus
-
-INCLUDES = -I$(srcdir)/../common $(NEWLIB_CFLAGS) $(CROSS_CFLAGS) $(TARGET_CFLAGS)
-
-src = k_standard.c k_rem_pio2.c \
- k_cos.c k_sin.c k_tan.c \
- e_acos.c e_acosh.c e_asin.c e_atan2.c \
- e_atanh.c e_cosh.c e_exp.c e_fmod.c \
- er_gamma.c e_hypot.c e_j0.c \
- e_j1.c e_jn.c er_lgamma.c \
- e_log.c e_log10.c e_pow.c e_rem_pio2.c e_remainder.c \
- e_scalb.c e_sinh.c e_sqrt.c \
- w_acos.c w_acosh.c w_asin.c w_atan2.c \
- w_atanh.c w_cosh.c w_exp.c w_fmod.c \
- w_gamma.c wr_gamma.c w_hypot.c w_j0.c \
- w_j1.c w_jn.c w_lgamma.c wr_lgamma.c \
- w_log.c w_log10.c w_pow.c w_remainder.c \
- w_scalb.c w_sinh.c w_sqrt.c \
- w_cabs.c w_drem.c \
- s_asinh.c s_atan.c s_ceil.c \
- s_cos.c s_erf.c s_fabs.c s_floor.c \
- s_frexp.c s_isnan.c s_ldexp.c \
- s_signif.c s_sin.c \
- s_tan.c s_tanh.c \
- s_isinf.c s_infconst.c
-
-
-fsrc = kf_rem_pio2.c \
- kf_cos.c kf_sin.c kf_tan.c \
- ef_acos.c ef_acosh.c ef_asin.c ef_atan2.c \
- ef_atanh.c ef_cosh.c ef_exp.c ef_fmod.c \
- erf_gamma.c ef_hypot.c ef_j0.c \
- ef_j1.c ef_jn.c erf_lgamma.c \
- ef_log.c ef_log10.c ef_pow.c ef_rem_pio2.c ef_remainder.c \
- ef_scalb.c ef_sinh.c ef_sqrt.c \
- wf_acos.c wf_acosh.c wf_asin.c wf_atan2.c \
- wf_atanh.c wf_cosh.c wf_exp.c wf_fmod.c \
- wf_gamma.c wrf_gamma.c wf_hypot.c wf_j0.c \
- wf_j1.c wf_jn.c wf_lgamma.c wrf_lgamma.c \
- wf_log.c wf_log10.c wf_pow.c wf_remainder.c \
- wf_scalb.c wf_sinh.c wf_sqrt.c \
- wf_cabs.c wf_drem.c \
- sf_asinh.c sf_atan.c sf_ceil.c \
- sf_cos.c sf_erf.c sf_fabs.c sf_floor.c \
- sf_frexp.c sf_isnan.c sf_ldexp.c \
- sf_signif.c sf_sin.c \
- sf_tan.c sf_tanh.c \
- sf_isinf.c
-
-
-libmath_la_LDFLAGS = -Xcompiler -nostdlib
-
-@USE_LIBTOOL_TRUE@noinst_LTLIBRARIES = @USE_LIBTOOL_TRUE@libmath.la
-@USE_LIBTOOL_TRUE@libmath_la_SOURCES = @USE_LIBTOOL_TRUE@$(src) $(fsrc)
-@USE_LIBTOOL_TRUE@noinst_DATA = @USE_LIBTOOL_TRUE@objectlist.awk.in
-@USE_LIBTOOL_FALSE@noinst_DATA =
-@USE_LIBTOOL_FALSE@noinst_LIBRARIES = @USE_LIBTOOL_FALSE@lib.a
-@USE_LIBTOOL_FALSE@lib_a_SOURCES = @USE_LIBTOOL_FALSE@$(src) $(fsrc)
-
-chobj = wacos.def wacosh.def wasin.def sasinh.def \
- satan.def watan2.def watanh.def wj0.def \
- wcosh.def serf.def wexp.def \
- sfabs.def sfloor.def wfmod.def sfrexp.def \
- wgamma.def whypot.def sldexp.def wlog.def \
- wlog10.def \
- wpow.def wremainder.def ssin.def wsinh.def \
- wsqrt.def stan.def stanh.def \
- sisnan.def
-
-
-SUFFIXES = .def
-
-CHEW = ../../doc/makedoc -f $(srcdir)/../../doc/doc.str
-
-TARGETDOC = ../tmp.texi
-
-CLEANFILES = $(chobj) *.ref
-mkinstalldirs = $(SHELL) $(top_srcdir)/../../mkinstalldirs
-CONFIG_CLEAN_FILES =
-LIBRARIES = $(noinst_LIBRARIES)
-
-
-DEFS = @DEFS@ -I. -I$(srcdir)
-CPPFLAGS = @CPPFLAGS@
-LIBS = @LIBS@
-lib_a_LIBADD =
-@USE_LIBTOOL_FALSE@lib_a_OBJECTS = k_standard.o k_rem_pio2.o k_cos.o \
-@USE_LIBTOOL_FALSE@k_sin.o k_tan.o e_acos.o e_acosh.o e_asin.o \
-@USE_LIBTOOL_FALSE@e_atan2.o e_atanh.o e_cosh.o e_exp.o e_fmod.o \
-@USE_LIBTOOL_FALSE@er_gamma.o e_hypot.o e_j0.o e_j1.o e_jn.o \
-@USE_LIBTOOL_FALSE@er_lgamma.o e_log.o e_log10.o e_pow.o e_rem_pio2.o \
-@USE_LIBTOOL_FALSE@e_remainder.o e_scalb.o e_sinh.o e_sqrt.o w_acos.o \
-@USE_LIBTOOL_FALSE@w_acosh.o w_asin.o w_atan2.o w_atanh.o w_cosh.o \
-@USE_LIBTOOL_FALSE@w_exp.o w_fmod.o w_gamma.o wr_gamma.o w_hypot.o \
-@USE_LIBTOOL_FALSE@w_j0.o w_j1.o w_jn.o w_lgamma.o wr_lgamma.o w_log.o \
-@USE_LIBTOOL_FALSE@w_log10.o w_pow.o w_remainder.o w_scalb.o w_sinh.o \
-@USE_LIBTOOL_FALSE@w_sqrt.o w_cabs.o w_drem.o s_asinh.o s_atan.o \
-@USE_LIBTOOL_FALSE@s_ceil.o s_cos.o s_erf.o s_fabs.o s_floor.o \
-@USE_LIBTOOL_FALSE@s_frexp.o s_isnan.o s_ldexp.o s_signif.o s_sin.o \
-@USE_LIBTOOL_FALSE@s_tan.o s_tanh.o s_isinf.o s_infconst.o \
-@USE_LIBTOOL_FALSE@kf_rem_pio2.o kf_cos.o kf_sin.o kf_tan.o ef_acos.o \
-@USE_LIBTOOL_FALSE@ef_acosh.o ef_asin.o ef_atan2.o ef_atanh.o ef_cosh.o \
-@USE_LIBTOOL_FALSE@ef_exp.o ef_fmod.o erf_gamma.o ef_hypot.o ef_j0.o \
-@USE_LIBTOOL_FALSE@ef_j1.o ef_jn.o erf_lgamma.o ef_log.o ef_log10.o \
-@USE_LIBTOOL_FALSE@ef_pow.o ef_rem_pio2.o ef_remainder.o ef_scalb.o \
-@USE_LIBTOOL_FALSE@ef_sinh.o ef_sqrt.o wf_acos.o wf_acosh.o wf_asin.o \
-@USE_LIBTOOL_FALSE@wf_atan2.o wf_atanh.o wf_cosh.o wf_exp.o wf_fmod.o \
-@USE_LIBTOOL_FALSE@wf_gamma.o wrf_gamma.o wf_hypot.o wf_j0.o wf_j1.o \
-@USE_LIBTOOL_FALSE@wf_jn.o wf_lgamma.o wrf_lgamma.o wf_log.o wf_log10.o \
-@USE_LIBTOOL_FALSE@wf_pow.o wf_remainder.o wf_scalb.o wf_sinh.o \
-@USE_LIBTOOL_FALSE@wf_sqrt.o wf_cabs.o wf_drem.o sf_asinh.o sf_atan.o \
-@USE_LIBTOOL_FALSE@sf_ceil.o sf_cos.o sf_erf.o sf_fabs.o sf_floor.o \
-@USE_LIBTOOL_FALSE@sf_frexp.o sf_isnan.o sf_ldexp.o sf_signif.o \
-@USE_LIBTOOL_FALSE@sf_sin.o sf_tan.o sf_tanh.o sf_isinf.o
-LTLIBRARIES = $(noinst_LTLIBRARIES)
-
-libmath_la_LIBADD =
-@USE_LIBTOOL_TRUE@libmath_la_OBJECTS = k_standard.lo k_rem_pio2.lo \
-@USE_LIBTOOL_TRUE@k_cos.lo k_sin.lo k_tan.lo e_acos.lo e_acosh.lo \
-@USE_LIBTOOL_TRUE@e_asin.lo e_atan2.lo e_atanh.lo e_cosh.lo e_exp.lo \
-@USE_LIBTOOL_TRUE@e_fmod.lo er_gamma.lo e_hypot.lo e_j0.lo e_j1.lo \
-@USE_LIBTOOL_TRUE@e_jn.lo er_lgamma.lo e_log.lo e_log10.lo e_pow.lo \
-@USE_LIBTOOL_TRUE@e_rem_pio2.lo e_remainder.lo e_scalb.lo e_sinh.lo \
-@USE_LIBTOOL_TRUE@e_sqrt.lo w_acos.lo w_acosh.lo w_asin.lo w_atan2.lo \
-@USE_LIBTOOL_TRUE@w_atanh.lo w_cosh.lo w_exp.lo w_fmod.lo w_gamma.lo \
-@USE_LIBTOOL_TRUE@wr_gamma.lo w_hypot.lo w_j0.lo w_j1.lo w_jn.lo \
-@USE_LIBTOOL_TRUE@w_lgamma.lo wr_lgamma.lo w_log.lo w_log10.lo w_pow.lo \
-@USE_LIBTOOL_TRUE@w_remainder.lo w_scalb.lo w_sinh.lo w_sqrt.lo \
-@USE_LIBTOOL_TRUE@w_cabs.lo w_drem.lo s_asinh.lo s_atan.lo s_ceil.lo \
-@USE_LIBTOOL_TRUE@s_cos.lo s_erf.lo s_fabs.lo s_floor.lo s_frexp.lo \
-@USE_LIBTOOL_TRUE@s_isnan.lo s_ldexp.lo s_signif.lo s_sin.lo s_tan.lo \
-@USE_LIBTOOL_TRUE@s_tanh.lo s_isinf.lo s_infconst.lo kf_rem_pio2.lo \
-@USE_LIBTOOL_TRUE@kf_cos.lo kf_sin.lo kf_tan.lo ef_acos.lo ef_acosh.lo \
-@USE_LIBTOOL_TRUE@ef_asin.lo ef_atan2.lo ef_atanh.lo ef_cosh.lo \
-@USE_LIBTOOL_TRUE@ef_exp.lo ef_fmod.lo erf_gamma.lo ef_hypot.lo \
-@USE_LIBTOOL_TRUE@ef_j0.lo ef_j1.lo ef_jn.lo erf_lgamma.lo ef_log.lo \
-@USE_LIBTOOL_TRUE@ef_log10.lo ef_pow.lo ef_rem_pio2.lo ef_remainder.lo \
-@USE_LIBTOOL_TRUE@ef_scalb.lo ef_sinh.lo ef_sqrt.lo wf_acos.lo \
-@USE_LIBTOOL_TRUE@wf_acosh.lo wf_asin.lo wf_atan2.lo wf_atanh.lo \
-@USE_LIBTOOL_TRUE@wf_cosh.lo wf_exp.lo wf_fmod.lo wf_gamma.lo \
-@USE_LIBTOOL_TRUE@wrf_gamma.lo wf_hypot.lo wf_j0.lo wf_j1.lo wf_jn.lo \
-@USE_LIBTOOL_TRUE@wf_lgamma.lo wrf_lgamma.lo wf_log.lo wf_log10.lo \
-@USE_LIBTOOL_TRUE@wf_pow.lo wf_remainder.lo wf_scalb.lo wf_sinh.lo \
-@USE_LIBTOOL_TRUE@wf_sqrt.lo wf_cabs.lo wf_drem.lo sf_asinh.lo \
-@USE_LIBTOOL_TRUE@sf_atan.lo sf_ceil.lo sf_cos.lo sf_erf.lo sf_fabs.lo \
-@USE_LIBTOOL_TRUE@sf_floor.lo sf_frexp.lo sf_isnan.lo sf_ldexp.lo \
-@USE_LIBTOOL_TRUE@sf_signif.lo sf_sin.lo sf_tan.lo sf_tanh.lo \
-@USE_LIBTOOL_TRUE@sf_isinf.lo
-CFLAGS = @CFLAGS@
-COMPILE = $(CC) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS)
-LTCOMPILE = $(LIBTOOL) --mode=compile $(CC) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CFLAGS) $(CFLAGS)
-CCLD = $(CC)
-LINK = $(LIBTOOL) --mode=link $(CCLD) $(AM_CFLAGS) $(CFLAGS) $(LDFLAGS) -o $@
-DATA = $(noinst_DATA)
-
-DIST_COMMON = Makefile.am Makefile.in
-
-
-DISTFILES = $(DIST_COMMON) $(SOURCES) $(HEADERS) $(TEXINFOS) $(EXTRA_DIST)
-
-TAR = gtar
-GZIP_ENV = --best
-SOURCES = $(lib_a_SOURCES) $(libmath_la_SOURCES)
-OBJECTS = $(lib_a_OBJECTS) $(libmath_la_OBJECTS)
-
-all: all-redirect
-.SUFFIXES:
-.SUFFIXES: .S .c .def .lo .o .s
-$(srcdir)/Makefile.in: @MAINTAINER_MODE_TRUE@ Makefile.am $(top_srcdir)/configure.in $(ACLOCAL_M4) $(srcdir)/../../Makefile.shared
- cd $(top_srcdir) && $(AUTOMAKE) --cygnus math/Makefile
-
-Makefile: $(srcdir)/Makefile.in $(top_builddir)/config.status
- cd $(top_builddir) \
- && CONFIG_FILES=$(subdir)/$@ CONFIG_HEADERS= $(SHELL) ./config.status
-
-
-mostlyclean-noinstLIBRARIES:
-
-clean-noinstLIBRARIES:
- -test -z "$(noinst_LIBRARIES)" || rm -f $(noinst_LIBRARIES)
-
-distclean-noinstLIBRARIES:
-
-maintainer-clean-noinstLIBRARIES:
-
-.c.o:
- $(COMPILE) -c $<
-
-.s.o:
- $(COMPILE) -c $<
-
-.S.o:
- $(COMPILE) -c $<
-
-mostlyclean-compile:
- -rm -f *.o core *.core
-
-clean-compile:
-
-distclean-compile:
- -rm -f *.tab.c
-
-maintainer-clean-compile:
-
-.c.lo:
- $(LIBTOOL) --mode=compile $(COMPILE) -c $<
-
-.s.lo:
- $(LIBTOOL) --mode=compile $(COMPILE) -c $<
-
-.S.lo:
- $(LIBTOOL) --mode=compile $(COMPILE) -c $<
-
-mostlyclean-libtool:
- -rm -f *.lo
-
-clean-libtool:
- -rm -rf .libs _libs
-
-distclean-libtool:
-
-maintainer-clean-libtool:
-
-lib.a: $(lib_a_OBJECTS) $(lib_a_DEPENDENCIES)
- -rm -f lib.a
- $(AR) cru lib.a $(lib_a_OBJECTS) $(lib_a_LIBADD)
- $(RANLIB) lib.a
-
-mostlyclean-noinstLTLIBRARIES:
-
-clean-noinstLTLIBRARIES:
- -test -z "$(noinst_LTLIBRARIES)" || rm -f $(noinst_LTLIBRARIES)
-
-distclean-noinstLTLIBRARIES:
-
-maintainer-clean-noinstLTLIBRARIES:
-
-libmath.la: $(libmath_la_OBJECTS) $(libmath_la_DEPENDENCIES)
- $(LINK) $(libmath_la_LDFLAGS) $(libmath_la_OBJECTS) $(libmath_la_LIBADD) $(LIBS)
-
-tags: TAGS
-
-ID: $(HEADERS) $(SOURCES) $(LISP)
- list='$(SOURCES) $(HEADERS)'; \
- unique=`for i in $$list; do echo $$i; done | \
- awk ' { files[$$0] = 1; } \
- END { for (i in files) print i; }'`; \
- here=`pwd` && cd $(srcdir) \
- && mkid -f$$here/ID $$unique $(LISP)
-
-TAGS: $(HEADERS) $(SOURCES) $(TAGS_DEPENDENCIES) $(LISP)
- tags=; \
- here=`pwd`; \
- list='$(SOURCES) $(HEADERS)'; \
- unique=`for i in $$list; do echo $$i; done | \
- awk ' { files[$$0] = 1; } \
- END { for (i in files) print i; }'`; \
- test -z "$(ETAGS_ARGS)$$unique$(LISP)$$tags" \
- || (cd $(srcdir) && etags $(ETAGS_ARGS) $$tags $$unique $(LISP) -o $$here/TAGS)
-
-mostlyclean-tags:
-
-clean-tags:
-
-distclean-tags:
- -rm -f TAGS ID
-
-maintainer-clean-tags:
-
-distdir = $(top_builddir)/$(PACKAGE)-$(VERSION)/$(subdir)
-
-subdir = math
-
-distdir: $(DISTFILES)
- @for file in $(DISTFILES); do \
- if test -f $$file; then d=.; else d=$(srcdir); fi; \
- if test -d $$d/$$file; then \
- cp -pr $$d/$$file $(distdir)/$$file; \
- else \
- test -f $(distdir)/$$file \
- || ln $$d/$$file $(distdir)/$$file 2> /dev/null \
- || cp -p $$d/$$file $(distdir)/$$file || :; \
- fi; \
- done
-info-am:
-info: info-am
-dvi-am:
-dvi: dvi-am
-check-am:
-check: check-am
-installcheck-am:
-installcheck: installcheck-am
-install-info-am:
-install-info: install-info-am
-install-exec-am:
-install-exec: install-exec-am
-
-install-data-am:
-install-data: install-data-am
-
-install-am: all-am
- @$(MAKE) $(AM_MAKEFLAGS) install-exec-am install-data-am
-install: install-am
-uninstall-am:
-uninstall: uninstall-am
-all-am: Makefile $(LIBRARIES) $(LTLIBRARIES) $(DATA)
-all-redirect: all-am
-install-strip:
- $(MAKE) $(AM_MAKEFLAGS) AM_INSTALL_PROGRAM_FLAGS=-s install
-installdirs:
-
-
-mostlyclean-generic:
-
-clean-generic:
- -test -z "$(CLEANFILES)" || rm -f $(CLEANFILES)
-
-distclean-generic:
- -rm -f Makefile $(CONFIG_CLEAN_FILES)
- -rm -f config.cache config.log stamp-h stamp-h[0-9]*
-
-maintainer-clean-generic:
-mostlyclean-am: mostlyclean-noinstLIBRARIES mostlyclean-compile \
- mostlyclean-libtool mostlyclean-noinstLTLIBRARIES \
- mostlyclean-tags mostlyclean-generic
-
-mostlyclean: mostlyclean-am
-
-clean-am: clean-noinstLIBRARIES clean-compile clean-libtool \
- clean-noinstLTLIBRARIES clean-tags clean-generic \
- mostlyclean-am
-
-clean: clean-am
-
-distclean-am: distclean-noinstLIBRARIES distclean-compile \
- distclean-libtool distclean-noinstLTLIBRARIES \
- distclean-tags distclean-generic clean-am
- -rm -f libtool
-
-distclean: distclean-am
-
-maintainer-clean-am: maintainer-clean-noinstLIBRARIES \
- maintainer-clean-compile maintainer-clean-libtool \
- maintainer-clean-noinstLTLIBRARIES \
- maintainer-clean-tags maintainer-clean-generic \
- distclean-am
- @echo "This command is intended for maintainers to use;"
- @echo "it deletes files that may require special tools to rebuild."
-
-maintainer-clean: maintainer-clean-am
-
-.PHONY: mostlyclean-noinstLIBRARIES distclean-noinstLIBRARIES \
-clean-noinstLIBRARIES maintainer-clean-noinstLIBRARIES \
-mostlyclean-compile distclean-compile clean-compile \
-maintainer-clean-compile mostlyclean-libtool distclean-libtool \
-clean-libtool maintainer-clean-libtool mostlyclean-noinstLTLIBRARIES \
-distclean-noinstLTLIBRARIES clean-noinstLTLIBRARIES \
-maintainer-clean-noinstLTLIBRARIES tags mostlyclean-tags distclean-tags \
-clean-tags maintainer-clean-tags distdir info-am info dvi-am dvi check \
-check-am installcheck-am installcheck install-info-am install-info \
-install-exec-am install-exec install-data-am install-data install-am \
-install uninstall-am uninstall all-redirect all-am all installdirs \
-mostlyclean-generic distclean-generic clean-generic \
-maintainer-clean-generic clean mostlyclean distclean maintainer-clean
-
-
-objectlist.awk.in: $(noinst_LTLIBRARIES)
- -rm -f objectlist.awk.in
- for i in `ls *.lo` ; \
- do \
- echo $$i `pwd`/$$i >> objectlist.awk.in ; \
- done
-
-.c.def:
- $(CHEW) < $< > $*.def 2> $*.ref
- touch stmp-def
-
-doc: $(chobj)
- cat $(srcdir)/math.tex >> $(TARGETDOC)
-
-# Texinfo does not appear to support underscores in file names, so we
-# name the .def files without underscores.
-
-wacos.def: w_acos.c
- $(CHEW) < $(srcdir)/w_acos.c >$@ 2>/dev/null
- touch stmp-def
-wacosh.def: w_acosh.c
- $(CHEW) < $(srcdir)/w_acosh.c >$@ 2>/dev/null
- touch stmp-def
-wasin.def: w_asin.c
- $(CHEW) < $(srcdir)/w_asin.c >$@ 2>/dev/null
- touch stmp-def
-sasinh.def: s_asinh.c
- $(CHEW) < $(srcdir)/s_asinh.c >$@ 2>/dev/null
- touch stmp-def
-satan.def: s_atan.c
- $(CHEW) < $(srcdir)/s_atan.c >$@ 2>/dev/null
- touch stmp-def
-watan2.def: w_atan2.c
- $(CHEW) < $(srcdir)/w_atan2.c >$@ 2>/dev/null
- touch stmp-def
-watanh.def: w_atanh.c
- $(CHEW) < $(srcdir)/w_atanh.c >$@ 2>/dev/null
- touch stmp-def
-wj0.def: w_j0.c
- $(CHEW) < $(srcdir)/w_j0.c >$@ 2>/dev/null
- touch stmp-def
-scopysign.def: s_copysign.c
- $(CHEW) < $(srcdir)/../common/s_copysign.c >$@ 2>/dev/null
- touch stmp-def
-wcosh.def: w_cosh.c
- $(CHEW) < $(srcdir)/w_cosh.c >$@ 2>/dev/null
- touch stmp-def
-serf.def: s_erf.c
- $(CHEW) < $(srcdir)/s_erf.c >$@ 2>/dev/null
- touch stmp-def
-wexp.def: w_exp.c
- $(CHEW) < $(srcdir)/w_exp.c >$@ 2>/dev/null
- touch stmp-def
-sfabs.def: s_fabs.c
- $(CHEW) < $(srcdir)/s_fabs.c >$@ 2>/dev/null
- touch stmp-def
-sfloor.def: s_floor.c
- $(CHEW) < $(srcdir)/s_floor.c >$@ 2>/dev/null
- touch stmp-def
-wfmod.def: w_fmod.c
- $(CHEW) < $(srcdir)/w_fmod.c >$@ 2>/dev/null
- touch stmp-def
-sfrexp.def: s_frexp.c
- $(CHEW) < $(srcdir)/s_frexp.c >$@ 2>/dev/null
- touch stmp-def
-wgamma.def: w_gamma.c
- $(CHEW) < $(srcdir)/w_gamma.c >$@ 2>/dev/null
- touch stmp-def
-whypot.def: w_hypot.c
- $(CHEW) < $(srcdir)/w_hypot.c >$@ 2>/dev/null
- touch stmp-def
-sldexp.def: s_ldexp.c
- $(CHEW) < $(srcdir)/s_ldexp.c >$@ 2>/dev/null
- touch stmp-def
-wlog.def: w_log.c
- $(CHEW) < $(srcdir)/w_log.c >$@ 2>/dev/null
- touch stmp-def
-wlog10.def: w_log10.c
- $(CHEW) < $(srcdir)/w_log10.c >$@ 2>/dev/null
- touch stmp-def
-wpow.def: w_pow.c
- $(CHEW) < $(srcdir)/w_pow.c >$@ 2>/dev/null
- touch stmp-def
-wremainder.def: w_remainder.c
- $(CHEW) < $(srcdir)/w_remainder.c >$@ 2>/dev/null
- touch stmp-def
-ssin.def: s_sin.c
- $(CHEW) < $(srcdir)/s_sin.c >$@ 2>/dev/null
- touch stmp-def
-wsinh.def: w_sinh.c
- $(CHEW) < $(srcdir)/w_sinh.c >$@ 2>/dev/null
- touch stmp-def
-wsqrt.def: w_sqrt.c
- $(CHEW) < $(srcdir)/w_sqrt.c >$@ 2>/dev/null
- touch stmp-def
-stan.def: s_tan.c
- $(CHEW) < $(srcdir)/s_tan.c >$@ 2>/dev/null
- touch stmp-def
-stanh.def: s_tanh.c
- $(CHEW) < $(srcdir)/s_tanh.c >$@ 2>/dev/null
- touch stmp-def
-sisnan.def: s_isnan.c
- $(CHEW) < $(srcdir)/s_isnan.c >$@ 2>/dev/null
- touch stmp-def
-
-# A partial dependency list.
-
-$(lib_a_OBJECTS): $(srcdir)/../../libc/include/math.h $(srcdir)/../common/fdlibm.h
-
-# Tell versions [3.59,3.63) of GNU make to not export all variables.
-# Otherwise a system limit (for SysV at least) may be exceeded.
-.NOEXPORT:
diff --git a/newlib/libm/math/e_acos.c b/newlib/libm/math/e_acos.c
deleted file mode 100644
index 319b1d5..0000000
--- a/newlib/libm/math/e_acos.c
+++ /dev/null
@@ -1,111 +0,0 @@
-
-/* @(#)e_acos.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_acos(x)
- * Method :
- * acos(x) = pi/2 - asin(x)
- * acos(-x) = pi/2 + asin(x)
- * For |x|<=0.5
- * acos(x) = pi/2 - (x + x*x^2*R(x^2)) (see asin.c)
- * For x>0.5
- * acos(x) = pi/2 - (pi/2 - 2asin(sqrt((1-x)/2)))
- * = 2asin(sqrt((1-x)/2))
- * = 2s + 2s*z*R(z) ...z=(1-x)/2, s=sqrt(z)
- * = 2f + (2c + 2s*z*R(z))
- * where f=hi part of s, and c = (z-f*f)/(s+f) is the correction term
- * for f so that f+c ~ sqrt(z).
- * For x<-0.5
- * acos(x) = pi - 2asin(sqrt((1-|x|)/2))
- * = pi - 0.5*(s+s*z*R(z)), where z=(1-|x|)/2,s=sqrt(z)
- *
- * Special cases:
- * if x is NaN, return x itself;
- * if |x|>1, return NaN with invalid signal.
- *
- * Function needed: sqrt
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one= 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
-pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
-pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
-pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
-pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
-pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
-pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
-pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
-pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
-qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
-qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
-qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
-qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
-
-#ifdef __STDC__
- double __ieee754_acos(double x)
-#else
- double __ieee754_acos(x)
- double x;
-#endif
-{
- double z,p,q,r,w,s,c,df;
- __int32_t hx,ix;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x3ff00000) { /* |x| >= 1 */
- __uint32_t lx;
- GET_LOW_WORD(lx,x);
- if(((ix-0x3ff00000)|lx)==0) { /* |x|==1 */
- if(hx>0) return 0.0; /* acos(1) = 0 */
- else return pi+2.0*pio2_lo; /* acos(-1)= pi */
- }
- return (x-x)/(x-x); /* acos(|x|>1) is NaN */
- }
- if(ix<0x3fe00000) { /* |x| < 0.5 */
- if(ix<=0x3c600000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
- z = x*x;
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- r = p/q;
- return pio2_hi - (x - (pio2_lo-x*r));
- } else if (hx<0) { /* x < -0.5 */
- z = (one+x)*0.5;
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- s = __ieee754_sqrt(z);
- r = p/q;
- w = r*s-pio2_lo;
- return pi - 2.0*(s+w);
- } else { /* x > 0.5 */
- z = (one-x)*0.5;
- s = __ieee754_sqrt(z);
- df = s;
- SET_LOW_WORD(df,0);
- c = (z-df*df)/(s+df);
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- r = p/q;
- w = r*s+c;
- return 2.0*(df+w);
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_acosh.c b/newlib/libm/math/e_acosh.c
deleted file mode 100644
index 27984eb..0000000
--- a/newlib/libm/math/e_acosh.c
+++ /dev/null
@@ -1,70 +0,0 @@
-
-/* @(#)e_acosh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_acosh(x)
- * Method :
- * Based on
- * acosh(x) = log [ x + sqrt(x*x-1) ]
- * we have
- * acosh(x) := log(x)+ln2, if x is large; else
- * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- * acosh(x) is NaN with signal if x<1.
- * acosh(NaN) is NaN without signal.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one = 1.0,
-ln2 = 6.93147180559945286227e-01; /* 0x3FE62E42, 0xFEFA39EF */
-
-#ifdef __STDC__
- double __ieee754_acosh(double x)
-#else
- double __ieee754_acosh(x)
- double x;
-#endif
-{
- double t;
- __int32_t hx;
- __uint32_t lx;
- EXTRACT_WORDS(hx,lx,x);
- if(hx<0x3ff00000) { /* x < 1 */
- return (x-x)/(x-x);
- } else if(hx >=0x41b00000) { /* x > 2**28 */
- if(hx >=0x7ff00000) { /* x is inf of NaN */
- return x+x;
- } else
- return __ieee754_log(x)+ln2; /* acosh(huge)=log(2x) */
- } else if(((hx-0x3ff00000)|lx)==0) {
- return 0.0; /* acosh(1) = 0 */
- } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
- t=x*x;
- return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
- } else { /* 1<x<2 */
- t = x-one;
- return log1p(t+__ieee754_sqrt(2.0*t+t*t));
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_asin.c b/newlib/libm/math/e_asin.c
deleted file mode 100644
index 4b6f45e..0000000
--- a/newlib/libm/math/e_asin.c
+++ /dev/null
@@ -1,121 +0,0 @@
-
-/* @(#)e_asin.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_asin(x)
- * Method :
- * Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
- * we approximate asin(x) on [0,0.5] by
- * asin(x) = x + x*x^2*R(x^2)
- * where
- * R(x^2) is a rational approximation of (asin(x)-x)/x^3
- * and its remez error is bounded by
- * |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
- *
- * For x in [0.5,1]
- * asin(x) = pi/2-2*asin(sqrt((1-x)/2))
- * Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
- * then for x>0.98
- * asin(x) = pi/2 - 2*(s+s*z*R(z))
- * = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
- * For x<=0.98, let pio4_hi = pio2_hi/2, then
- * f = hi part of s;
- * c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
- * and
- * asin(x) = pi/2 - 2*(s+s*z*R(z))
- * = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
- * = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
- *
- * Special cases:
- * if x is NaN, return x itself;
- * if |x|>1, return NaN with invalid signal.
- *
- */
-
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-huge = 1.000e+300,
-pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
-pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
-pio4_hi = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
- /* coefficient for R(x^2) */
-pS0 = 1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
-pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
-pS2 = 2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
-pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
-pS4 = 7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
-pS5 = 3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
-qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
-qS2 = 2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
-qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
-qS4 = 7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
-
-#ifdef __STDC__
- double __ieee754_asin(double x)
-#else
- double __ieee754_asin(x)
- double x;
-#endif
-{
- double t,w,p,q,c,r,s;
- __int32_t hx,ix;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>= 0x3ff00000) { /* |x|>= 1 */
- __uint32_t lx;
- GET_LOW_WORD(lx,x);
- if(((ix-0x3ff00000)|lx)==0)
- /* asin(1)=+-pi/2 with inexact */
- return x*pio2_hi+x*pio2_lo;
- return (x-x)/(x-x); /* asin(|x|>1) is NaN */
- } else if (ix<0x3fe00000) { /* |x|<0.5 */
- if(ix<0x3e400000) { /* if |x| < 2**-27 */
- if(huge+x>one) return x;/* return x with inexact if x!=0*/
- } else {
- t = x*x;
- p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
- q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
- w = p/q;
- return x+x*w;
- }
- }
- /* 1> |x|>= 0.5 */
- w = one-fabs(x);
- t = w*0.5;
- p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
- q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
- s = __ieee754_sqrt(t);
- if(ix>=0x3FEF3333) { /* if |x| > 0.975 */
- w = p/q;
- t = pio2_hi-(2.0*(s+s*w)-pio2_lo);
- } else {
- w = s;
- SET_LOW_WORD(w,0);
- c = (t-w*w)/(s+w);
- r = p/q;
- p = 2.0*s*r-(pio2_lo-2.0*c);
- q = pio4_hi-2.0*w;
- t = pio4_hi-(p-q);
- }
- if(hx>0) return t; else return -t;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_atan2.c b/newlib/libm/math/e_atan2.c
deleted file mode 100644
index 268be64..0000000
--- a/newlib/libm/math/e_atan2.c
+++ /dev/null
@@ -1,131 +0,0 @@
-
-/* @(#)e_atan2.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_atan2(y,x)
- * Method :
- * 1. Reduce y to positive by atan2(y,x)=-atan2(-y,x).
- * 2. Reduce x to positive by (if x and y are unexceptional):
- * ARG (x+iy) = arctan(y/x) ... if x > 0,
- * ARG (x+iy) = pi - arctan[y/(-x)] ... if x < 0,
- *
- * Special cases:
- *
- * ATAN2((anything), NaN ) is NaN;
- * ATAN2(NAN , (anything) ) is NaN;
- * ATAN2(+-0, +(anything but NaN)) is +-0 ;
- * ATAN2(+-0, -(anything but NaN)) is +-pi ;
- * ATAN2(+-(anything but 0 and NaN), 0) is +-pi/2;
- * ATAN2(+-(anything but INF and NaN), +INF) is +-0 ;
- * ATAN2(+-(anything but INF and NaN), -INF) is +-pi;
- * ATAN2(+-INF,+INF ) is +-pi/4 ;
- * ATAN2(+-INF,-INF ) is +-3pi/4;
- * ATAN2(+-INF, (anything but,0,NaN, and INF)) is +-pi/2;
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-tiny = 1.0e-300,
-zero = 0.0,
-pi_o_4 = 7.8539816339744827900E-01, /* 0x3FE921FB, 0x54442D18 */
-pi_o_2 = 1.5707963267948965580E+00, /* 0x3FF921FB, 0x54442D18 */
-pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
-pi_lo = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
-
-#ifdef __STDC__
- double __ieee754_atan2(double y, double x)
-#else
- double __ieee754_atan2(y,x)
- double y,x;
-#endif
-{
- double z;
- __int32_t k,m,hx,hy,ix,iy;
- __uint32_t lx,ly;
-
- EXTRACT_WORDS(hx,lx,x);
- ix = hx&0x7fffffff;
- EXTRACT_WORDS(hy,ly,y);
- iy = hy&0x7fffffff;
- if(((ix|((lx|-lx)>>31))>0x7ff00000)||
- ((iy|((ly|-ly)>>31))>0x7ff00000)) /* x or y is NaN */
- return x+y;
- if((hx-0x3ff00000|lx)==0) return atan(y); /* x=1.0 */
- m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
-
- /* when y = 0 */
- if((iy|ly)==0) {
- switch(m) {
- case 0:
- case 1: return y; /* atan(+-0,+anything)=+-0 */
- case 2: return pi+tiny;/* atan(+0,-anything) = pi */
- case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
- }
- }
- /* when x = 0 */
- if((ix|lx)==0) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
-
- /* when x is INF */
- if(ix==0x7ff00000) {
- if(iy==0x7ff00000) {
- switch(m) {
- case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
- case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
- case 2: return 3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
- case 3: return -3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
- }
- } else {
- switch(m) {
- case 0: return zero ; /* atan(+...,+INF) */
- case 1: return -zero ; /* atan(-...,+INF) */
- case 2: return pi+tiny ; /* atan(+...,-INF) */
- case 3: return -pi-tiny ; /* atan(-...,-INF) */
- }
- }
- }
- /* when y is INF */
- if(iy==0x7ff00000) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
-
- /* compute y/x */
- k = (iy-ix)>>20;
- if(k > 60) z=pi_o_2+0.5*pi_lo; /* |y/x| > 2**60 */
- else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
- else z=atan(fabs(y/x)); /* safe to do y/x */
- switch (m) {
- case 0: return z ; /* atan(+,+) */
- case 1: {
- __uint32_t zh;
- GET_HIGH_WORD(zh,z);
- SET_HIGH_WORD(z,zh ^ 0x80000000);
- }
- return z ; /* atan(-,+) */
- case 2: return pi-(z-pi_lo);/* atan(+,-) */
- default: /* case 3 */
- return (z-pi_lo)-pi;/* atan(-,-) */
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_atanh.c b/newlib/libm/math/e_atanh.c
deleted file mode 100644
index 58ad325..0000000
--- a/newlib/libm/math/e_atanh.c
+++ /dev/null
@@ -1,75 +0,0 @@
-
-/* @(#)e_atanh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_atanh(x)
- * Method :
- * 1.Reduced x to positive by atanh(-x) = -atanh(x)
- * 2.For x>=0.5
- * 1 2x x
- * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
- * 2 1 - x 1 - x
- *
- * For x<0.5
- * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
- *
- * Special cases:
- * atanh(x) is NaN if |x| > 1 with signal;
- * atanh(NaN) is that NaN with no signal;
- * atanh(+-1) is +-INF with signal.
- *
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double one = 1.0, huge = 1e300;
-#else
-static double one = 1.0, huge = 1e300;
-#endif
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-#ifdef __STDC__
- double __ieee754_atanh(double x)
-#else
- double __ieee754_atanh(x)
- double x;
-#endif
-{
- double t;
- __int32_t hx,ix;
- __uint32_t lx;
- EXTRACT_WORDS(hx,lx,x);
- ix = hx&0x7fffffff;
- if ((ix|((lx|(-lx))>>31))>0x3ff00000) /* |x|>1 */
- return (x-x)/(x-x);
- if(ix==0x3ff00000)
- return x/zero;
- if(ix<0x3e300000&&(huge+x)>zero) return x; /* x<2**-28 */
- SET_HIGH_WORD(x,ix);
- if(ix<0x3fe00000) { /* x < 0.5 */
- t = x+x;
- t = 0.5*log1p(t+t*x/(one-x));
- } else
- t = 0.5*log1p((x+x)/(one-x));
- if(hx>=0) return t; else return -t;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_cosh.c b/newlib/libm/math/e_cosh.c
deleted file mode 100644
index a6310bd..0000000
--- a/newlib/libm/math/e_cosh.c
+++ /dev/null
@@ -1,93 +0,0 @@
-
-/* @(#)e_cosh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_cosh(x)
- * Method :
- * mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
- * 1. Replace x by |x| (cosh(x) = cosh(-x)).
- * 2.
- * [ exp(x) - 1 ]^2
- * 0 <= x <= ln2/2 : cosh(x) := 1 + -------------------
- * 2*exp(x)
- *
- * exp(x) + 1/exp(x)
- * ln2/2 <= x <= 22 : cosh(x) := -------------------
- * 2
- * 22 <= x <= lnovft : cosh(x) := exp(x)/2
- * lnovft <= x <= ln2ovft: cosh(x) := exp(x/2)/2 * exp(x/2)
- * ln2ovft < x : cosh(x) := huge*huge (overflow)
- *
- * Special cases:
- * cosh(x) is |x| if x is +INF, -INF, or NaN.
- * only cosh(0)=1 is exact for finite x.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double one = 1.0, half=0.5, huge = 1.0e300;
-#else
-static double one = 1.0, half=0.5, huge = 1.0e300;
-#endif
-
-#ifdef __STDC__
- double __ieee754_cosh(double x)
-#else
- double __ieee754_cosh(x)
- double x;
-#endif
-{
- double t,w;
- __int32_t ix;
- __uint32_t lx;
-
- /* High word of |x|. */
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff;
-
- /* x is INF or NaN */
- if(ix>=0x7ff00000) return x*x;
-
- /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
- if(ix<0x3fd62e43) {
- t = expm1(fabs(x));
- w = one+t;
- if (ix<0x3c800000) return w; /* cosh(tiny) = 1 */
- return one+(t*t)/(w+w);
- }
-
- /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
- if (ix < 0x40360000) {
- t = __ieee754_exp(fabs(x));
- return half*t+half/t;
- }
-
- /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
- if (ix < 0x40862E42) return half*__ieee754_exp(fabs(x));
-
- /* |x| in [log(maxdouble), overflowthresold] */
- GET_LOW_WORD(lx,x);
- if (ix<0x408633CE ||
- (ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) {
- w = __ieee754_exp(half*fabs(x));
- t = half*w;
- return t*w;
- }
-
- /* |x| > overflowthresold, cosh(x) overflow */
- return huge*huge;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_exp.c b/newlib/libm/math/e_exp.c
deleted file mode 100644
index ce093c6..0000000
--- a/newlib/libm/math/e_exp.c
+++ /dev/null
@@ -1,167 +0,0 @@
-
-/* @(#)e_exp.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_exp(x)
- * Returns the exponential of x.
- *
- * Method
- * 1. Argument reduction:
- * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
- * Given x, find r and integer k such that
- *
- * x = k*ln2 + r, |r| <= 0.5*ln2.
- *
- * Here r will be represented as r = hi-lo for better
- * accuracy.
- *
- * 2. Approximation of exp(r) by a special rational function on
- * the interval [0,0.34658]:
- * Write
- * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
- * We use a special Reme algorithm on [0,0.34658] to generate
- * a polynomial of degree 5 to approximate R. The maximum error
- * of this polynomial approximation is bounded by 2**-59. In
- * other words,
- * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
- * (where z=r*r, and the values of P1 to P5 are listed below)
- * and
- * | 5 | -59
- * | 2.0+P1*z+...+P5*z - R(z) | <= 2
- * | |
- * The computation of exp(r) thus becomes
- * 2*r
- * exp(r) = 1 + -------
- * R - r
- * r*R1(r)
- * = 1 + r + ----------- (for better accuracy)
- * 2 - R1(r)
- * where
- * 2 4 10
- * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
- *
- * 3. Scale back to obtain exp(x):
- * From step 1, we have
- * exp(x) = 2^k * exp(r)
- *
- * Special cases:
- * exp(INF) is INF, exp(NaN) is NaN;
- * exp(-INF) is 0, and
- * for finite argument, only exp(0)=1 is exact.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Misc. info.
- * For IEEE double
- * if x > 7.09782712893383973096e+02 then exp(x) overflow
- * if x < -7.45133219101941108420e+02 then exp(x) underflow
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one = 1.0,
-halF[2] = {0.5,-0.5,},
-huge = 1.0e+300,
-twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
-o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
-u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
-ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
- -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
-ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
- -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
-invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
-P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
-
-
-#ifdef __STDC__
- double __ieee754_exp(double x) /* default IEEE double exp */
-#else
- double __ieee754_exp(x) /* default IEEE double exp */
- double x;
-#endif
-{
- double y,hi,lo,c,t;
- __int32_t k,xsb;
- __uint32_t hx;
-
- GET_HIGH_WORD(hx,x);
- xsb = (hx>>31)&1; /* sign bit of x */
- hx &= 0x7fffffff; /* high word of |x| */
-
- /* filter out non-finite argument */
- if(hx >= 0x40862E42) { /* if |x|>=709.78... */
- if(hx>=0x7ff00000) {
- __uint32_t lx;
- GET_LOW_WORD(lx,x);
- if(((hx&0xfffff)|lx)!=0)
- return x+x; /* NaN */
- else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
- }
- if(x > o_threshold) return huge*huge; /* overflow */
- if(x < u_threshold) return twom1000*twom1000; /* underflow */
- }
-
- /* argument reduction */
- if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
- if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
- hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
- } else {
- k = invln2*x+halF[xsb];
- t = k;
- hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
- lo = t*ln2LO[0];
- }
- x = hi - lo;
- }
- else if(hx < 0x3e300000) { /* when |x|<2**-28 */
- if(huge+x>one) return one+x;/* trigger inexact */
- }
- else k = 0;
-
- /* x is now in primary range */
- t = x*x;
- c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- if(k==0) return one-((x*c)/(c-2.0)-x);
- else y = one-((lo-(x*c)/(2.0-c))-hi);
- if(k >= -1021) {
- __uint32_t hy;
- GET_HIGH_WORD(hy,y);
- SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
- return y;
- } else {
- __uint32_t hy;
- GET_HIGH_WORD(hy,y);
- SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
- return y*twom1000;
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_fmod.c b/newlib/libm/math/e_fmod.c
deleted file mode 100644
index f9739ee..0000000
--- a/newlib/libm/math/e_fmod.c
+++ /dev/null
@@ -1,140 +0,0 @@
-
-/* @(#)e_fmod.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __ieee754_fmod(x,y)
- * Return x mod y in exact arithmetic
- * Method: shift and subtract
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double one = 1.0, Zero[] = {0.0, -0.0,};
-#else
-static double one = 1.0, Zero[] = {0.0, -0.0,};
-#endif
-
-#ifdef __STDC__
- double __ieee754_fmod(double x, double y)
-#else
- double __ieee754_fmod(x,y)
- double x,y ;
-#endif
-{
- __int32_t n,hx,hy,hz,ix,iy,sx,i;
- __uint32_t lx,ly,lz;
-
- EXTRACT_WORDS(hx,lx,x);
- EXTRACT_WORDS(hy,ly,y);
- sx = hx&0x80000000; /* sign of x */
- hx ^=sx; /* |x| */
- hy &= 0x7fffffff; /* |y| */
-
- /* purge off exception values */
- if((hy|ly)==0||(hx>=0x7ff00000)|| /* y=0,or x not finite */
- ((hy|((ly|-ly)>>31))>0x7ff00000)) /* or y is NaN */
- return (x*y)/(x*y);
- if(hx<=hy) {
- if((hx<hy)||(lx<ly)) return x; /* |x|<|y| return x */
- if(lx==ly)
- return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/
- }
-
- /* determine ix = ilogb(x) */
- if(hx<0x00100000) { /* subnormal x */
- if(hx==0) {
- for (ix = -1043, i=lx; i>0; i<<=1) ix -=1;
- } else {
- for (ix = -1022,i=(hx<<11); i>0; i<<=1) ix -=1;
- }
- } else ix = (hx>>20)-1023;
-
- /* determine iy = ilogb(y) */
- if(hy<0x00100000) { /* subnormal y */
- if(hy==0) {
- for (iy = -1043, i=ly; i>0; i<<=1) iy -=1;
- } else {
- for (iy = -1022,i=(hy<<11); i>0; i<<=1) iy -=1;
- }
- } else iy = (hy>>20)-1023;
-
- /* set up {hx,lx}, {hy,ly} and align y to x */
- if(ix >= -1022)
- hx = 0x00100000|(0x000fffff&hx);
- else { /* subnormal x, shift x to normal */
- n = -1022-ix;
- if(n<=31) {
- hx = (hx<<n)|(lx>>(32-n));
- lx <<= n;
- } else {
- hx = lx<<(n-32);
- lx = 0;
- }
- }
- if(iy >= -1022)
- hy = 0x00100000|(0x000fffff&hy);
- else { /* subnormal y, shift y to normal */
- n = -1022-iy;
- if(n<=31) {
- hy = (hy<<n)|(ly>>(32-n));
- ly <<= n;
- } else {
- hy = ly<<(n-32);
- ly = 0;
- }
- }
-
- /* fix point fmod */
- n = ix - iy;
- while(n--) {
- hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
- if(hz<0){hx = hx+hx+(lx>>31); lx = lx+lx;}
- else {
- if((hz|lz)==0) /* return sign(x)*0 */
- return Zero[(__uint32_t)sx>>31];
- hx = hz+hz+(lz>>31); lx = lz+lz;
- }
- }
- hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
- if(hz>=0) {hx=hz;lx=lz;}
-
- /* convert back to floating value and restore the sign */
- if((hx|lx)==0) /* return sign(x)*0 */
- return Zero[(__uint32_t)sx>>31];
- while(hx<0x00100000) { /* normalize x */
- hx = hx+hx+(lx>>31); lx = lx+lx;
- iy -= 1;
- }
- if(iy>= -1022) { /* normalize output */
- hx = ((hx-0x00100000)|((iy+1023)<<20));
- INSERT_WORDS(x,hx|sx,lx);
- } else { /* subnormal output */
- n = -1022 - iy;
- if(n<=20) {
- lx = (lx>>n)|((__uint32_t)hx<<(32-n));
- hx >>= n;
- } else if (n<=31) {
- lx = (hx<<(32-n))|(lx>>n); hx = sx;
- } else {
- lx = hx>>(n-32); hx = sx;
- }
- INSERT_WORDS(x,hx|sx,lx);
- x *= one; /* create necessary signal */
- }
- return x; /* exact output */
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_hypot.c b/newlib/libm/math/e_hypot.c
deleted file mode 100644
index 03f7f51..0000000
--- a/newlib/libm/math/e_hypot.c
+++ /dev/null
@@ -1,128 +0,0 @@
-
-/* @(#)e_hypot.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_hypot(x,y)
- *
- * Method :
- * If (assume round-to-nearest) z=x*x+y*y
- * has error less than sqrt(2)/2 ulp, than
- * sqrt(z) has error less than 1 ulp (exercise).
- *
- * So, compute sqrt(x*x+y*y) with some care as
- * follows to get the error below 1 ulp:
- *
- * Assume x>y>0;
- * (if possible, set rounding to round-to-nearest)
- * 1. if x > 2y use
- * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
- * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
- * 2. if x <= 2y use
- * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
- * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
- * y1= y with lower 32 bits chopped, y2 = y-y1.
- *
- * NOTE: scaling may be necessary if some argument is too
- * large or too tiny
- *
- * Special cases:
- * hypot(x,y) is INF if x or y is +INF or -INF; else
- * hypot(x,y) is NAN if x or y is NAN.
- *
- * Accuracy:
- * hypot(x,y) returns sqrt(x^2+y^2) with error less
- * than 1 ulps (units in the last place)
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double __ieee754_hypot(double x, double y)
-#else
- double __ieee754_hypot(x,y)
- double x, y;
-#endif
-{
- double a=x,b=y,t1,t2,y1,y2,w;
- __int32_t j,k,ha,hb;
-
- GET_HIGH_WORD(ha,x);
- ha &= 0x7fffffff;
- GET_HIGH_WORD(hb,y);
- hb &= 0x7fffffff;
- if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
- SET_HIGH_WORD(a,ha); /* a <- |a| */
- SET_HIGH_WORD(b,hb); /* b <- |b| */
- if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
- k=0;
- if(ha > 0x5f300000) { /* a>2**500 */
- if(ha >= 0x7ff00000) { /* Inf or NaN */
- __uint32_t low;
- w = a+b; /* for sNaN */
- GET_LOW_WORD(low,a);
- if(((ha&0xfffff)|low)==0) w = a;
- GET_LOW_WORD(low,b);
- if(((hb^0x7ff00000)|low)==0) w = b;
- return w;
- }
- /* scale a and b by 2**-600 */
- ha -= 0x25800000; hb -= 0x25800000; k += 600;
- SET_HIGH_WORD(a,ha);
- SET_HIGH_WORD(b,hb);
- }
- if(hb < 0x20b00000) { /* b < 2**-500 */
- if(hb <= 0x000fffff) { /* subnormal b or 0 */
- __uint32_t low;
- GET_LOW_WORD(low,b);
- if((hb|low)==0) return a;
- t1=0;
- SET_HIGH_WORD(t1,0x7fd00000); /* t1=2^1022 */
- b *= t1;
- a *= t1;
- k -= 1022;
- } else { /* scale a and b by 2^600 */
- ha += 0x25800000; /* a *= 2^600 */
- hb += 0x25800000; /* b *= 2^600 */
- k -= 600;
- SET_HIGH_WORD(a,ha);
- SET_HIGH_WORD(b,hb);
- }
- }
- /* medium size a and b */
- w = a-b;
- if (w>b) {
- t1 = 0;
- SET_HIGH_WORD(t1,ha);
- t2 = a-t1;
- w = __ieee754_sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
- } else {
- a = a+a;
- y1 = 0;
- SET_HIGH_WORD(y1,hb);
- y2 = b - y1;
- t1 = 0;
- SET_HIGH_WORD(t1,ha+0x00100000);
- t2 = a - t1;
- w = __ieee754_sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
- }
- if(k!=0) {
- __uint32_t high;
- t1 = 1.0;
- GET_HIGH_WORD(high,t1);
- SET_HIGH_WORD(t1,high+(k<<20));
- return t1*w;
- } else return w;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_j0.c b/newlib/libm/math/e_j0.c
deleted file mode 100644
index 13773cb..0000000
--- a/newlib/libm/math/e_j0.c
+++ /dev/null
@@ -1,487 +0,0 @@
-
-/* @(#)e_j0.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_j0(x), __ieee754_y0(x)
- * Bessel function of the first and second kinds of order zero.
- * Method -- j0(x):
- * 1. For tiny x, we use j0(x) = 1 - x^2/4 + x^4/64 - ...
- * 2. Reduce x to |x| since j0(x)=j0(-x), and
- * for x in (0,2)
- * j0(x) = 1-z/4+ z^2*R0/S0, where z = x*x;
- * (precision: |j0-1+z/4-z^2R0/S0 |<2**-63.67 )
- * for x in (2,inf)
- * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
- * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
- * as follow:
- * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
- * = 1/sqrt(2) * (cos(x) + sin(x))
- * sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * (To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.)
- *
- * 3 Special cases
- * j0(nan)= nan
- * j0(0) = 1
- * j0(inf) = 0
- *
- * Method -- y0(x):
- * 1. For x<2.
- * Since
- * y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x^2/4 - ...)
- * therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
- * We use the following function to approximate y0,
- * y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x^2
- * where
- * U(z) = u00 + u01*z + ... + u06*z^6
- * V(z) = 1 + v01*z + ... + v04*z^4
- * with absolute approximation error bounded by 2**-72.
- * Note: For tiny x, U/V = u0 and j0(x)~1, hence
- * y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
- * 2. For x>=2.
- * y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
- * where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
- * by the method mentioned above.
- * 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static double pzero(double), qzero(double);
-#else
-static double pzero(), qzero();
-#endif
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-huge = 1e300,
-one = 1.0,
-invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
- /* R0/S0 on [0, 2.00] */
-R02 = 1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
-R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
-R04 = 1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
-R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
-S01 = 1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
-S02 = 1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
-S03 = 5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
-S04 = 1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-#ifdef __STDC__
- double __ieee754_j0(double x)
-#else
- double __ieee754_j0(x)
- double x;
-#endif
-{
- double z, s,c,ss,cc,r,u,v;
- __int32_t hx,ix;
-
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) return one/(x*x);
- x = fabs(x);
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sin(x);
- c = cos(x);
- ss = s-c;
- cc = s+c;
- if(ix<0x7fe00000) { /* make sure x+x not overflow */
- z = -cos(x+x);
- if ((s*c)<zero) cc = z/ss;
- else ss = z/cc;
- }
- /*
- * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
- * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
- */
- if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(x);
- else {
- u = pzero(x); v = qzero(x);
- z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(x);
- }
- return z;
- }
- if(ix<0x3f200000) { /* |x| < 2**-13 */
- if(huge+x>one) { /* raise inexact if x != 0 */
- if(ix<0x3e400000) return one; /* |x|<2**-27 */
- else return one - 0.25*x*x;
- }
- }
- z = x*x;
- r = z*(R02+z*(R03+z*(R04+z*R05)));
- s = one+z*(S01+z*(S02+z*(S03+z*S04)));
- if(ix < 0x3FF00000) { /* |x| < 1.00 */
- return one + z*(-0.25+(r/s));
- } else {
- u = 0.5*x;
- return((one+u)*(one-u)+z*(r/s));
- }
-}
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
-u01 = 1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
-u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
-u03 = 3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
-u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
-u05 = 1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
-u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
-v01 = 1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
-v02 = 7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
-v03 = 2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
-v04 = 4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
-
-#ifdef __STDC__
- double __ieee754_y0(double x)
-#else
- double __ieee754_y0(x)
- double x;
-#endif
-{
- double z, s,c,ss,cc,u,v;
- __int32_t hx,ix,lx;
-
- EXTRACT_WORDS(hx,lx,x);
- ix = 0x7fffffff&hx;
- /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
- if(ix>=0x7ff00000) return one/(x+x*x);
- if((ix|lx)==0) return -one/zero;
- if(hx<0) return zero/zero;
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
- * where x0 = x-pi/4
- * Better formula:
- * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
- * = 1/sqrt(2) * (sin(x) + cos(x))
- * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.
- */
- s = sin(x);
- c = cos(x);
- ss = s-c;
- cc = s+c;
- /*
- * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
- * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
- */
- if(ix<0x7fe00000) { /* make sure x+x not overflow */
- z = -cos(x+x);
- if ((s*c)<zero) cc = z/ss;
- else ss = z/cc;
- }
- if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
- else {
- u = pzero(x); v = qzero(x);
- z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
- }
- return z;
- }
- if(ix<=0x3e400000) { /* x < 2**-27 */
- return(u00 + tpi*__ieee754_log(x));
- }
- z = x*x;
- u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
- v = one+z*(v01+z*(v02+z*(v03+z*v04)));
- return(u/v + tpi*(__ieee754_j0(x)*__ieee754_log(x)));
-}
-
-/* The asymptotic expansions of pzero is
- * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
- * For x >= 2, We approximate pzero by
- * pzero(x) = 1 + (R/S)
- * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
- * S = 1 + pS0*s^2 + ... + pS4*s^10
- * and
- * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
- */
-#ifdef __STDC__
-static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
- -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
- -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
- -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
- -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
-};
-#ifdef __STDC__
-static const double pS8[5] = {
-#else
-static double pS8[5] = {
-#endif
- 1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
- 3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
- 4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
- 1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
- 4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
-};
-
-#ifdef __STDC__
-static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
- -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
- -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
- -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
- -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
- -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
-};
-#ifdef __STDC__
-static const double pS5[5] = {
-#else
-static double pS5[5] = {
-#endif
- 6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
- 1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
- 5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
- 9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
- 2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
-};
-
-#ifdef __STDC__
-static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#else
-static double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
- -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
- -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
- -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
- -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
- -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
-};
-#ifdef __STDC__
-static const double pS3[5] = {
-#else
-static double pS3[5] = {
-#endif
- 3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
- 3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
- 1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
- 1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
- 1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
-};
-
-#ifdef __STDC__
-static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
- -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
- -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
- -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
- -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
- -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
-};
-#ifdef __STDC__
-static const double pS2[5] = {
-#else
-static double pS2[5] = {
-#endif
- 2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
- 1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
- 2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
- 1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
- 1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
-};
-
-#ifdef __STDC__
- static double pzero(double x)
-#else
- static double pzero(x)
- double x;
-#endif
-{
-#ifdef __STDC__
- const double *p,*q;
-#else
- double *p,*q;
-#endif
- double z,r,s;
- __int32_t ix;
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x40200000) {p = pR8; q= pS8;}
- else if(ix>=0x40122E8B){p = pR5; q= pS5;}
- else if(ix>=0x4006DB6D){p = pR3; q= pS3;}
- else {p = pR2; q= pS2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
- return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qzero is
- * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
- * We approximate qzero by
- * qzero(x) = s*(-1.25 + (R/S))
- * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
- * S = 1 + qS0*s^2 + ... + qS5*s^12
- * and
- * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
- */
-#ifdef __STDC__
-static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- 7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
- 1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
- 5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
- 8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
- 3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
-};
-#ifdef __STDC__
-static const double qS8[6] = {
-#else
-static double qS8[6] = {
-#endif
- 1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
- 8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
- 1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
- 8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
- 8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
- -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
-};
-
-#ifdef __STDC__
-static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- 1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
- 7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
- 5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
- 1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
- 1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
- 1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
-};
-#ifdef __STDC__
-static const double qS5[6] = {
-#else
-static double qS5[6] = {
-#endif
- 8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
- 2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
- 1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
- 5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
- 3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
- -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
-};
-
-#ifdef __STDC__
-static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#else
-static double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- 4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
- 7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
- 3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
- 4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
- 1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
- 1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
-};
-#ifdef __STDC__
-static const double qS3[6] = {
-#else
-static double qS3[6] = {
-#endif
- 4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
- 7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
- 3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
- 6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
- 2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
- -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
-};
-
-#ifdef __STDC__
-static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- 1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
- 7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
- 1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
- 1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
- 3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
- 1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
-};
-#ifdef __STDC__
-static const double qS2[6] = {
-#else
-static double qS2[6] = {
-#endif
- 3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
- 2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
- 8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
- 8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
- 2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
- -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
-};
-
-#ifdef __STDC__
- static double qzero(double x)
-#else
- static double qzero(x)
- double x;
-#endif
-{
-#ifdef __STDC__
- const double *p,*q;
-#else
- double *p,*q;
-#endif
- double s,r,z;
- __int32_t ix;
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x40200000) {p = qR8; q= qS8;}
- else if(ix>=0x40122E8B){p = qR5; q= qS5;}
- else if(ix>=0x4006DB6D){p = qR3; q= qS3;}
- else {p = qR2; q= qS2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
- return (-.125 + r/s)/x;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_j1.c b/newlib/libm/math/e_j1.c
deleted file mode 100644
index 098eb56..0000000
--- a/newlib/libm/math/e_j1.c
+++ /dev/null
@@ -1,486 +0,0 @@
-
-/* @(#)e_j1.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_j1(x), __ieee754_y1(x)
- * Bessel function of the first and second kinds of order zero.
- * Method -- j1(x):
- * 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
- * 2. Reduce x to |x| since j1(x)=-j1(-x), and
- * for x in (0,2)
- * j1(x) = x/2 + x*z*R0/S0, where z = x*x;
- * (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
- * for x in (2,inf)
- * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
- * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
- * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
- * as follow:
- * cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- * = -1/sqrt(2) * (sin(x) + cos(x))
- * (To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.)
- *
- * 3 Special cases
- * j1(nan)= nan
- * j1(0) = 0
- * j1(inf) = 0
- *
- * Method -- y1(x):
- * 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
- * 2. For x<2.
- * Since
- * y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
- * therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
- * We use the following function to approximate y1,
- * y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
- * where for x in [0,2] (abs err less than 2**-65.89)
- * U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
- * V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
- * Note: For tiny x, 1/x dominate y1 and hence
- * y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
- * 3. For x>=2.
- * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
- * where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
- * by method mentioned above.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static double pone(double), qone(double);
-#else
-static double pone(), qone();
-#endif
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-huge = 1e300,
-one = 1.0,
-invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
- /* R0/S0 on [0,2] */
-r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
-r01 = 1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
-r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
-r03 = 4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
-s01 = 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
-s02 = 1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
-s03 = 1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
-s04 = 5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
-s05 = 1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-#ifdef __STDC__
- double __ieee754_j1(double x)
-#else
- double __ieee754_j1(x)
- double x;
-#endif
-{
- double z, s,c,ss,cc,r,u,v,y;
- __int32_t hx,ix;
-
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) return one/x;
- y = fabs(x);
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sin(y);
- c = cos(y);
- ss = -s-c;
- cc = s-c;
- if(ix<0x7fe00000) { /* make sure y+y not overflow */
- z = cos(y+y);
- if ((s*c)>zero) cc = z/ss;
- else ss = z/cc;
- }
- /*
- * j1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / __ieee754_sqrt(x)
- * y1(x) = 1/__ieee754_sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / __ieee754_sqrt(x)
- */
- if(ix>0x48000000) z = (invsqrtpi*cc)/__ieee754_sqrt(y);
- else {
- u = pone(y); v = qone(y);
- z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrt(y);
- }
- if(hx<0) return -z;
- else return z;
- }
- if(ix<0x3e400000) { /* |x|<2**-27 */
- if(huge+x>one) return 0.5*x;/* inexact if x!=0 necessary */
- }
- z = x*x;
- r = z*(r00+z*(r01+z*(r02+z*r03)));
- s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
- r *= x;
- return(x*0.5+r/s);
-}
-
-#ifdef __STDC__
-static const double U0[5] = {
-#else
-static double U0[5] = {
-#endif
- -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
- 5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
- -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
- 2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
- -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
-};
-#ifdef __STDC__
-static const double V0[5] = {
-#else
-static double V0[5] = {
-#endif
- 1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
- 2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
- 1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
- 6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
- 1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
-};
-
-#ifdef __STDC__
- double __ieee754_y1(double x)
-#else
- double __ieee754_y1(x)
- double x;
-#endif
-{
- double z, s,c,ss,cc,u,v;
- __int32_t hx,ix,lx;
-
- EXTRACT_WORDS(hx,lx,x);
- ix = 0x7fffffff&hx;
- /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
- if(ix>=0x7ff00000) return one/(x+x*x);
- if((ix|lx)==0) return -one/zero;
- if(hx<0) return zero/zero;
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sin(x);
- c = cos(x);
- ss = -s-c;
- cc = s-c;
- if(ix<0x7fe00000) { /* make sure x+x not overflow */
- z = cos(x+x);
- if ((s*c)>zero) cc = z/ss;
- else ss = z/cc;
- }
- /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
- * where x0 = x-3pi/4
- * Better formula:
- * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- * = -1/sqrt(2) * (cos(x) + sin(x))
- * To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.
- */
- if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrt(x);
- else {
- u = pone(x); v = qone(x);
- z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrt(x);
- }
- return z;
- }
- if(ix<=0x3c900000) { /* x < 2**-54 */
- return(-tpi/x);
- }
- z = x*x;
- u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
- v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
- return(x*(u/v) + tpi*(__ieee754_j1(x)*__ieee754_log(x)-one/x));
-}
-
-/* For x >= 8, the asymptotic expansions of pone is
- * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
- * We approximate pone by
- * pone(x) = 1 + (R/S)
- * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
- * S = 1 + ps0*s^2 + ... + ps4*s^10
- * and
- * | pone(x)-1-R/S | <= 2 ** ( -60.06)
- */
-
-#ifdef __STDC__
-static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- 1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
- 1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
- 4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
- 3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
- 7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
-};
-#ifdef __STDC__
-static const double ps8[5] = {
-#else
-static double ps8[5] = {
-#endif
- 1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
- 3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
- 3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
- 9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
- 3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
-};
-
-#ifdef __STDC__
-static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- 1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
- 1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
- 6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
- 1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
- 5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
- 5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
-};
-#ifdef __STDC__
-static const double ps5[5] = {
-#else
-static double ps5[5] = {
-#endif
- 5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
- 9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
- 5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
- 7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
- 1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
-};
-
-#ifdef __STDC__
-static const double pr3[6] = {
-#else
-static double pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- 3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
- 1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
- 3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
- 3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
- 9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
- 4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
-};
-#ifdef __STDC__
-static const double ps3[5] = {
-#else
-static double ps3[5] = {
-#endif
- 3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
- 3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
- 1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
- 8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
- 1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
-};
-
-#ifdef __STDC__
-static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- 1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
- 1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
- 2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
- 1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
- 1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
- 5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
-};
-#ifdef __STDC__
-static const double ps2[5] = {
-#else
-static double ps2[5] = {
-#endif
- 2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
- 1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
- 2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
- 1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
- 8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
-};
-
-#ifdef __STDC__
- static double pone(double x)
-#else
- static double pone(x)
- double x;
-#endif
-{
-#ifdef __STDC__
- const double *p,*q;
-#else
- double *p,*q;
-#endif
- double z,r,s;
- __int32_t ix;
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x40200000) {p = pr8; q= ps8;}
- else if(ix>=0x40122E8B){p = pr5; q= ps5;}
- else if(ix>=0x4006DB6D){p = pr3; q= ps3;}
- else {p = pr2; q= ps2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
- return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qone is
- * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
- * We approximate qone by
- * qone(x) = s*(0.375 + (R/S))
- * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
- * S = 1 + qs1*s^2 + ... + qs6*s^12
- * and
- * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
- */
-
-#ifdef __STDC__
-static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
- -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
- -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
- -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
- -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
-};
-#ifdef __STDC__
-static const double qs8[6] = {
-#else
-static double qs8[6] = {
-#endif
- 1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
- 7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
- 1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
- 7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
- 6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
- -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
-};
-
-#ifdef __STDC__
-static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
- -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
- -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
- -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
- -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
- -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
-};
-#ifdef __STDC__
-static const double qs5[6] = {
-#else
-static double qs5[6] = {
-#endif
- 8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
- 1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
- 1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
- 4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
- 2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
- -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
-};
-
-#ifdef __STDC__
-static const double qr3[6] = {
-#else
-static double qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
- -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
- -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
- -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
- -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
- -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
-};
-#ifdef __STDC__
-static const double qs3[6] = {
-#else
-static double qs3[6] = {
-#endif
- 4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
- 6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
- 3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
- 5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
- 1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
- -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
-};
-
-#ifdef __STDC__
-static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
- -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
- -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
- -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
- -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
- -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
-};
-#ifdef __STDC__
-static const double qs2[6] = {
-#else
-static double qs2[6] = {
-#endif
- 2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
- 2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
- 7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
- 7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
- 1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
- -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
-};
-
-#ifdef __STDC__
- static double qone(double x)
-#else
- static double qone(x)
- double x;
-#endif
-{
-#ifdef __STDC__
- const double *p,*q;
-#else
- double *p,*q;
-#endif
- double s,r,z;
- __int32_t ix;
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x40200000) {p = qr8; q= qs8;}
- else if(ix>=0x40122E8B){p = qr5; q= qs5;}
- else if(ix>=0x4006DB6D){p = qr3; q= qs3;}
- else {p = qr2; q= qs2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
- return (.375 + r/s)/x;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_jn.c b/newlib/libm/math/e_jn.c
deleted file mode 100644
index 1eea27b..0000000
--- a/newlib/libm/math/e_jn.c
+++ /dev/null
@@ -1,281 +0,0 @@
-
-/* @(#)e_jn.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __ieee754_jn(n, x), __ieee754_yn(n, x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
- * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- * For n=0, j0(x) is called,
- * for n=1, j1(x) is called,
- * for n<x, forward recursion us used starting
- * from values of j0(x) and j1(x).
- * for n>x, a continued fraction approximation to
- * j(n,x)/j(n-1,x) is evaluated and then backward
- * recursion is used starting from a supposed value
- * for j(n,x). The resulting value of j(0,x) is
- * compared with the actual value to correct the
- * supposed value of j(n,x).
- *
- * yn(n,x) is similar in all respects, except
- * that forward recursion is used for all
- * values of n>1.
- *
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-invsqrtpi= 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
-one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
-
-#ifdef __STDC__
-static const double zero = 0.00000000000000000000e+00;
-#else
-static double zero = 0.00000000000000000000e+00;
-#endif
-
-#ifdef __STDC__
- double __ieee754_jn(int n, double x)
-#else
- double __ieee754_jn(n,x)
- int n; double x;
-#endif
-{
- __int32_t i,hx,ix,lx, sgn;
- double a, b, temp, di;
- double z, w;
-
- /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
- * Thus, J(-n,x) = J(n,-x)
- */
- EXTRACT_WORDS(hx,lx,x);
- ix = 0x7fffffff&hx;
- /* if J(n,NaN) is NaN */
- if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
- if(n<0){
- n = -n;
- x = -x;
- hx ^= 0x80000000;
- }
- if(n==0) return(__ieee754_j0(x));
- if(n==1) return(__ieee754_j1(x));
- sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
- x = fabs(x);
- if((ix|lx)==0||ix>=0x7ff00000) /* if x is 0 or inf */
- b = zero;
- else if((double)n<=x) {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- if(ix>=0x52D00000) { /* x > 2**302 */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- switch(n&3) {
- case 0: temp = cos(x)+sin(x); break;
- case 1: temp = -cos(x)+sin(x); break;
- case 2: temp = -cos(x)-sin(x); break;
- case 3: temp = cos(x)-sin(x); break;
- }
- b = invsqrtpi*temp/__ieee754_sqrt(x);
- } else {
- a = __ieee754_j0(x);
- b = __ieee754_j1(x);
- for(i=1;i<n;i++){
- temp = b;
- b = b*((double)(i+i)/x) - a; /* avoid underflow */
- a = temp;
- }
- }
- } else {
- if(ix<0x3e100000) { /* x < 2**-29 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if(n>33) /* underflow */
- b = zero;
- else {
- temp = x*0.5; b = temp;
- for (a=one,i=2;i<=n;i++) {
- a *= (double)i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b/a;
- }
- } else {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- double t,v;
- double q0,q1,h,tmp; __int32_t k,m;
- w = (n+n)/(double)x; h = 2.0/(double)x;
- q0 = w; z = w+h; q1 = w*z - 1.0; k=1;
- while(q1<1.0e9) {
- k += 1; z += h;
- tmp = z*q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n+n;
- for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two/x;
- tmp = tmp*__ieee754_log(fabs(v*tmp));
- if(tmp<7.09782712893383973096e+02) {
- for(i=n-1,di=(double)(i+i);i>0;i--){
- temp = b;
- b *= di;
- b = b/x - a;
- a = temp;
- di -= two;
- }
- } else {
- for(i=n-1,di=(double)(i+i);i>0;i--){
- temp = b;
- b *= di;
- b = b/x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if(b>1e100) {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- b = (t*__ieee754_j0(x)/b);
- }
- }
- if(sgn==1) return -b; else return b;
-}
-
-#ifdef __STDC__
- double __ieee754_yn(int n, double x)
-#else
- double __ieee754_yn(n,x)
- int n; double x;
-#endif
-{
- __int32_t i,hx,ix,lx;
- __int32_t sign;
- double a, b, temp;
-
- EXTRACT_WORDS(hx,lx,x);
- ix = 0x7fffffff&hx;
- /* if Y(n,NaN) is NaN */
- if((ix|((__uint32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
- if((ix|lx)==0) return -one/zero;
- if(hx<0) return zero/zero;
- sign = 1;
- if(n<0){
- n = -n;
- sign = 1 - ((n&1)<<1);
- }
- if(n==0) return(__ieee754_y0(x));
- if(n==1) return(sign*__ieee754_y1(x));
- if(ix==0x7ff00000) return zero;
- if(ix>=0x52D00000) { /* x > 2**302 */
- /* (x >> n**2)
- * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
- * Let s=sin(x), c=cos(x),
- * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
- *
- * n sin(xn)*sqt2 cos(xn)*sqt2
- * ----------------------------------
- * 0 s-c c+s
- * 1 -s-c -c+s
- * 2 -s+c -c-s
- * 3 s+c c-s
- */
- switch(n&3) {
- case 0: temp = sin(x)-cos(x); break;
- case 1: temp = -sin(x)-cos(x); break;
- case 2: temp = -sin(x)+cos(x); break;
- case 3: temp = sin(x)+cos(x); break;
- }
- b = invsqrtpi*temp/__ieee754_sqrt(x);
- } else {
- __uint32_t high;
- a = __ieee754_y0(x);
- b = __ieee754_y1(x);
- /* quit if b is -inf */
- GET_HIGH_WORD(high,b);
- for(i=1;i<n&&high!=0xfff00000;i++){
- temp = b;
- b = ((double)(i+i)/x)*b - a;
- GET_HIGH_WORD(high,b);
- a = temp;
- }
- }
- if(sign>0) return b; else return -b;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_log.c b/newlib/libm/math/e_log.c
deleted file mode 100644
index 72cddb2..0000000
--- a/newlib/libm/math/e_log.c
+++ /dev/null
@@ -1,146 +0,0 @@
-
-/* @(#)e_log.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_log(x)
- * Return the logrithm of x
- *
- * Method :
- * 1. Argument Reduction: find k and f such that
- * x = 2^k * (1+f),
- * where sqrt(2)/2 < 1+f < sqrt(2) .
- *
- * 2. Approximation of log(1+f).
- * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- * = 2s + s*R
- * We use a special Reme algorithm on [0,0.1716] to generate
- * a polynomial of degree 14 to approximate R The maximum error
- * of this polynomial approximation is bounded by 2**-58.45. In
- * other words,
- * 2 4 6 8 10 12 14
- * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
- * (the values of Lg1 to Lg7 are listed in the program)
- * and
- * | 2 14 | -58.45
- * | Lg1*s +...+Lg7*s - R(z) | <= 2
- * | |
- * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- * In order to guarantee error in log below 1ulp, we compute log
- * by
- * log(1+f) = f - s*(f - R) (if f is not too large)
- * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
- *
- * 3. Finally, log(x) = k*ln2 + log(1+f).
- * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- * Here ln2 is split into two floating point number:
- * ln2_hi + ln2_lo,
- * where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- * log(x) is NaN with signal if x < 0 (including -INF) ;
- * log(+INF) is +INF; log(0) is -INF with signal;
- * log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- * according to an error analysis, the error is always less than
- * 1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
-ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
-two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
-Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-#ifdef __STDC__
- double __ieee754_log(double x)
-#else
- double __ieee754_log(x)
- double x;
-#endif
-{
- double hfsq,f,s,z,R,w,t1,t2,dk;
- __int32_t k,hx,i,j;
- __uint32_t lx;
-
- EXTRACT_WORDS(hx,lx,x);
-
- k=0;
- if (hx < 0x00100000) { /* x < 2**-1022 */
- if (((hx&0x7fffffff)|lx)==0)
- return -two54/zero; /* log(+-0)=-inf */
- if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
- k -= 54; x *= two54; /* subnormal number, scale up x */
- GET_HIGH_WORD(hx,x);
- }
- if (hx >= 0x7ff00000) return x+x;
- k += (hx>>20)-1023;
- hx &= 0x000fffff;
- i = (hx+0x95f64)&0x100000;
- SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
- k += (i>>20);
- f = x-1.0;
- if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
- if(f==zero) { if(k==0) return zero; else {dk=(double)k;
- return dk*ln2_hi+dk*ln2_lo;}}
- R = f*f*(0.5-0.33333333333333333*f);
- if(k==0) return f-R; else {dk=(double)k;
- return dk*ln2_hi-((R-dk*ln2_lo)-f);}
- }
- s = f/(2.0+f);
- dk = (double)k;
- z = s*s;
- i = hx-0x6147a;
- w = z*z;
- j = 0x6b851-hx;
- t1= w*(Lg2+w*(Lg4+w*Lg6));
- t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
- i |= j;
- R = t2+t1;
- if(i>0) {
- hfsq=0.5*f*f;
- if(k==0) return f-(hfsq-s*(hfsq+R)); else
- return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
- } else {
- if(k==0) return f-s*(f-R); else
- return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_log10.c b/newlib/libm/math/e_log10.c
deleted file mode 100644
index f7daaa1..0000000
--- a/newlib/libm/math/e_log10.c
+++ /dev/null
@@ -1,98 +0,0 @@
-
-/* @(#)e_log10.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_log10(x)
- * Return the base 10 logarithm of x
- *
- * Method :
- * Let log10_2hi = leading 40 bits of log10(2) and
- * log10_2lo = log10(2) - log10_2hi,
- * ivln10 = 1/log(10) rounded.
- * Then
- * n = ilogb(x),
- * if(n<0) n = n+1;
- * x = scalbn(x,-n);
- * log10(x) := n*log10_2hi + (n*log10_2lo + ivln10*log(x))
- *
- * Note 1:
- * To guarantee log10(10**n)=n, where 10**n is normal, the rounding
- * mode must set to Round-to-Nearest.
- * Note 2:
- * [1/log(10)] rounded to 53 bits has error .198 ulps;
- * log10 is monotonic at all binary break points.
- *
- * Special cases:
- * log10(x) is NaN with signal if x < 0;
- * log10(+INF) is +INF with no signal; log10(0) is -INF with signal;
- * log10(NaN) is that NaN with no signal;
- * log10(10**N) = N for N=0,1,...,22.
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
-ivln10 = 4.34294481903251816668e-01, /* 0x3FDBCB7B, 0x1526E50E */
-log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
-log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-#ifdef __STDC__
- double __ieee754_log10(double x)
-#else
- double __ieee754_log10(x)
- double x;
-#endif
-{
- double y,z;
- __int32_t i,k,hx;
- __uint32_t lx;
-
- EXTRACT_WORDS(hx,lx,x);
-
- k=0;
- if (hx < 0x00100000) { /* x < 2**-1022 */
- if (((hx&0x7fffffff)|lx)==0)
- return -two54/zero; /* log(+-0)=-inf */
- if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
- k -= 54; x *= two54; /* subnormal number, scale up x */
- GET_HIGH_WORD(hx,x);
- }
- if (hx >= 0x7ff00000) return x+x;
- k += (hx>>20)-1023;
- i = ((__uint32_t)k&0x80000000)>>31;
- hx = (hx&0x000fffff)|((0x3ff-i)<<20);
- y = (double)(k+i);
- SET_HIGH_WORD(x,hx);
- z = y*log10_2lo + ivln10*__ieee754_log(x);
- return z+y*log10_2hi;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_pow.c b/newlib/libm/math/e_pow.c
deleted file mode 100644
index 9312085..0000000
--- a/newlib/libm/math/e_pow.c
+++ /dev/null
@@ -1,312 +0,0 @@
-
-/* @(#)e_pow.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_pow(x,y) return x**y
- *
- * n
- * Method: Let x = 2 * (1+f)
- * 1. Compute and return log2(x) in two pieces:
- * log2(x) = w1 + w2,
- * where w1 has 53-24 = 29 bit trailing zeros.
- * 2. Perform y*log2(x) = n+y' by simulating muti-precision
- * arithmetic, where |y'|<=0.5.
- * 3. Return x**y = 2**n*exp(y'*log2)
- *
- * Special cases:
- * 1. (anything) ** 0 is 1
- * 2. (anything) ** 1 is itself
- * 3. (anything) ** NAN is NAN
- * 4. NAN ** (anything except 0) is NAN
- * 5. +-(|x| > 1) ** +INF is +INF
- * 6. +-(|x| > 1) ** -INF is +0
- * 7. +-(|x| < 1) ** +INF is +0
- * 8. +-(|x| < 1) ** -INF is +INF
- * 9. +-1 ** +-INF is NAN
- * 10. +0 ** (+anything except 0, NAN) is +0
- * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
- * 12. +0 ** (-anything except 0, NAN) is +INF
- * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
- * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
- * 15. +INF ** (+anything except 0,NAN) is +INF
- * 16. +INF ** (-anything except 0,NAN) is +0
- * 17. -INF ** (anything) = -0 ** (-anything)
- * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
- * 19. (-anything except 0 and inf) ** (non-integer) is NAN
- *
- * Accuracy:
- * pow(x,y) returns x**y nearly rounded. In particular
- * pow(integer,integer)
- * always returns the correct integer provided it is
- * representable.
- *
- * Constants :
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-bp[] = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
-dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
-zero = 0.0,
-one = 1.0,
-two = 2.0,
-two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
-huge = 1.0e300,
-tiny = 1.0e-300,
- /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
-L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
-L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
-L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
-L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
-L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
-L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
-P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
-lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
-lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
-lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
-ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
-cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
-cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
-cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
-ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
-ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
-ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
-
-#ifdef __STDC__
- double __ieee754_pow(double x, double y)
-#else
- double __ieee754_pow(x,y)
- double x, y;
-#endif
-{
- double z,ax,z_h,z_l,p_h,p_l;
- double y1,t1,t2,r,s,t,u,v,w;
- __int32_t i,j,k,yisint,n;
- __int32_t hx,hy,ix,iy;
- __uint32_t lx,ly;
-
- EXTRACT_WORDS(hx,lx,x);
- EXTRACT_WORDS(hy,ly,y);
- ix = hx&0x7fffffff; iy = hy&0x7fffffff;
-
- /* y==zero: x**0 = 1 */
- if((iy|ly)==0) return one;
-
- /* +-NaN return x+y */
- if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
- iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
- return x+y;
-
- /* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
- */
- yisint = 0;
- if(hx<0) {
- if(iy>=0x43400000) yisint = 2; /* even integer y */
- else if(iy>=0x3ff00000) {
- k = (iy>>20)-0x3ff; /* exponent */
- if(k>20) {
- j = ly>>(52-k);
- if((j<<(52-k))==ly) yisint = 2-(j&1);
- } else if(ly==0) {
- j = iy>>(20-k);
- if((j<<(20-k))==iy) yisint = 2-(j&1);
- }
- }
- }
-
- /* special value of y */
- if(ly==0) {
- if (iy==0x7ff00000) { /* y is +-inf */
- if(((ix-0x3ff00000)|lx)==0)
- return y - y; /* inf**+-1 is NaN */
- else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
- return (hy>=0)? y: zero;
- else /* (|x|<1)**-,+inf = inf,0 */
- return (hy<0)?-y: zero;
- }
- if(iy==0x3ff00000) { /* y is +-1 */
- if(hy<0) return one/x; else return x;
- }
- if(hy==0x40000000) return x*x; /* y is 2 */
- if(hy==0x3fe00000) { /* y is 0.5 */
- if(hx>=0) /* x >= +0 */
- return __ieee754_sqrt(x);
- }
- }
-
- ax = fabs(x);
- /* special value of x */
- if(lx==0) {
- if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
- z = ax; /*x is +-0,+-inf,+-1*/
- if(hy<0) z = one/z; /* z = (1/|x|) */
- if(hx<0) {
- if(((ix-0x3ff00000)|yisint)==0) {
- z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- return z;
- }
- }
-
- /* (x<0)**(non-int) is NaN */
- /* CYGNUS LOCAL: This used to be
- if((((hx>>31)+1)|yisint)==0) return (x-x)/(x-x);
- but ANSI C says a right shift of a signed negative quantity is
- implementation defined. */
- if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
-
- /* |y| is huge */
- if(iy>0x41e00000) { /* if |y| > 2**31 */
- if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
- if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
- if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
- }
- /* over/underflow if x is not close to one */
- if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
- if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
- /* now |1-x| is tiny <= 2**-20, suffice to compute
- log(x) by x-x^2/2+x^3/3-x^4/4 */
- t = x-1; /* t has 20 trailing zeros */
- w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
- u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
- v = t*ivln2_l-w*ivln2;
- t1 = u+v;
- SET_LOW_WORD(t1,0);
- t2 = v-(t1-u);
- } else {
- double s2,s_h,s_l,t_h,t_l;
- n = 0;
- /* take care subnormal number */
- if(ix<0x00100000)
- {ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
- n += ((ix)>>20)-0x3ff;
- j = ix&0x000fffff;
- /* determine interval */
- ix = j|0x3ff00000; /* normalize ix */
- if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
- else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
- else {k=0;n+=1;ix -= 0x00100000;}
- SET_HIGH_WORD(ax,ix);
-
- /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
- v = one/(ax+bp[k]);
- s = u*v;
- s_h = s;
- SET_LOW_WORD(s_h,0);
- /* t_h=ax+bp[k] High */
- t_h = zero;
- SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
- t_l = ax - (t_h-bp[k]);
- s_l = v*((u-s_h*t_h)-s_h*t_l);
- /* compute log(ax) */
- s2 = s*s;
- r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
- r += s_l*(s_h+s);
- s2 = s_h*s_h;
- t_h = 3.0+s2+r;
- SET_LOW_WORD(t_h,0);
- t_l = r-((t_h-3.0)-s2);
- /* u+v = s*(1+...) */
- u = s_h*t_h;
- v = s_l*t_h+t_l*s;
- /* 2/(3log2)*(s+...) */
- p_h = u+v;
- SET_LOW_WORD(p_h,0);
- p_l = v-(p_h-u);
- z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
- z_l = cp_l*p_h+p_l*cp+dp_l[k];
- /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (double)n;
- t1 = (((z_h+z_l)+dp_h[k])+t);
- SET_LOW_WORD(t1,0);
- t2 = z_l-(((t1-t)-dp_h[k])-z_h);
- }
-
- s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
- if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
- s = -one;/* (-ve)**(odd int) */
-
- /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
- y1 = y;
- SET_LOW_WORD(y1,0);
- p_l = (y-y1)*t1+y*t2;
- p_h = y1*t1;
- z = p_l+p_h;
- EXTRACT_WORDS(j,i,z);
- if (j>=0x40900000) { /* z >= 1024 */
- if(((j-0x40900000)|i)!=0) /* if z > 1024 */
- return s*huge*huge; /* overflow */
- else {
- if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
- }
- } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
- if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
- return s*tiny*tiny; /* underflow */
- else {
- if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
- }
- }
- /*
- * compute 2**(p_h+p_l)
- */
- i = j&0x7fffffff;
- k = (i>>20)-0x3ff;
- n = 0;
- if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
- n = j+(0x00100000>>(k+1));
- k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
- t = zero;
- SET_HIGH_WORD(t,n&~(0x000fffff>>k));
- n = ((n&0x000fffff)|0x00100000)>>(20-k);
- if(j<0) n = -n;
- p_h -= t;
- }
- t = p_l+p_h;
- SET_LOW_WORD(t,0);
- u = t*lg2_h;
- v = (p_l-(t-p_h))*lg2+t*lg2_l;
- z = u+v;
- w = v-(z-u);
- t = z*z;
- t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- r = (z*t1)/(t1-two)-(w+z*w);
- z = one-(r-z);
- GET_HIGH_WORD(j,z);
- j += (n<<20);
- if((j>>20)<=0) z = scalbn(z,(int)n); /* subnormal output */
- else SET_HIGH_WORD(z,j);
- return s*z;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_rem_pio2.c b/newlib/libm/math/e_rem_pio2.c
deleted file mode 100644
index 3e5d0f7..0000000
--- a/newlib/libm/math/e_rem_pio2.c
+++ /dev/null
@@ -1,185 +0,0 @@
-
-/* @(#)e_rem_pio2.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_rem_pio2(x,y)
- *
- * return the remainder of x rem pi/2 in y[0]+y[1]
- * use __kernel_rem_pio2()
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-/*
- * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
- */
-#ifdef __STDC__
-static const __int32_t two_over_pi[] = {
-#else
-static __int32_t two_over_pi[] = {
-#endif
-0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
-0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
-0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
-0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
-0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
-0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
-0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
-0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
-0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
-0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
-0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
-};
-
-#ifdef __STDC__
-static const __int32_t npio2_hw[] = {
-#else
-static __int32_t npio2_hw[] = {
-#endif
-0x3FF921FB, 0x400921FB, 0x4012D97C, 0x401921FB, 0x401F6A7A, 0x4022D97C,
-0x4025FDBB, 0x402921FB, 0x402C463A, 0x402F6A7A, 0x4031475C, 0x4032D97C,
-0x40346B9C, 0x4035FDBB, 0x40378FDB, 0x403921FB, 0x403AB41B, 0x403C463A,
-0x403DD85A, 0x403F6A7A, 0x40407E4C, 0x4041475C, 0x4042106C, 0x4042D97C,
-0x4043A28C, 0x40446B9C, 0x404534AC, 0x4045FDBB, 0x4046C6CB, 0x40478FDB,
-0x404858EB, 0x404921FB,
-};
-
-/*
- * invpio2: 53 bits of 2/pi
- * pio2_1: first 33 bit of pi/2
- * pio2_1t: pi/2 - pio2_1
- * pio2_2: second 33 bit of pi/2
- * pio2_2t: pi/2 - (pio2_1+pio2_2)
- * pio2_3: third 33 bit of pi/2
- * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
- */
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-zero = 0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
-invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
-pio2_1 = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
-pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
-pio2_2 = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
-pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
-pio2_3 = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
-pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
-
-#ifdef __STDC__
- __int32_t __ieee754_rem_pio2(double x, double *y)
-#else
- __int32_t __ieee754_rem_pio2(x,y)
- double x,y[];
-#endif
-{
- double z,w,t,r,fn;
- double tx[3];
- __int32_t i,j,n,ix,hx;
- int e0,nx;
- __uint32_t low;
-
- GET_HIGH_WORD(hx,x); /* high word of x */
- ix = hx&0x7fffffff;
- if(ix<=0x3fe921fb) /* |x| ~<= pi/4 , no need for reduction */
- {y[0] = x; y[1] = 0; return 0;}
- if(ix<0x4002d97c) { /* |x| < 3pi/4, special case with n=+-1 */
- if(hx>0) {
- z = x - pio2_1;
- if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
- y[0] = z - pio2_1t;
- y[1] = (z-y[0])-pio2_1t;
- } else { /* near pi/2, use 33+33+53 bit pi */
- z -= pio2_2;
- y[0] = z - pio2_2t;
- y[1] = (z-y[0])-pio2_2t;
- }
- return 1;
- } else { /* negative x */
- z = x + pio2_1;
- if(ix!=0x3ff921fb) { /* 33+53 bit pi is good enough */
- y[0] = z + pio2_1t;
- y[1] = (z-y[0])+pio2_1t;
- } else { /* near pi/2, use 33+33+53 bit pi */
- z += pio2_2;
- y[0] = z + pio2_2t;
- y[1] = (z-y[0])+pio2_2t;
- }
- return -1;
- }
- }
- if(ix<=0x413921fb) { /* |x| ~<= 2^19*(pi/2), medium size */
- t = fabs(x);
- n = (__int32_t) (t*invpio2+half);
- fn = (double)n;
- r = t-fn*pio2_1;
- w = fn*pio2_1t; /* 1st round good to 85 bit */
- if(n<32&&ix!=npio2_hw[n-1]) {
- y[0] = r-w; /* quick check no cancellation */
- } else {
- __uint32_t high;
- j = ix>>20;
- y[0] = r-w;
- GET_HIGH_WORD(high,y[0]);
- i = j-((high>>20)&0x7ff);
- if(i>16) { /* 2nd iteration needed, good to 118 */
- t = r;
- w = fn*pio2_2;
- r = t-w;
- w = fn*pio2_2t-((t-r)-w);
- y[0] = r-w;
- GET_HIGH_WORD(high,y[0]);
- i = j-((high>>20)&0x7ff);
- if(i>49) { /* 3rd iteration need, 151 bits acc */
- t = r; /* will cover all possible cases */
- w = fn*pio2_3;
- r = t-w;
- w = fn*pio2_3t-((t-r)-w);
- y[0] = r-w;
- }
- }
- }
- y[1] = (r-y[0])-w;
- if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
- else return n;
- }
- /*
- * all other (large) arguments
- */
- if(ix>=0x7ff00000) { /* x is inf or NaN */
- y[0]=y[1]=x-x; return 0;
- }
- /* set z = scalbn(|x|,ilogb(x)-23) */
- GET_LOW_WORD(low,x);
- SET_LOW_WORD(z,low);
- e0 = (int)((ix>>20)-1046); /* e0 = ilogb(z)-23; */
- SET_HIGH_WORD(z, ix - ((__int32_t)e0<<20));
- for(i=0;i<2;i++) {
- tx[i] = (double)((__int32_t)(z));
- z = (z-tx[i])*two24;
- }
- tx[2] = z;
- nx = 3;
- while(tx[nx-1]==zero) nx--; /* skip zero term */
- n = __kernel_rem_pio2(tx,y,e0,nx,2,two_over_pi);
- if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
- return n;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_remainder.c b/newlib/libm/math/e_remainder.c
deleted file mode 100644
index ae7ce64..0000000
--- a/newlib/libm/math/e_remainder.c
+++ /dev/null
@@ -1,80 +0,0 @@
-
-/* @(#)e_remainder.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_remainder(x,p)
- * Return :
- * returns x REM p = x - [x/p]*p as if in infinite
- * precise arithmetic, where [x/p] is the (infinite bit)
- * integer nearest x/p (in half way case choose the even one).
- * Method :
- * Based on fmod() return x-[x/p]chopped*p exactlp.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double zero = 0.0;
-#else
-static double zero = 0.0;
-#endif
-
-
-#ifdef __STDC__
- double __ieee754_remainder(double x, double p)
-#else
- double __ieee754_remainder(x,p)
- double x,p;
-#endif
-{
- __int32_t hx,hp;
- __uint32_t sx,lx,lp;
- double p_half;
-
- EXTRACT_WORDS(hx,lx,x);
- EXTRACT_WORDS(hp,lp,p);
- sx = hx&0x80000000;
- hp &= 0x7fffffff;
- hx &= 0x7fffffff;
-
- /* purge off exception values */
- if((hp|lp)==0) return (x*p)/(x*p); /* p = 0 */
- if((hx>=0x7ff00000)|| /* x not finite */
- ((hp>=0x7ff00000)&& /* p is NaN */
- (((hp-0x7ff00000)|lp)!=0)))
- return (x*p)/(x*p);
-
-
- if (hp<=0x7fdfffff) x = __ieee754_fmod(x,p+p); /* now x < 2p */
- if (((hx-hp)|(lx-lp))==0) return zero*x;
- x = fabs(x);
- p = fabs(p);
- if (hp<0x00200000) {
- if(x+x>p) {
- x-=p;
- if(x+x>=p) x -= p;
- }
- } else {
- p_half = 0.5*p;
- if(x>p_half) {
- x-=p;
- if(x>=p_half) x -= p;
- }
- }
- GET_HIGH_WORD(hx,x);
- SET_HIGH_WORD(x,hx^sx);
- return x;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_scalb.c b/newlib/libm/math/e_scalb.c
deleted file mode 100644
index 0bb924b..0000000
--- a/newlib/libm/math/e_scalb.c
+++ /dev/null
@@ -1,55 +0,0 @@
-
-/* @(#)e_scalb.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __ieee754_scalb(x, fn) is provide for
- * passing various standard test suite. One
- * should use scalbn() instead.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef _SCALB_INT
-#ifdef __STDC__
- double __ieee754_scalb(double x, int fn)
-#else
- double __ieee754_scalb(x,fn)
- double x; int fn;
-#endif
-#else
-#ifdef __STDC__
- double __ieee754_scalb(double x, double fn)
-#else
- double __ieee754_scalb(x,fn)
- double x, fn;
-#endif
-#endif
-{
-#ifdef _SCALB_INT
- return scalbn(x,fn);
-#else
- if (isnan(x)||isnan(fn)) return x*fn;
- if (!finite(fn)) {
- if(fn>0.0) return x*fn;
- else return x/(-fn);
- }
- if (rint(fn)!=fn) return (fn-fn)/(fn-fn);
- if ( fn > 65000.0) return scalbn(x, 65000);
- if (-fn > 65000.0) return scalbn(x,-65000);
- return scalbn(x,(int)fn);
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_sinh.c b/newlib/libm/math/e_sinh.c
deleted file mode 100644
index cf7ebfb..0000000
--- a/newlib/libm/math/e_sinh.c
+++ /dev/null
@@ -1,86 +0,0 @@
-
-/* @(#)e_sinh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_sinh(x)
- * Method :
- * mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
- * 1. Replace x by |x| (sinh(-x) = -sinh(x)).
- * 2.
- * E + E/(E+1)
- * 0 <= x <= 22 : sinh(x) := --------------, E=expm1(x)
- * 2
- *
- * 22 <= x <= lnovft : sinh(x) := exp(x)/2
- * lnovft <= x <= ln2ovft: sinh(x) := exp(x/2)/2 * exp(x/2)
- * ln2ovft < x : sinh(x) := x*shuge (overflow)
- *
- * Special cases:
- * sinh(x) is |x| if x is +INF, -INF, or NaN.
- * only sinh(0)=0 is exact for finite x.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double one = 1.0, shuge = 1.0e307;
-#else
-static double one = 1.0, shuge = 1.0e307;
-#endif
-
-#ifdef __STDC__
- double __ieee754_sinh(double x)
-#else
- double __ieee754_sinh(x)
- double x;
-#endif
-{
- double t,w,h;
- __int32_t ix,jx;
- __uint32_t lx;
-
- /* High word of |x|. */
- GET_HIGH_WORD(jx,x);
- ix = jx&0x7fffffff;
-
- /* x is INF or NaN */
- if(ix>=0x7ff00000) return x+x;
-
- h = 0.5;
- if (jx<0) h = -h;
- /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
- if (ix < 0x40360000) { /* |x|<22 */
- if (ix<0x3e300000) /* |x|<2**-28 */
- if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
- t = expm1(fabs(x));
- if(ix<0x3ff00000) return h*(2.0*t-t*t/(t+one));
- return h*(t+t/(t+one));
- }
-
- /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
- if (ix < 0x40862E42) return h*__ieee754_exp(fabs(x));
-
- /* |x| in [log(maxdouble), overflowthresold] */
- GET_LOW_WORD(lx,x);
- if (ix<0x408633CE || (ix==0x408633ce && lx<=(__uint32_t)0x8fb9f87d)) {
- w = __ieee754_exp(0.5*fabs(x));
- t = h*w;
- return t*w;
- }
-
- /* |x| > overflowthresold, sinh(x) overflow */
- return x*shuge;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/e_sqrt.c b/newlib/libm/math/e_sqrt.c
deleted file mode 100644
index 460125a..0000000
--- a/newlib/libm/math/e_sqrt.c
+++ /dev/null
@@ -1,452 +0,0 @@
-
-/* @(#)e_sqrt.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __ieee754_sqrt(x)
- * Return correctly rounded sqrt.
- * ------------------------------------------
- * | Use the hardware sqrt if you have one |
- * ------------------------------------------
- * Method:
- * Bit by bit method using integer arithmetic. (Slow, but portable)
- * 1. Normalization
- * Scale x to y in [1,4) with even powers of 2:
- * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then
- * sqrt(x) = 2^k * sqrt(y)
- * 2. Bit by bit computation
- * Let q = sqrt(y) truncated to i bit after binary point (q = 1),
- * i 0
- * i+1 2
- * s = 2*q , and y = 2 * ( y - q ). (1)
- * i i i i
- *
- * To compute q from q , one checks whether
- * i+1 i
- *
- * -(i+1) 2
- * (q + 2 ) <= y. (2)
- * i
- * -(i+1)
- * If (2) is false, then q = q ; otherwise q = q + 2 .
- * i+1 i i+1 i
- *
- * With some algebric manipulation, it is not difficult to see
- * that (2) is equivalent to
- * -(i+1)
- * s + 2 <= y (3)
- * i i
- *
- * The advantage of (3) is that s and y can be computed by
- * i i
- * the following recurrence formula:
- * if (3) is false
- *
- * s = s , y = y ; (4)
- * i+1 i i+1 i
- *
- * otherwise,
- * -i -(i+1)
- * s = s + 2 , y = y - s - 2 (5)
- * i+1 i i+1 i i
- *
- * One may easily use induction to prove (4) and (5).
- * Note. Since the left hand side of (3) contain only i+2 bits,
- * it does not necessary to do a full (53-bit) comparison
- * in (3).
- * 3. Final rounding
- * After generating the 53 bits result, we compute one more bit.
- * Together with the remainder, we can decide whether the
- * result is exact, bigger than 1/2ulp, or less than 1/2ulp
- * (it will never equal to 1/2ulp).
- * The rounding mode can be detected by checking whether
- * huge + tiny is equal to huge, and whether huge - tiny is
- * equal to huge for some floating point number "huge" and "tiny".
- *
- * Special cases:
- * sqrt(+-0) = +-0 ... exact
- * sqrt(inf) = inf
- * sqrt(-ve) = NaN ... with invalid signal
- * sqrt(NaN) = NaN ... with invalid signal for signaling NaN
- *
- * Other methods : see the appended file at the end of the program below.
- *---------------
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double one = 1.0, tiny=1.0e-300;
-#else
-static double one = 1.0, tiny=1.0e-300;
-#endif
-
-#ifdef __STDC__
- double __ieee754_sqrt(double x)
-#else
- double __ieee754_sqrt(x)
- double x;
-#endif
-{
- double z;
- __int32_t sign = (int)0x80000000;
- __uint32_t r,t1,s1,ix1,q1;
- __int32_t ix0,s0,q,m,t,i;
-
- EXTRACT_WORDS(ix0,ix1,x);
-
- /* take care of Inf and NaN */
- if((ix0&0x7ff00000)==0x7ff00000) {
- return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
- sqrt(-inf)=sNaN */
- }
- /* take care of zero */
- if(ix0<=0) {
- if(((ix0&(~sign))|ix1)==0) return x;/* sqrt(+-0) = +-0 */
- else if(ix0<0)
- return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
- }
- /* normalize x */
- m = (ix0>>20);
- if(m==0) { /* subnormal x */
- while(ix0==0) {
- m -= 21;
- ix0 |= (ix1>>11); ix1 <<= 21;
- }
- for(i=0;(ix0&0x00100000)==0;i++) ix0<<=1;
- m -= i-1;
- ix0 |= (ix1>>(32-i));
- ix1 <<= i;
- }
- m -= 1023; /* unbias exponent */
- ix0 = (ix0&0x000fffff)|0x00100000;
- if(m&1){ /* odd m, double x to make it even */
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- }
- m >>= 1; /* m = [m/2] */
-
- /* generate sqrt(x) bit by bit */
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
- r = 0x00200000; /* r = moving bit from right to left */
-
- while(r!=0) {
- t = s0+r;
- if(t<=ix0) {
- s0 = t+r;
- ix0 -= t;
- q += r;
- }
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- r>>=1;
- }
-
- r = sign;
- while(r!=0) {
- t1 = s1+r;
- t = s0;
- if((t<ix0)||((t==ix0)&&(t1<=ix1))) {
- s1 = t1+r;
- if(((t1&sign)==sign)&&(s1&sign)==0) s0 += 1;
- ix0 -= t;
- if (ix1 < t1) ix0 -= 1;
- ix1 -= t1;
- q1 += r;
- }
- ix0 += ix0 + ((ix1&sign)>>31);
- ix1 += ix1;
- r>>=1;
- }
-
- /* use floating add to find out rounding direction */
- if((ix0|ix1)!=0) {
- z = one-tiny; /* trigger inexact flag */
- if (z>=one) {
- z = one+tiny;
- if (q1==(__uint32_t)0xffffffff) { q1=0; q += 1;}
- else if (z>one) {
- if (q1==(__uint32_t)0xfffffffe) q+=1;
- q1+=2;
- } else
- q1 += (q1&1);
- }
- }
- ix0 = (q>>1)+0x3fe00000;
- ix1 = q1>>1;
- if ((q&1)==1) ix1 |= sign;
- ix0 += (m <<20);
- INSERT_WORDS(z,ix0,ix1);
- return z;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-/*
-Other methods (use floating-point arithmetic)
--------------
-(This is a copy of a drafted paper by Prof W. Kahan
-and K.C. Ng, written in May, 1986)
-
- Two algorithms are given here to implement sqrt(x)
- (IEEE double precision arithmetic) in software.
- Both supply sqrt(x) correctly rounded. The first algorithm (in
- Section A) uses newton iterations and involves four divisions.
- The second one uses reciproot iterations to avoid division, but
- requires more multiplications. Both algorithms need the ability
- to chop results of arithmetic operations instead of round them,
- and the INEXACT flag to indicate when an arithmetic operation
- is executed exactly with no roundoff error, all part of the
- standard (IEEE 754-1985). The ability to perform shift, add,
- subtract and logical AND operations upon 32-bit words is needed
- too, though not part of the standard.
-
-A. sqrt(x) by Newton Iteration
-
- (1) Initial approximation
-
- Let x0 and x1 be the leading and the trailing 32-bit words of
- a floating point number x (in IEEE double format) respectively
-
- 1 11 52 ...widths
- ------------------------------------------------------
- x: |s| e | f |
- ------------------------------------------------------
- msb lsb msb lsb ...order
-
-
- ------------------------ ------------------------
- x0: |s| e | f1 | x1: | f2 |
- ------------------------ ------------------------
-
- By performing shifts and subtracts on x0 and x1 (both regarded
- as integers), we obtain an 8-bit approximation of sqrt(x) as
- follows.
-
- k := (x0>>1) + 0x1ff80000;
- y0 := k - T1[31&(k>>15)]. ... y ~ sqrt(x) to 8 bits
- Here k is a 32-bit integer and T1[] is an integer array containing
- correction terms. Now magically the floating value of y (y's
- leading 32-bit word is y0, the value of its trailing word is 0)
- approximates sqrt(x) to almost 8-bit.
-
- Value of T1:
- static int T1[32]= {
- 0, 1024, 3062, 5746, 9193, 13348, 18162, 23592,
- 29598, 36145, 43202, 50740, 58733, 67158, 75992, 85215,
- 83599, 71378, 60428, 50647, 41945, 34246, 27478, 21581,
- 16499, 12183, 8588, 5674, 3403, 1742, 661, 130,};
-
- (2) Iterative refinement
-
- Apply Heron's rule three times to y, we have y approximates
- sqrt(x) to within 1 ulp (Unit in the Last Place):
-
- y := (y+x/y)/2 ... almost 17 sig. bits
- y := (y+x/y)/2 ... almost 35 sig. bits
- y := y-(y-x/y)/2 ... within 1 ulp
-
-
- Remark 1.
- Another way to improve y to within 1 ulp is:
-
- y := (y+x/y) ... almost 17 sig. bits to 2*sqrt(x)
- y := y - 0x00100006 ... almost 18 sig. bits to sqrt(x)
-
- 2
- (x-y )*y
- y := y + 2* ---------- ...within 1 ulp
- 2
- 3y + x
-
-
- This formula has one division fewer than the one above; however,
- it requires more multiplications and additions. Also x must be
- scaled in advance to avoid spurious overflow in evaluating the
- expression 3y*y+x. Hence it is not recommended uless division
- is slow. If division is very slow, then one should use the
- reciproot algorithm given in section B.
-
- (3) Final adjustment
-
- By twiddling y's last bit it is possible to force y to be
- correctly rounded according to the prevailing rounding mode
- as follows. Let r and i be copies of the rounding mode and
- inexact flag before entering the square root program. Also we
- use the expression y+-ulp for the next representable floating
- numbers (up and down) of y. Note that y+-ulp = either fixed
- point y+-1, or multiply y by nextafter(1,+-inf) in chopped
- mode.
-
- I := FALSE; ... reset INEXACT flag I
- R := RZ; ... set rounding mode to round-toward-zero
- z := x/y; ... chopped quotient, possibly inexact
- If(not I) then { ... if the quotient is exact
- if(z=y) {
- I := i; ... restore inexact flag
- R := r; ... restore rounded mode
- return sqrt(x):=y.
- } else {
- z := z - ulp; ... special rounding
- }
- }
- i := TRUE; ... sqrt(x) is inexact
- If (r=RN) then z=z+ulp ... rounded-to-nearest
- If (r=RP) then { ... round-toward-+inf
- y = y+ulp; z=z+ulp;
- }
- y := y+z; ... chopped sum
- y0:=y0-0x00100000; ... y := y/2 is correctly rounded.
- I := i; ... restore inexact flag
- R := r; ... restore rounded mode
- return sqrt(x):=y.
-
- (4) Special cases
-
- Square root of +inf, +-0, or NaN is itself;
- Square root of a negative number is NaN with invalid signal.
-
-
-B. sqrt(x) by Reciproot Iteration
-
- (1) Initial approximation
-
- Let x0 and x1 be the leading and the trailing 32-bit words of
- a floating point number x (in IEEE double format) respectively
- (see section A). By performing shifs and subtracts on x0 and y0,
- we obtain a 7.8-bit approximation of 1/sqrt(x) as follows.
-
- k := 0x5fe80000 - (x0>>1);
- y0:= k - T2[63&(k>>14)]. ... y ~ 1/sqrt(x) to 7.8 bits
-
- Here k is a 32-bit integer and T2[] is an integer array
- containing correction terms. Now magically the floating
- value of y (y's leading 32-bit word is y0, the value of
- its trailing word y1 is set to zero) approximates 1/sqrt(x)
- to almost 7.8-bit.
-
- Value of T2:
- static int T2[64]= {
- 0x1500, 0x2ef8, 0x4d67, 0x6b02, 0x87be, 0xa395, 0xbe7a, 0xd866,
- 0xf14a, 0x1091b,0x11fcd,0x13552,0x14999,0x15c98,0x16e34,0x17e5f,
- 0x18d03,0x19a01,0x1a545,0x1ae8a,0x1b5c4,0x1bb01,0x1bfde,0x1c28d,
- 0x1c2de,0x1c0db,0x1ba73,0x1b11c,0x1a4b5,0x1953d,0x18266,0x16be0,
- 0x1683e,0x179d8,0x18a4d,0x19992,0x1a789,0x1b445,0x1bf61,0x1c989,
- 0x1d16d,0x1d77b,0x1dddf,0x1e2ad,0x1e5bf,0x1e6e8,0x1e654,0x1e3cd,
- 0x1df2a,0x1d635,0x1cb16,0x1be2c,0x1ae4e,0x19bde,0x1868e,0x16e2e,
- 0x1527f,0x1334a,0x11051,0xe951, 0xbe01, 0x8e0d, 0x5924, 0x1edd,};
-
- (2) Iterative refinement
-
- Apply Reciproot iteration three times to y and multiply the
- result by x to get an approximation z that matches sqrt(x)
- to about 1 ulp. To be exact, we will have
- -1ulp < sqrt(x)-z<1.0625ulp.
-
- ... set rounding mode to Round-to-nearest
- y := y*(1.5-0.5*x*y*y) ... almost 15 sig. bits to 1/sqrt(x)
- y := y*((1.5-2^-30)+0.5*x*y*y)... about 29 sig. bits to 1/sqrt(x)
- ... special arrangement for better accuracy
- z := x*y ... 29 bits to sqrt(x), with z*y<1
- z := z + 0.5*z*(1-z*y) ... about 1 ulp to sqrt(x)
-
- Remark 2. The constant 1.5-2^-30 is chosen to bias the error so that
- (a) the term z*y in the final iteration is always less than 1;
- (b) the error in the final result is biased upward so that
- -1 ulp < sqrt(x) - z < 1.0625 ulp
- instead of |sqrt(x)-z|<1.03125ulp.
-
- (3) Final adjustment
-
- By twiddling y's last bit it is possible to force y to be
- correctly rounded according to the prevailing rounding mode
- as follows. Let r and i be copies of the rounding mode and
- inexact flag before entering the square root program. Also we
- use the expression y+-ulp for the next representable floating
- numbers (up and down) of y. Note that y+-ulp = either fixed
- point y+-1, or multiply y by nextafter(1,+-inf) in chopped
- mode.
-
- R := RZ; ... set rounding mode to round-toward-zero
- switch(r) {
- case RN: ... round-to-nearest
- if(x<= z*(z-ulp)...chopped) z = z - ulp; else
- if(x<= z*(z+ulp)...chopped) z = z; else z = z+ulp;
- break;
- case RZ:case RM: ... round-to-zero or round-to--inf
- R:=RP; ... reset rounding mod to round-to-+inf
- if(x<z*z ... rounded up) z = z - ulp; else
- if(x>=(z+ulp)*(z+ulp) ...rounded up) z = z+ulp;
- break;
- case RP: ... round-to-+inf
- if(x>(z+ulp)*(z+ulp)...chopped) z = z+2*ulp; else
- if(x>z*z ...chopped) z = z+ulp;
- break;
- }
-
- Remark 3. The above comparisons can be done in fixed point. For
- example, to compare x and w=z*z chopped, it suffices to compare
- x1 and w1 (the trailing parts of x and w), regarding them as
- two's complement integers.
-
- ...Is z an exact square root?
- To determine whether z is an exact square root of x, let z1 be the
- trailing part of z, and also let x0 and x1 be the leading and
- trailing parts of x.
-
- If ((z1&0x03ffffff)!=0) ... not exact if trailing 26 bits of z!=0
- I := 1; ... Raise Inexact flag: z is not exact
- else {
- j := 1 - [(x0>>20)&1] ... j = logb(x) mod 2
- k := z1 >> 26; ... get z's 25-th and 26-th
- fraction bits
- I := i or (k&j) or ((k&(j+j+1))!=(x1&3));
- }
- R:= r ... restore rounded mode
- return sqrt(x):=z.
-
- If multiplication is cheaper then the foregoing red tape, the
- Inexact flag can be evaluated by
-
- I := i;
- I := (z*z!=x) or I.
-
- Note that z*z can overwrite I; this value must be sensed if it is
- True.
-
- Remark 4. If z*z = x exactly, then bit 25 to bit 0 of z1 must be
- zero.
-
- --------------------
- z1: | f2 |
- --------------------
- bit 31 bit 0
-
- Further more, bit 27 and 26 of z1, bit 0 and 1 of x1, and the odd
- or even of logb(x) have the following relations:
-
- -------------------------------------------------
- bit 27,26 of z1 bit 1,0 of x1 logb(x)
- -------------------------------------------------
- 00 00 odd and even
- 01 01 even
- 10 10 odd
- 10 00 even
- 11 01 even
- -------------------------------------------------
-
- (4) Special cases (see (4) of Section A).
-
- */
diff --git a/newlib/libm/math/ef_acos.c b/newlib/libm/math/ef_acos.c
deleted file mode 100644
index f73f97d..0000000
--- a/newlib/libm/math/ef_acos.c
+++ /dev/null
@@ -1,84 +0,0 @@
-/* ef_acos.c -- float version of e_acos.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0000000000e+00, /* 0x3F800000 */
-pi = 3.1415925026e+00, /* 0x40490fda */
-pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
-pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
-pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
-pS1 = -3.2556581497e-01, /* 0xbea6b090 */
-pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
-pS3 = -4.0055535734e-02, /* 0xbd241146 */
-pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
-pS5 = 3.4793309169e-05, /* 0x3811ef08 */
-qS1 = -2.4033949375e+00, /* 0xc019d139 */
-qS2 = 2.0209457874e+00, /* 0x4001572d */
-qS3 = -6.8828397989e-01, /* 0xbf303361 */
-qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
-
-#ifdef __STDC__
- float __ieee754_acosf(float x)
-#else
- float __ieee754_acosf(x)
- float x;
-#endif
-{
- float z,p,q,r,w,s,c,df;
- __int32_t hx,ix;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix==0x3f800000) { /* |x|==1 */
- if(hx>0) return 0.0; /* acos(1) = 0 */
- else return pi+(float)2.0*pio2_lo; /* acos(-1)= pi */
- } else if(ix>0x3f800000) { /* |x| >= 1 */
- return (x-x)/(x-x); /* acos(|x|>1) is NaN */
- }
- if(ix<0x3f000000) { /* |x| < 0.5 */
- if(ix<=0x23000000) return pio2_hi+pio2_lo;/*if|x|<2**-57*/
- z = x*x;
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- r = p/q;
- return pio2_hi - (x - (pio2_lo-x*r));
- } else if (hx<0) { /* x < -0.5 */
- z = (one+x)*(float)0.5;
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- s = __ieee754_sqrtf(z);
- r = p/q;
- w = r*s-pio2_lo;
- return pi - (float)2.0*(s+w);
- } else { /* x > 0.5 */
- __int32_t idf;
- z = (one-x)*(float)0.5;
- s = __ieee754_sqrtf(z);
- df = s;
- GET_FLOAT_WORD(idf,df);
- SET_FLOAT_WORD(df,idf&0xfffff000);
- c = (z-df*df)/(s+df);
- p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
- q = one+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
- r = p/q;
- w = r*s+c;
- return (float)2.0*(df+w);
- }
-}
diff --git a/newlib/libm/math/ef_acosh.c b/newlib/libm/math/ef_acosh.c
deleted file mode 100644
index 1119c2c..0000000
--- a/newlib/libm/math/ef_acosh.c
+++ /dev/null
@@ -1,53 +0,0 @@
-/* ef_acosh.c -- float version of e_acosh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0,
-ln2 = 6.9314718246e-01; /* 0x3f317218 */
-
-#ifdef __STDC__
- float __ieee754_acoshf(float x)
-#else
- float __ieee754_acoshf(x)
- float x;
-#endif
-{
- float t;
- __int32_t hx;
- GET_FLOAT_WORD(hx,x);
- if(hx<0x3f800000) { /* x < 1 */
- return (x-x)/(x-x);
- } else if(hx >=0x4d800000) { /* x > 2**28 */
- if(!FLT_UWORD_IS_FINITE(hx)) { /* x is inf of NaN */
- return x+x;
- } else
- return __ieee754_logf(x)+ln2; /* acosh(huge)=log(2x) */
- } else if (hx==0x3f800000) {
- return 0.0; /* acosh(1) = 0 */
- } else if (hx > 0x40000000) { /* 2**28 > x > 2 */
- t=x*x;
- return __ieee754_logf((float)2.0*x-one/(x+__ieee754_sqrtf(t-one)));
- } else { /* 1<x<2 */
- t = x-one;
- return log1pf(t+__ieee754_sqrtf((float)2.0*t+t*t));
- }
-}
diff --git a/newlib/libm/math/ef_asin.c b/newlib/libm/math/ef_asin.c
deleted file mode 100644
index c49dcbb..0000000
--- a/newlib/libm/math/ef_asin.c
+++ /dev/null
@@ -1,88 +0,0 @@
-/* ef_asin.c -- float version of e_asin.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0000000000e+00, /* 0x3F800000 */
-huge = 1.000e+30,
-pio2_hi = 1.57079637050628662109375f,
-pio2_lo = -4.37113900018624283e-8f,
-pio4_hi = 0.785398185253143310546875f,
- /* coefficient for R(x^2) */
-pS0 = 1.6666667163e-01, /* 0x3e2aaaab */
-pS1 = -3.2556581497e-01, /* 0xbea6b090 */
-pS2 = 2.0121252537e-01, /* 0x3e4e0aa8 */
-pS3 = -4.0055535734e-02, /* 0xbd241146 */
-pS4 = 7.9153501429e-04, /* 0x3a4f7f04 */
-pS5 = 3.4793309169e-05, /* 0x3811ef08 */
-qS1 = -2.4033949375e+00, /* 0xc019d139 */
-qS2 = 2.0209457874e+00, /* 0x4001572d */
-qS3 = -6.8828397989e-01, /* 0xbf303361 */
-qS4 = 7.7038154006e-02; /* 0x3d9dc62e */
-
-#ifdef __STDC__
- float __ieee754_asinf(float x)
-#else
- float __ieee754_asinf(x)
- float x;
-#endif
-{
- float t,w,p,q,c,r,s;
- __int32_t hx,ix;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix==0x3f800000) {
- /* asin(1)=+-pi/2 with inexact */
- return x*pio2_hi+x*pio2_lo;
- } else if(ix> 0x3f800000) { /* |x|>= 1 */
- return (x-x)/(x-x); /* asin(|x|>1) is NaN */
- } else if (ix<0x3f000000) { /* |x|<0.5 */
- if(ix<0x32000000) { /* if |x| < 2**-27 */
- if(huge+x>one) return x;/* return x with inexact if x!=0*/
- } else {
- t = x*x;
- p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
- q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
- w = p/q;
- return x+x*w;
- }
- }
- /* 1> |x|>= 0.5 */
- w = one-fabsf(x);
- t = w*(float)0.5;
- p = t*(pS0+t*(pS1+t*(pS2+t*(pS3+t*(pS4+t*pS5)))));
- q = one+t*(qS1+t*(qS2+t*(qS3+t*qS4)));
- s = __ieee754_sqrtf(t);
- if(ix>=0x3F79999A) { /* if |x| > 0.975 */
- w = p/q;
- t = pio2_hi-((float)2.0*(s+s*w)-pio2_lo);
- } else {
- __int32_t iw;
- w = s;
- GET_FLOAT_WORD(iw,w);
- SET_FLOAT_WORD(w,iw&0xfffff000);
- c = (t-w*w)/(s+w);
- r = p/q;
- p = (float)2.0*s*r-(pio2_lo-(float)2.0*c);
- q = pio4_hi-(float)2.0*w;
- t = pio4_hi-(p-q);
- }
- if(hx>0) return t; else return -t;
-}
diff --git a/newlib/libm/math/ef_atan2.c b/newlib/libm/math/ef_atan2.c
deleted file mode 100644
index 45b5acb..0000000
--- a/newlib/libm/math/ef_atan2.c
+++ /dev/null
@@ -1,101 +0,0 @@
-/* ef_atan2.c -- float version of e_atan2.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-tiny = 1.0e-30,
-zero = 0.0,
-pi_o_4 = 7.8539818525e-01, /* 0x3f490fdb */
-pi_o_2 = 1.5707963705e+00, /* 0x3fc90fdb */
-pi = 3.1415925026e+00, /* 0x40490fda */
-pi_lo = 1.5099578832e-07; /* 0x34222168 */
-
-#ifdef __STDC__
- float __ieee754_atan2f(float y, float x)
-#else
- float __ieee754_atan2f(y,x)
- float y,x;
-#endif
-{
- float z;
- __int32_t k,m,hx,hy,ix,iy;
-
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- GET_FLOAT_WORD(hy,y);
- iy = hy&0x7fffffff;
- if(FLT_UWORD_IS_NAN(ix)||
- FLT_UWORD_IS_NAN(iy)) /* x or y is NaN */
- return x+y;
- if(hx==0x3f800000) return atanf(y); /* x=1.0 */
- m = ((hy>>31)&1)|((hx>>30)&2); /* 2*sign(x)+sign(y) */
-
- /* when y = 0 */
- if(FLT_UWORD_IS_ZERO(iy)) {
- switch(m) {
- case 0:
- case 1: return y; /* atan(+-0,+anything)=+-0 */
- case 2: return pi+tiny;/* atan(+0,-anything) = pi */
- case 3: return -pi-tiny;/* atan(-0,-anything) =-pi */
- }
- }
- /* when x = 0 */
- if(FLT_UWORD_IS_ZERO(ix)) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
-
- /* when x is INF */
- if(FLT_UWORD_IS_INFINITE(ix)) {
- if(FLT_UWORD_IS_INFINITE(iy)) {
- switch(m) {
- case 0: return pi_o_4+tiny;/* atan(+INF,+INF) */
- case 1: return -pi_o_4-tiny;/* atan(-INF,+INF) */
- case 2: return (float)3.0*pi_o_4+tiny;/*atan(+INF,-INF)*/
- case 3: return (float)-3.0*pi_o_4-tiny;/*atan(-INF,-INF)*/
- }
- } else {
- switch(m) {
- case 0: return zero ; /* atan(+...,+INF) */
- case 1: return -zero ; /* atan(-...,+INF) */
- case 2: return pi+tiny ; /* atan(+...,-INF) */
- case 3: return -pi-tiny ; /* atan(-...,-INF) */
- }
- }
- }
- /* when y is INF */
- if(FLT_UWORD_IS_INFINITE(iy)) return (hy<0)? -pi_o_2-tiny: pi_o_2+tiny;
-
- /* compute y/x */
- k = (iy-ix)>>23;
- if(k > 60) z=pi_o_2+(float)0.5*pi_lo; /* |y/x| > 2**60 */
- else if(hx<0&&k<-60) z=0.0; /* |y|/x < -2**60 */
- else z=atanf(fabsf(y/x)); /* safe to do y/x */
- switch (m) {
- case 0: return z ; /* atan(+,+) */
- case 1: {
- __uint32_t zh;
- GET_FLOAT_WORD(zh,z);
- SET_FLOAT_WORD(z,zh ^ 0x80000000);
- }
- return z ; /* atan(-,+) */
- case 2: return pi-(z-pi_lo);/* atan(+,-) */
- default: /* case 3 */
- return (z-pi_lo)-pi;/* atan(-,-) */
- }
-}
diff --git a/newlib/libm/math/ef_atanh.c b/newlib/libm/math/ef_atanh.c
deleted file mode 100644
index 74b3d3d..0000000
--- a/newlib/libm/math/ef_atanh.c
+++ /dev/null
@@ -1,54 +0,0 @@
-/* ef_atanh.c -- float version of e_atanh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float one = 1.0, huge = 1e30;
-#else
-static float one = 1.0, huge = 1e30;
-#endif
-
-#ifdef __STDC__
-static const float zero = 0.0;
-#else
-static float zero = 0.0;
-#endif
-
-#ifdef __STDC__
- float __ieee754_atanhf(float x)
-#else
- float __ieee754_atanhf(x)
- float x;
-#endif
-{
- float t;
- __int32_t hx,ix;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if (ix>0x3f800000) /* |x|>1 */
- return (x-x)/(x-x);
- if(ix==0x3f800000)
- return x/zero;
- if(ix<0x31800000&&(huge+x)>zero) return x; /* x<2**-28 */
- SET_FLOAT_WORD(x,ix);
- if(ix<0x3f000000) { /* x < 0.5 */
- t = x+x;
- t = (float)0.5*log1pf(t+t*x/(one-x));
- } else
- t = (float)0.5*log1pf((x+x)/(one-x));
- if(hx>=0) return t; else return -t;
-}
diff --git a/newlib/libm/math/ef_cosh.c b/newlib/libm/math/ef_cosh.c
deleted file mode 100644
index bdce61a..0000000
--- a/newlib/libm/math/ef_cosh.c
+++ /dev/null
@@ -1,71 +0,0 @@
-/* ef_cosh.c -- float version of e_cosh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __v810__
-#define const
-#endif
-
-#ifdef __STDC__
-static const float one = 1.0, half=0.5, huge = 1.0e30;
-#else
-static float one = 1.0, half=0.5, huge = 1.0e30;
-#endif
-
-#ifdef __STDC__
- float __ieee754_coshf(float x)
-#else
- float __ieee754_coshf(x)
- float x;
-#endif
-{
- float t,w;
- __int32_t ix;
-
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
-
- /* x is INF or NaN */
- if(!FLT_UWORD_IS_FINITE(ix)) return x*x;
-
- /* |x| in [0,0.5*ln2], return 1+expm1(|x|)^2/(2*exp(|x|)) */
- if(ix<0x3eb17218) {
- t = expm1f(fabsf(x));
- w = one+t;
- if (ix<0x24000000) return w; /* cosh(tiny) = 1 */
- return one+(t*t)/(w+w);
- }
-
- /* |x| in [0.5*ln2,22], return (exp(|x|)+1/exp(|x|)/2; */
- if (ix < 0x41b00000) {
- t = __ieee754_expf(fabsf(x));
- return half*t+half/t;
- }
-
- /* |x| in [22, log(maxdouble)] return half*exp(|x|) */
- if (ix <= FLT_UWORD_LOG_MAX)
- return half*__ieee754_expf(fabsf(x));
-
- /* |x| in [log(maxdouble), overflowthresold] */
- if (ix <= FLT_UWORD_LOG_2MAX) {
- w = __ieee754_expf(half*fabsf(x));
- t = half*w;
- return t*w;
- }
-
- /* |x| > overflowthresold, cosh(x) overflow */
- return huge*huge;
-}
diff --git a/newlib/libm/math/ef_exp.c b/newlib/libm/math/ef_exp.c
deleted file mode 100644
index 19c570c..0000000
--- a/newlib/libm/math/ef_exp.c
+++ /dev/null
@@ -1,100 +0,0 @@
-/* ef_exp.c -- float version of e_exp.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __v810__
-#define const
-#endif
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0,
-halF[2] = {0.5,-0.5,},
-huge = 1.0e+30,
-twom100 = 7.8886090522e-31, /* 2**-100=0x0d800000 */
-ln2HI[2] ={ 6.9313812256e-01, /* 0x3f317180 */
- -6.9313812256e-01,}, /* 0xbf317180 */
-ln2LO[2] ={ 9.0580006145e-06, /* 0x3717f7d1 */
- -9.0580006145e-06,}, /* 0xb717f7d1 */
-invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
-P1 = 1.6666667163e-01, /* 0x3e2aaaab */
-P2 = -2.7777778450e-03, /* 0xbb360b61 */
-P3 = 6.6137559770e-05, /* 0x388ab355 */
-P4 = -1.6533901999e-06, /* 0xb5ddea0e */
-P5 = 4.1381369442e-08; /* 0x3331bb4c */
-
-#ifdef __STDC__
- float __ieee754_expf(float x) /* default IEEE double exp */
-#else
- float __ieee754_expf(x) /* default IEEE double exp */
- float x;
-#endif
-{
- float y,hi,lo,c,t;
- __int32_t k,xsb,sx;
- __uint32_t hx;
-
- GET_FLOAT_WORD(sx,x);
- xsb = (sx>>31)&1; /* sign bit of x */
- hx = sx & 0x7fffffff; /* high word of |x| */
-
- /* filter out non-finite argument */
- if(FLT_UWORD_IS_NAN(hx))
- return x+x; /* NaN */
- if(FLT_UWORD_IS_INFINITE(hx))
- return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
- if(sx > FLT_UWORD_LOG_MAX)
- return huge*huge; /* overflow */
- if(sx < 0 && hx > FLT_UWORD_LOG_MIN)
- return twom100*twom100; /* underflow */
-
- /* argument reduction */
- if(hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
- if(hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
- hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
- } else {
- k = invln2*x+halF[xsb];
- t = k;
- hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
- lo = t*ln2LO[0];
- }
- x = hi - lo;
- }
- else if(hx < 0x31800000) { /* when |x|<2**-28 */
- if(huge+x>one) return one+x;/* trigger inexact */
- }
- else k = 0;
-
- /* x is now in primary range */
- t = x*x;
- c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- if(k==0) return one-((x*c)/(c-(float)2.0)-x);
- else y = one-((lo-(x*c)/((float)2.0-c))-hi);
- if(k >= -125) {
- __uint32_t hy;
- GET_FLOAT_WORD(hy,y);
- SET_FLOAT_WORD(y,hy+(k<<23)); /* add k to y's exponent */
- return y;
- } else {
- __uint32_t hy;
- GET_FLOAT_WORD(hy,y);
- SET_FLOAT_WORD(y,hy+((k+100)<<23)); /* add k to y's exponent */
- return y*twom100;
- }
-}
diff --git a/newlib/libm/math/ef_fmod.c b/newlib/libm/math/ef_fmod.c
deleted file mode 100644
index 53c1ba2..0000000
--- a/newlib/libm/math/ef_fmod.c
+++ /dev/null
@@ -1,113 +0,0 @@
-/* ef_fmod.c -- float version of e_fmod.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __ieee754_fmodf(x,y)
- * Return x mod y in exact arithmetic
- * Method: shift and subtract
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float one = 1.0, Zero[] = {0.0, -0.0,};
-#else
-static float one = 1.0, Zero[] = {0.0, -0.0,};
-#endif
-
-#ifdef __STDC__
- float __ieee754_fmodf(float x, float y)
-#else
- float __ieee754_fmodf(x,y)
- float x,y ;
-#endif
-{
- __int32_t n,hx,hy,hz,ix,iy,sx,i;
-
- GET_FLOAT_WORD(hx,x);
- GET_FLOAT_WORD(hy,y);
- sx = hx&0x80000000; /* sign of x */
- hx ^=sx; /* |x| */
- hy &= 0x7fffffff; /* |y| */
-
- /* purge off exception values */
- if(FLT_UWORD_IS_ZERO(hy)||
- !FLT_UWORD_IS_FINITE(hx)||
- FLT_UWORD_IS_NAN(hy))
- return (x*y)/(x*y);
- if(hx<hy) return x; /* |x|<|y| return x */
- if(hx==hy)
- return Zero[(__uint32_t)sx>>31]; /* |x|=|y| return x*0*/
-
- /* Note: y cannot be zero if we reach here. */
-
- /* determine ix = ilogb(x) */
- if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */
- for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
- } else ix = (hx>>23)-127;
-
- /* determine iy = ilogb(y) */
- if(FLT_UWORD_IS_SUBNORMAL(hy)) { /* subnormal y */
- for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
- } else iy = (hy>>23)-127;
-
- /* set up {hx,lx}, {hy,ly} and align y to x */
- if(ix >= -126)
- hx = 0x00800000|(0x007fffff&hx);
- else { /* subnormal x, shift x to normal */
- n = -126-ix;
- hx = hx<<n;
- }
- if(iy >= -126)
- hy = 0x00800000|(0x007fffff&hy);
- else { /* subnormal y, shift y to normal */
- n = -126-iy;
- hy = hy<<n;
- }
-
- /* fix point fmod */
- n = ix - iy;
- while(n--) {
- hz=hx-hy;
- if(hz<0){hx = hx+hx;}
- else {
- if(hz==0) /* return sign(x)*0 */
- return Zero[(__uint32_t)sx>>31];
- hx = hz+hz;
- }
- }
- hz=hx-hy;
- if(hz>=0) {hx=hz;}
-
- /* convert back to floating value and restore the sign */
- if(hx==0) /* return sign(x)*0 */
- return Zero[(__uint32_t)sx>>31];
- while(hx<0x00800000) { /* normalize x */
- hx = hx+hx;
- iy -= 1;
- }
- if(iy>= -126) { /* normalize output */
- hx = ((hx-0x00800000)|((iy+127)<<23));
- SET_FLOAT_WORD(x,hx|sx);
- } else { /* subnormal output */
- /* If denormals are not supported, this code will generate a
- zero representation. */
- n = -126 - iy;
- hx >>= n;
- SET_FLOAT_WORD(x,hx|sx);
- x *= one; /* create necessary signal */
- }
- return x; /* exact output */
-}
diff --git a/newlib/libm/math/ef_hypot.c b/newlib/libm/math/ef_hypot.c
deleted file mode 100644
index 9f6d40c..0000000
--- a/newlib/libm/math/ef_hypot.c
+++ /dev/null
@@ -1,83 +0,0 @@
-/* ef_hypot.c -- float version of e_hypot.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- float __ieee754_hypotf(float x, float y)
-#else
- float __ieee754_hypotf(x,y)
- float x, y;
-#endif
-{
- float a=x,b=y,t1,t2,y1,y2,w;
- __int32_t j,k,ha,hb;
-
- GET_FLOAT_WORD(ha,x);
- ha &= 0x7fffffffL;
- GET_FLOAT_WORD(hb,y);
- hb &= 0x7fffffffL;
- if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
- SET_FLOAT_WORD(a,ha); /* a <- |a| */
- SET_FLOAT_WORD(b,hb); /* b <- |b| */
- if((ha-hb)>0xf000000L) {return a+b;} /* x/y > 2**30 */
- k=0;
- if(ha > 0x58800000L) { /* a>2**50 */
- if(!FLT_UWORD_IS_FINITE(ha)) { /* Inf or NaN */
- w = a+b; /* for sNaN */
- if(FLT_UWORD_IS_INFINITE(ha)) w = a;
- if(FLT_UWORD_IS_INFINITE(hb)) w = b;
- return w;
- }
- /* scale a and b by 2**-60 */
- ha -= 0x5d800000L; hb -= 0x5d800000L; k += 60;
- SET_FLOAT_WORD(a,ha);
- SET_FLOAT_WORD(b,hb);
- }
- if(hb < 0x26800000L) { /* b < 2**-50 */
- if(FLT_UWORD_IS_ZERO(hb)) {
- return a;
- } else if(FLT_UWORD_IS_SUBNORMAL(hb)) {
- SET_FLOAT_WORD(t1,0x3f000000L); /* t1=2^126 */
- b *= t1;
- a *= t1;
- k -= 126;
- } else { /* scale a and b by 2^60 */
- ha += 0x5d800000; /* a *= 2^60 */
- hb += 0x5d800000; /* b *= 2^60 */
- k -= 60;
- SET_FLOAT_WORD(a,ha);
- SET_FLOAT_WORD(b,hb);
- }
- }
- /* medium size a and b */
- w = a-b;
- if (w>b) {
- SET_FLOAT_WORD(t1,ha&0xfffff000L);
- t2 = a-t1;
- w = __ieee754_sqrtf(t1*t1-(b*(-b)-t2*(a+t1)));
- } else {
- a = a+a;
- SET_FLOAT_WORD(y1,hb&0xfffff000L);
- y2 = b - y1;
- SET_FLOAT_WORD(t1,ha+0x00800000L);
- t2 = a - t1;
- w = __ieee754_sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
- }
- if(k!=0) {
- SET_FLOAT_WORD(t1,0x3f800000L+(k<<23));
- return t1*w;
- } else return w;
-}
diff --git a/newlib/libm/math/ef_j0.c b/newlib/libm/math/ef_j0.c
deleted file mode 100644
index 866cfcf..0000000
--- a/newlib/libm/math/ef_j0.c
+++ /dev/null
@@ -1,439 +0,0 @@
-/* ef_j0.c -- float version of e_j0.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static float pzerof(float), qzerof(float);
-#else
-static float pzerof(), qzerof();
-#endif
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-huge = 1e30,
-one = 1.0,
-invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
-tpi = 6.3661974669e-01, /* 0x3f22f983 */
- /* R0/S0 on [0, 2.00] */
-R02 = 1.5625000000e-02, /* 0x3c800000 */
-R03 = -1.8997929874e-04, /* 0xb947352e */
-R04 = 1.8295404516e-06, /* 0x35f58e88 */
-R05 = -4.6183270541e-09, /* 0xb19eaf3c */
-S01 = 1.5619102865e-02, /* 0x3c7fe744 */
-S02 = 1.1692678527e-04, /* 0x38f53697 */
-S03 = 5.1354652442e-07, /* 0x3509daa6 */
-S04 = 1.1661400734e-09; /* 0x30a045e8 */
-
-#ifdef __STDC__
-static const float zero = 0.0;
-#else
-static float zero = 0.0;
-#endif
-
-#ifdef __STDC__
- float __ieee754_j0f(float x)
-#else
- float __ieee754_j0f(x)
- float x;
-#endif
-{
- float z, s,c,ss,cc,r,u,v;
- __int32_t hx,ix;
-
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(!FLT_UWORD_IS_FINITE(ix)) return one/(x*x);
- x = fabsf(x);
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sinf(x);
- c = cosf(x);
- ss = s-c;
- cc = s+c;
- if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
- z = -cosf(x+x);
- if ((s*c)<zero) cc = z/ss;
- else ss = z/cc;
- }
- /*
- * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
- * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
- */
- if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(x);
- else {
- u = pzerof(x); v = qzerof(x);
- z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(x);
- }
- return z;
- }
- if(ix<0x39000000) { /* |x| < 2**-13 */
- if(huge+x>one) { /* raise inexact if x != 0 */
- if(ix<0x32000000) return one; /* |x|<2**-27 */
- else return one - (float)0.25*x*x;
- }
- }
- z = x*x;
- r = z*(R02+z*(R03+z*(R04+z*R05)));
- s = one+z*(S01+z*(S02+z*(S03+z*S04)));
- if(ix < 0x3F800000) { /* |x| < 1.00 */
- return one + z*((float)-0.25+(r/s));
- } else {
- u = (float)0.5*x;
- return((one+u)*(one-u)+z*(r/s));
- }
-}
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-u00 = -7.3804296553e-02, /* 0xbd9726b5 */
-u01 = 1.7666645348e-01, /* 0x3e34e80d */
-u02 = -1.3818567619e-02, /* 0xbc626746 */
-u03 = 3.4745343146e-04, /* 0x39b62a69 */
-u04 = -3.8140706238e-06, /* 0xb67ff53c */
-u05 = 1.9559013964e-08, /* 0x32a802ba */
-u06 = -3.9820518410e-11, /* 0xae2f21eb */
-v01 = 1.2730483897e-02, /* 0x3c509385 */
-v02 = 7.6006865129e-05, /* 0x389f65e0 */
-v03 = 2.5915085189e-07, /* 0x348b216c */
-v04 = 4.4111031494e-10; /* 0x2ff280c2 */
-
-#ifdef __STDC__
- float __ieee754_y0f(float x)
-#else
- float __ieee754_y0f(x)
- float x;
-#endif
-{
- float z, s,c,ss,cc,u,v;
- __int32_t hx,ix;
-
- GET_FLOAT_WORD(hx,x);
- ix = 0x7fffffff&hx;
- /* Y0(NaN) is NaN, y0(-inf) is Nan, y0(inf) is 0 */
- if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x);
- if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
- if(hx<0) return zero/zero;
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- /* y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
- * where x0 = x-pi/4
- * Better formula:
- * cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
- * = 1/sqrt(2) * (sin(x) + cos(x))
- * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.
- */
- s = sinf(x);
- c = cosf(x);
- ss = s-c;
- cc = s+c;
- /*
- * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
- * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
- */
- if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
- z = -cosf(x+x);
- if ((s*c)<zero) cc = z/ss;
- else ss = z/cc;
- }
- if(ix>0x80000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
- else {
- u = pzerof(x); v = qzerof(x);
- z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
- }
- return z;
- }
- if(ix<=0x32000000) { /* x < 2**-27 */
- return(u00 + tpi*__ieee754_logf(x));
- }
- z = x*x;
- u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
- v = one+z*(v01+z*(v02+z*(v03+z*v04)));
- return(u/v + tpi*(__ieee754_j0f(x)*__ieee754_logf(x)));
-}
-
-/* The asymptotic expansions of pzero is
- * 1 - 9/128 s^2 + 11025/98304 s^4 - ..., where s = 1/x.
- * For x >= 2, We approximate pzero by
- * pzero(x) = 1 + (R/S)
- * where R = pR0 + pR1*s^2 + pR2*s^4 + ... + pR5*s^10
- * S = 1 + pS0*s^2 + ... + pS4*s^10
- * and
- * | pzero(x)-1-R/S | <= 2 ** ( -60.26)
- */
-#ifdef __STDC__
-static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.0000000000e+00, /* 0x00000000 */
- -7.0312500000e-02, /* 0xbd900000 */
- -8.0816707611e+00, /* 0xc1014e86 */
- -2.5706311035e+02, /* 0xc3808814 */
- -2.4852163086e+03, /* 0xc51b5376 */
- -5.2530439453e+03, /* 0xc5a4285a */
-};
-#ifdef __STDC__
-static const float pS8[5] = {
-#else
-static float pS8[5] = {
-#endif
- 1.1653436279e+02, /* 0x42e91198 */
- 3.8337448730e+03, /* 0x456f9beb */
- 4.0597855469e+04, /* 0x471e95db */
- 1.1675296875e+05, /* 0x47e4087c */
- 4.7627726562e+04, /* 0x473a0bba */
-};
-#ifdef __STDC__
-static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- -1.1412546255e-11, /* 0xad48c58a */
- -7.0312492549e-02, /* 0xbd8fffff */
- -4.1596107483e+00, /* 0xc0851b88 */
- -6.7674766541e+01, /* 0xc287597b */
- -3.3123129272e+02, /* 0xc3a59d9b */
- -3.4643338013e+02, /* 0xc3ad3779 */
-};
-#ifdef __STDC__
-static const float pS5[5] = {
-#else
-static float pS5[5] = {
-#endif
- 6.0753936768e+01, /* 0x42730408 */
- 1.0512523193e+03, /* 0x44836813 */
- 5.9789707031e+03, /* 0x45bad7c4 */
- 9.6254453125e+03, /* 0x461665c8 */
- 2.4060581055e+03, /* 0x451660ee */
-};
-
-#ifdef __STDC__
-static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#else
-static float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- -2.5470459075e-09, /* 0xb12f081b */
- -7.0311963558e-02, /* 0xbd8fffb8 */
- -2.4090321064e+00, /* 0xc01a2d95 */
- -2.1965976715e+01, /* 0xc1afba52 */
- -5.8079170227e+01, /* 0xc2685112 */
- -3.1447946548e+01, /* 0xc1fb9565 */
-};
-#ifdef __STDC__
-static const float pS3[5] = {
-#else
-static float pS3[5] = {
-#endif
- 3.5856033325e+01, /* 0x420f6c94 */
- 3.6151397705e+02, /* 0x43b4c1ca */
- 1.1936077881e+03, /* 0x44953373 */
- 1.1279968262e+03, /* 0x448cffe6 */
- 1.7358093262e+02, /* 0x432d94b8 */
-};
-
-#ifdef __STDC__
-static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- -8.8753431271e-08, /* 0xb3be98b7 */
- -7.0303097367e-02, /* 0xbd8ffb12 */
- -1.4507384300e+00, /* 0xbfb9b1cc */
- -7.6356959343e+00, /* 0xc0f4579f */
- -1.1193166733e+01, /* 0xc1331736 */
- -3.2336456776e+00, /* 0xc04ef40d */
-};
-#ifdef __STDC__
-static const float pS2[5] = {
-#else
-static float pS2[5] = {
-#endif
- 2.2220300674e+01, /* 0x41b1c32d */
- 1.3620678711e+02, /* 0x430834f0 */
- 2.7047027588e+02, /* 0x43873c32 */
- 1.5387539673e+02, /* 0x4319e01a */
- 1.4657617569e+01, /* 0x416a859a */
-};
-
-#ifdef __STDC__
- static float pzerof(float x)
-#else
- static float pzerof(x)
- float x;
-#endif
-{
-#ifdef __STDC__
- const float *p,*q;
-#else
- float *p,*q;
-#endif
- float z,r,s;
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x41000000) {p = pR8; q= pS8;}
- else if(ix>=0x40f71c58){p = pR5; q= pS5;}
- else if(ix>=0x4036db68){p = pR3; q= pS3;}
- else {p = pR2; q= pS2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
- return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qzero is
- * -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
- * We approximate qzero by
- * qzero(x) = s*(-1.25 + (R/S))
- * where R = qR0 + qR1*s^2 + qR2*s^4 + ... + qR5*s^10
- * S = 1 + qS0*s^2 + ... + qS5*s^12
- * and
- * | qzero(x)/s +1.25-R/S | <= 2 ** ( -61.22)
- */
-#ifdef __STDC__
-static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.0000000000e+00, /* 0x00000000 */
- 7.3242187500e-02, /* 0x3d960000 */
- 1.1768206596e+01, /* 0x413c4a93 */
- 5.5767340088e+02, /* 0x440b6b19 */
- 8.8591972656e+03, /* 0x460a6cca */
- 3.7014625000e+04, /* 0x471096a0 */
-};
-#ifdef __STDC__
-static const float qS8[6] = {
-#else
-static float qS8[6] = {
-#endif
- 1.6377603149e+02, /* 0x4323c6aa */
- 8.0983447266e+03, /* 0x45fd12c2 */
- 1.4253829688e+05, /* 0x480b3293 */
- 8.0330925000e+05, /* 0x49441ed4 */
- 8.4050156250e+05, /* 0x494d3359 */
- -3.4389928125e+05, /* 0xc8a7eb69 */
-};
-
-#ifdef __STDC__
-static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- 1.8408595828e-11, /* 0x2da1ec79 */
- 7.3242180049e-02, /* 0x3d95ffff */
- 5.8356351852e+00, /* 0x40babd86 */
- 1.3511157227e+02, /* 0x43071c90 */
- 1.0272437744e+03, /* 0x448067cd */
- 1.9899779053e+03, /* 0x44f8bf4b */
-};
-#ifdef __STDC__
-static const float qS5[6] = {
-#else
-static float qS5[6] = {
-#endif
- 8.2776611328e+01, /* 0x42a58da0 */
- 2.0778142090e+03, /* 0x4501dd07 */
- 1.8847289062e+04, /* 0x46933e94 */
- 5.6751113281e+04, /* 0x475daf1d */
- 3.5976753906e+04, /* 0x470c88c1 */
- -5.3543427734e+03, /* 0xc5a752be */
-};
-
-#ifdef __STDC__
-static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#else
-static float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- 4.3774099900e-09, /* 0x3196681b */
- 7.3241114616e-02, /* 0x3d95ff70 */
- 3.3442313671e+00, /* 0x405607e3 */
- 4.2621845245e+01, /* 0x422a7cc5 */
- 1.7080809021e+02, /* 0x432acedf */
- 1.6673394775e+02, /* 0x4326bbe4 */
-};
-#ifdef __STDC__
-static const float qS3[6] = {
-#else
-static float qS3[6] = {
-#endif
- 4.8758872986e+01, /* 0x42430916 */
- 7.0968920898e+02, /* 0x44316c1c */
- 3.7041481934e+03, /* 0x4567825f */
- 6.4604252930e+03, /* 0x45c9e367 */
- 2.5163337402e+03, /* 0x451d4557 */
- -1.4924745178e+02, /* 0xc3153f59 */
-};
-
-#ifdef __STDC__
-static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- 1.5044444979e-07, /* 0x342189db */
- 7.3223426938e-02, /* 0x3d95f62a */
- 1.9981917143e+00, /* 0x3fffc4bf */
- 1.4495602608e+01, /* 0x4167edfd */
- 3.1666231155e+01, /* 0x41fd5471 */
- 1.6252708435e+01, /* 0x4182058c */
-};
-#ifdef __STDC__
-static const float qS2[6] = {
-#else
-static float qS2[6] = {
-#endif
- 3.0365585327e+01, /* 0x41f2ecb8 */
- 2.6934811401e+02, /* 0x4386ac8f */
- 8.4478375244e+02, /* 0x44533229 */
- 8.8293585205e+02, /* 0x445cbbe5 */
- 2.1266638184e+02, /* 0x4354aa98 */
- -5.3109550476e+00, /* 0xc0a9f358 */
-};
-
-#ifdef __STDC__
- static float qzerof(float x)
-#else
- static float qzerof(x)
- float x;
-#endif
-{
-#ifdef __STDC__
- const float *p,*q;
-#else
- float *p,*q;
-#endif
- float s,r,z;
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x41000000) {p = qR8; q= qS8;}
- else if(ix>=0x40f71c58){p = qR5; q= qS5;}
- else if(ix>=0x4036db68){p = qR3; q= qS3;}
- else {p = qR2; q= qS2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
- return (-(float).125 + r/s)/x;
-}
diff --git a/newlib/libm/math/ef_j1.c b/newlib/libm/math/ef_j1.c
deleted file mode 100644
index 01bd24c..0000000
--- a/newlib/libm/math/ef_j1.c
+++ /dev/null
@@ -1,439 +0,0 @@
-/* ef_j1.c -- float version of e_j1.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static float ponef(float), qonef(float);
-#else
-static float ponef(), qonef();
-#endif
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-huge = 1e30,
-one = 1.0,
-invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
-tpi = 6.3661974669e-01, /* 0x3f22f983 */
- /* R0/S0 on [0,2] */
-r00 = -6.2500000000e-02, /* 0xbd800000 */
-r01 = 1.4070566976e-03, /* 0x3ab86cfd */
-r02 = -1.5995563444e-05, /* 0xb7862e36 */
-r03 = 4.9672799207e-08, /* 0x335557d2 */
-s01 = 1.9153760746e-02, /* 0x3c9ce859 */
-s02 = 1.8594678841e-04, /* 0x3942fab6 */
-s03 = 1.1771846857e-06, /* 0x359dffc2 */
-s04 = 5.0463624390e-09, /* 0x31ad6446 */
-s05 = 1.2354227016e-11; /* 0x2d59567e */
-
-#ifdef __STDC__
-static const float zero = 0.0;
-#else
-static float zero = 0.0;
-#endif
-
-#ifdef __STDC__
- float __ieee754_j1f(float x)
-#else
- float __ieee754_j1f(x)
- float x;
-#endif
-{
- float z, s,c,ss,cc,r,u,v,y;
- __int32_t hx,ix;
-
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(!FLT_UWORD_IS_FINITE(ix)) return one/x;
- y = fabsf(x);
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sinf(y);
- c = cosf(y);
- ss = -s-c;
- cc = s-c;
- if(ix<=FLT_UWORD_HALF_MAX) { /* make sure y+y not overflow */
- z = cosf(y+y);
- if ((s*c)>zero) cc = z/ss;
- else ss = z/cc;
- }
- /*
- * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
- * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
- */
- if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y);
- else {
- u = ponef(y); v = qonef(y);
- z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y);
- }
- if(hx<0) return -z;
- else return z;
- }
- if(ix<0x32000000) { /* |x|<2**-27 */
- if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
- }
- z = x*x;
- r = z*(r00+z*(r01+z*(r02+z*r03)));
- s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
- r *= x;
- return(x*(float)0.5+r/s);
-}
-
-#ifdef __STDC__
-static const float U0[5] = {
-#else
-static float U0[5] = {
-#endif
- -1.9605709612e-01, /* 0xbe48c331 */
- 5.0443872809e-02, /* 0x3d4e9e3c */
- -1.9125689287e-03, /* 0xbafaaf2a */
- 2.3525259166e-05, /* 0x37c5581c */
- -9.1909917899e-08, /* 0xb3c56003 */
-};
-#ifdef __STDC__
-static const float V0[5] = {
-#else
-static float V0[5] = {
-#endif
- 1.9916731864e-02, /* 0x3ca3286a */
- 2.0255257550e-04, /* 0x3954644b */
- 1.3560879779e-06, /* 0x35b602d4 */
- 6.2274145840e-09, /* 0x31d5f8eb */
- 1.6655924903e-11, /* 0x2d9281cf */
-};
-
-#ifdef __STDC__
- float __ieee754_y1f(float x)
-#else
- float __ieee754_y1f(x)
- float x;
-#endif
-{
- float z, s,c,ss,cc,u,v;
- __int32_t hx,ix;
-
- GET_FLOAT_WORD(hx,x);
- ix = 0x7fffffff&hx;
- /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
- if(!FLT_UWORD_IS_FINITE(ix)) return one/(x+x*x);
- if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
- if(hx<0) return zero/zero;
- if(ix >= 0x40000000) { /* |x| >= 2.0 */
- s = sinf(x);
- c = cosf(x);
- ss = -s-c;
- cc = s-c;
- if(ix<=FLT_UWORD_HALF_MAX) { /* make sure x+x not overflow */
- z = cosf(x+x);
- if ((s*c)>zero) cc = z/ss;
- else ss = z/cc;
- }
- /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
- * where x0 = x-3pi/4
- * Better formula:
- * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
- * = 1/sqrt(2) * (sin(x) - cos(x))
- * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
- * = -1/sqrt(2) * (cos(x) + sin(x))
- * To avoid cancellation, use
- * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
- * to compute the worse one.
- */
- if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
- else {
- u = ponef(x); v = qonef(x);
- z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
- }
- return z;
- }
- if(ix<=0x24800000) { /* x < 2**-54 */
- return(-tpi/x);
- }
- z = x*x;
- u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
- v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
- return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
-}
-
-/* For x >= 8, the asymptotic expansions of pone is
- * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
- * We approximate pone by
- * pone(x) = 1 + (R/S)
- * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
- * S = 1 + ps0*s^2 + ... + ps4*s^10
- * and
- * | pone(x)-1-R/S | <= 2 ** ( -60.06)
- */
-
-#ifdef __STDC__
-static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.0000000000e+00, /* 0x00000000 */
- 1.1718750000e-01, /* 0x3df00000 */
- 1.3239480972e+01, /* 0x4153d4ea */
- 4.1205184937e+02, /* 0x43ce06a3 */
- 3.8747453613e+03, /* 0x45722bed */
- 7.9144794922e+03, /* 0x45f753d6 */
-};
-#ifdef __STDC__
-static const float ps8[5] = {
-#else
-static float ps8[5] = {
-#endif
- 1.1420736694e+02, /* 0x42e46a2c */
- 3.6509309082e+03, /* 0x45642ee5 */
- 3.6956207031e+04, /* 0x47105c35 */
- 9.7602796875e+04, /* 0x47bea166 */
- 3.0804271484e+04, /* 0x46f0a88b */
-};
-
-#ifdef __STDC__
-static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- 1.3199052094e-11, /* 0x2d68333f */
- 1.1718749255e-01, /* 0x3defffff */
- 6.8027510643e+00, /* 0x40d9b023 */
- 1.0830818176e+02, /* 0x42d89dca */
- 5.1763616943e+02, /* 0x440168b7 */
- 5.2871520996e+02, /* 0x44042dc6 */
-};
-#ifdef __STDC__
-static const float ps5[5] = {
-#else
-static float ps5[5] = {
-#endif
- 5.9280597687e+01, /* 0x426d1f55 */
- 9.9140142822e+02, /* 0x4477d9b1 */
- 5.3532670898e+03, /* 0x45a74a23 */
- 7.8446904297e+03, /* 0x45f52586 */
- 1.5040468750e+03, /* 0x44bc0180 */
-};
-
-#ifdef __STDC__
-static const float pr3[6] = {
-#else
-static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- 3.0250391081e-09, /* 0x314fe10d */
- 1.1718686670e-01, /* 0x3defffab */
- 3.9329774380e+00, /* 0x407bb5e7 */
- 3.5119403839e+01, /* 0x420c7a45 */
- 9.1055007935e+01, /* 0x42b61c2a */
- 4.8559066772e+01, /* 0x42423c7c */
-};
-#ifdef __STDC__
-static const float ps3[5] = {
-#else
-static float ps3[5] = {
-#endif
- 3.4791309357e+01, /* 0x420b2a4d */
- 3.3676245117e+02, /* 0x43a86198 */
- 1.0468714600e+03, /* 0x4482dbe3 */
- 8.9081134033e+02, /* 0x445eb3ed */
- 1.0378793335e+02, /* 0x42cf936c */
-};
-
-#ifdef __STDC__
-static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- 1.0771083225e-07, /* 0x33e74ea8 */
- 1.1717621982e-01, /* 0x3deffa16 */
- 2.3685150146e+00, /* 0x401795c0 */
- 1.2242610931e+01, /* 0x4143e1bc */
- 1.7693971634e+01, /* 0x418d8d41 */
- 5.0735230446e+00, /* 0x40a25a4d */
-};
-#ifdef __STDC__
-static const float ps2[5] = {
-#else
-static float ps2[5] = {
-#endif
- 2.1436485291e+01, /* 0x41ab7dec */
- 1.2529022980e+02, /* 0x42fa9499 */
- 2.3227647400e+02, /* 0x436846c7 */
- 1.1767937469e+02, /* 0x42eb5bd7 */
- 8.3646392822e+00, /* 0x4105d590 */
-};
-
-#ifdef __STDC__
- static float ponef(float x)
-#else
- static float ponef(x)
- float x;
-#endif
-{
-#ifdef __STDC__
- const float *p,*q;
-#else
- float *p,*q;
-#endif
- float z,r,s;
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x41000000) {p = pr8; q= ps8;}
- else if(ix>=0x40f71c58){p = pr5; q= ps5;}
- else if(ix>=0x4036db68){p = pr3; q= ps3;}
- else {p = pr2; q= ps2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
- return one+ r/s;
-}
-
-
-/* For x >= 8, the asymptotic expansions of qone is
- * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
- * We approximate qone by
- * qone(x) = s*(0.375 + (R/S))
- * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
- * S = 1 + qs1*s^2 + ... + qs6*s^12
- * and
- * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
- */
-
-#ifdef __STDC__
-static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#else
-static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-#endif
- 0.0000000000e+00, /* 0x00000000 */
- -1.0253906250e-01, /* 0xbdd20000 */
- -1.6271753311e+01, /* 0xc1822c8d */
- -7.5960174561e+02, /* 0xc43de683 */
- -1.1849806641e+04, /* 0xc639273a */
- -4.8438511719e+04, /* 0xc73d3683 */
-};
-#ifdef __STDC__
-static const float qs8[6] = {
-#else
-static float qs8[6] = {
-#endif
- 1.6139537048e+02, /* 0x43216537 */
- 7.8253862305e+03, /* 0x45f48b17 */
- 1.3387534375e+05, /* 0x4802bcd6 */
- 7.1965775000e+05, /* 0x492fb29c */
- 6.6660125000e+05, /* 0x4922be94 */
- -2.9449025000e+05, /* 0xc88fcb48 */
-};
-
-#ifdef __STDC__
-static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#else
-static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-#endif
- -2.0897993405e-11, /* 0xadb7d219 */
- -1.0253904760e-01, /* 0xbdd1fffe */
- -8.0564479828e+00, /* 0xc100e736 */
- -1.8366960144e+02, /* 0xc337ab6b */
- -1.3731937256e+03, /* 0xc4aba633 */
- -2.6124443359e+03, /* 0xc523471c */
-};
-#ifdef __STDC__
-static const float qs5[6] = {
-#else
-static float qs5[6] = {
-#endif
- 8.1276550293e+01, /* 0x42a28d98 */
- 1.9917987061e+03, /* 0x44f8f98f */
- 1.7468484375e+04, /* 0x468878f8 */
- 4.9851425781e+04, /* 0x4742bb6d */
- 2.7948074219e+04, /* 0x46da5826 */
- -4.7191835938e+03, /* 0xc5937978 */
-};
-
-#ifdef __STDC__
-static const float qr3[6] = {
-#else
-static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-#endif
- -5.0783124372e-09, /* 0xb1ae7d4f */
- -1.0253783315e-01, /* 0xbdd1ff5b */
- -4.6101160049e+00, /* 0xc0938612 */
- -5.7847221375e+01, /* 0xc267638e */
- -2.2824453735e+02, /* 0xc3643e9a */
- -2.1921012878e+02, /* 0xc35b35cb */
-};
-#ifdef __STDC__
-static const float qs3[6] = {
-#else
-static float qs3[6] = {
-#endif
- 4.7665153503e+01, /* 0x423ea91e */
- 6.7386511230e+02, /* 0x4428775e */
- 3.3801528320e+03, /* 0x45534272 */
- 5.5477290039e+03, /* 0x45ad5dd5 */
- 1.9031191406e+03, /* 0x44ede3d0 */
- -1.3520118713e+02, /* 0xc3073381 */
-};
-
-#ifdef __STDC__
-static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#else
-static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-#endif
- -1.7838172539e-07, /* 0xb43f8932 */
- -1.0251704603e-01, /* 0xbdd1f475 */
- -2.7522056103e+00, /* 0xc0302423 */
- -1.9663616180e+01, /* 0xc19d4f16 */
- -4.2325313568e+01, /* 0xc2294d1f */
- -2.1371921539e+01, /* 0xc1aaf9b2 */
-};
-#ifdef __STDC__
-static const float qs2[6] = {
-#else
-static float qs2[6] = {
-#endif
- 2.9533363342e+01, /* 0x41ec4454 */
- 2.5298155212e+02, /* 0x437cfb47 */
- 7.5750280762e+02, /* 0x443d602e */
- 7.3939318848e+02, /* 0x4438d92a */
- 1.5594900513e+02, /* 0x431bf2f2 */
- -4.9594988823e+00, /* 0xc09eb437 */
-};
-
-#ifdef __STDC__
- static float qonef(float x)
-#else
- static float qonef(x)
- float x;
-#endif
-{
-#ifdef __STDC__
- const float *p,*q;
-#else
- float *p,*q;
-#endif
- float s,r,z;
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- if(ix>=0x40200000) {p = qr8; q= qs8;}
- else if(ix>=0x40f71c58){p = qr5; q= qs5;}
- else if(ix>=0x4036db68){p = qr3; q= qs3;}
- else {p = qr2; q= qs2;}
- z = one/(x*x);
- r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
- s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
- return ((float).375 + r/s)/x;
-}
diff --git a/newlib/libm/math/ef_jn.c b/newlib/libm/math/ef_jn.c
deleted file mode 100644
index bedfb3e..0000000
--- a/newlib/libm/math/ef_jn.c
+++ /dev/null
@@ -1,207 +0,0 @@
-/* ef_jn.c -- float version of e_jn.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
-two = 2.0000000000e+00, /* 0x40000000 */
-one = 1.0000000000e+00; /* 0x3F800000 */
-
-#ifdef __STDC__
-static const float zero = 0.0000000000e+00;
-#else
-static float zero = 0.0000000000e+00;
-#endif
-
-#ifdef __STDC__
- float __ieee754_jnf(int n, float x)
-#else
- float __ieee754_jnf(n,x)
- int n; float x;
-#endif
-{
- __int32_t i,hx,ix, sgn;
- float a, b, temp, di;
- float z, w;
-
- /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
- * Thus, J(-n,x) = J(n,-x)
- */
- GET_FLOAT_WORD(hx,x);
- ix = 0x7fffffff&hx;
- /* if J(n,NaN) is NaN */
- if(FLT_UWORD_IS_NAN(ix)) return x+x;
- if(n<0){
- n = -n;
- x = -x;
- hx ^= 0x80000000;
- }
- if(n==0) return(__ieee754_j0f(x));
- if(n==1) return(__ieee754_j1f(x));
- sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
- x = fabsf(x);
- if(FLT_UWORD_IS_ZERO(ix)||FLT_UWORD_IS_INFINITE(ix))
- b = zero;
- else if((float)n<=x) {
- /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
- a = __ieee754_j0f(x);
- b = __ieee754_j1f(x);
- for(i=1;i<n;i++){
- temp = b;
- b = b*((float)(i+i)/x) - a; /* avoid underflow */
- a = temp;
- }
- } else {
- if(ix<0x30800000) { /* x < 2**-29 */
- /* x is tiny, return the first Taylor expansion of J(n,x)
- * J(n,x) = 1/n!*(x/2)^n - ...
- */
- if(n>33) /* underflow */
- b = zero;
- else {
- temp = x*(float)0.5; b = temp;
- for (a=one,i=2;i<=n;i++) {
- a *= (float)i; /* a = n! */
- b *= temp; /* b = (x/2)^n */
- }
- b = b/a;
- }
- } else {
- /* use backward recurrence */
- /* x x^2 x^2
- * J(n,x)/J(n-1,x) = ---- ------ ------ .....
- * 2n - 2(n+1) - 2(n+2)
- *
- * 1 1 1
- * (for large x) = ---- ------ ------ .....
- * 2n 2(n+1) 2(n+2)
- * -- - ------ - ------ -
- * x x x
- *
- * Let w = 2n/x and h=2/x, then the above quotient
- * is equal to the continued fraction:
- * 1
- * = -----------------------
- * 1
- * w - -----------------
- * 1
- * w+h - ---------
- * w+2h - ...
- *
- * To determine how many terms needed, let
- * Q(0) = w, Q(1) = w(w+h) - 1,
- * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
- * When Q(k) > 1e4 good for single
- * When Q(k) > 1e9 good for double
- * When Q(k) > 1e17 good for quadruple
- */
- /* determine k */
- float t,v;
- float q0,q1,h,tmp; __int32_t k,m;
- w = (n+n)/(float)x; h = (float)2.0/(float)x;
- q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
- while(q1<(float)1.0e9) {
- k += 1; z += h;
- tmp = z*q1 - q0;
- q0 = q1;
- q1 = tmp;
- }
- m = n+n;
- for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
- a = t;
- b = one;
- /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
- * Hence, if n*(log(2n/x)) > ...
- * single 8.8722839355e+01
- * double 7.09782712893383973096e+02
- * long double 1.1356523406294143949491931077970765006170e+04
- * then recurrent value may overflow and the result is
- * likely underflow to zero
- */
- tmp = n;
- v = two/x;
- tmp = tmp*__ieee754_logf(fabsf(v*tmp));
- if(tmp<(float)8.8721679688e+01) {
- for(i=n-1,di=(float)(i+i);i>0;i--){
- temp = b;
- b *= di;
- b = b/x - a;
- a = temp;
- di -= two;
- }
- } else {
- for(i=n-1,di=(float)(i+i);i>0;i--){
- temp = b;
- b *= di;
- b = b/x - a;
- a = temp;
- di -= two;
- /* scale b to avoid spurious overflow */
- if(b>(float)1e10) {
- a /= b;
- t /= b;
- b = one;
- }
- }
- }
- b = (t*__ieee754_j0f(x)/b);
- }
- }
- if(sgn==1) return -b; else return b;
-}
-
-#ifdef __STDC__
- float __ieee754_ynf(int n, float x)
-#else
- float __ieee754_ynf(n,x)
- int n; float x;
-#endif
-{
- __int32_t i,hx,ix,ib;
- __int32_t sign;
- float a, b, temp;
-
- GET_FLOAT_WORD(hx,x);
- ix = 0x7fffffff&hx;
- /* if Y(n,NaN) is NaN */
- if(FLT_UWORD_IS_NAN(ix)) return x+x;
- if(FLT_UWORD_IS_ZERO(ix)) return -one/zero;
- if(hx<0) return zero/zero;
- sign = 1;
- if(n<0){
- n = -n;
- sign = 1 - ((n&1)<<1);
- }
- if(n==0) return(__ieee754_y0f(x));
- if(n==1) return(sign*__ieee754_y1f(x));
- if(FLT_UWORD_IS_INFINITE(ix)) return zero;
-
- a = __ieee754_y0f(x);
- b = __ieee754_y1f(x);
- /* quit if b is -inf */
- GET_FLOAT_WORD(ib,b);
- for(i=1;i<n&&ib!=0xff800000;i++){
- temp = b;
- b = ((float)(i+i)/x)*b - a;
- GET_FLOAT_WORD(ib,b);
- a = temp;
- }
- if(sign>0) return b; else return -b;
-}
diff --git a/newlib/libm/math/ef_log.c b/newlib/libm/math/ef_log.c
deleted file mode 100644
index 619fe90..0000000
--- a/newlib/libm/math/ef_log.c
+++ /dev/null
@@ -1,92 +0,0 @@
-/* ef_log.c -- float version of e_log.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
-ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
-two25 = 3.355443200e+07, /* 0x4c000000 */
-Lg1 = 6.6666668653e-01, /* 3F2AAAAB */
-Lg2 = 4.0000000596e-01, /* 3ECCCCCD */
-Lg3 = 2.8571429849e-01, /* 3E924925 */
-Lg4 = 2.2222198546e-01, /* 3E638E29 */
-Lg5 = 1.8183572590e-01, /* 3E3A3325 */
-Lg6 = 1.5313838422e-01, /* 3E1CD04F */
-Lg7 = 1.4798198640e-01; /* 3E178897 */
-
-#ifdef __STDC__
-static const float zero = 0.0;
-#else
-static float zero = 0.0;
-#endif
-
-#ifdef __STDC__
- float __ieee754_logf(float x)
-#else
- float __ieee754_logf(x)
- float x;
-#endif
-{
- float hfsq,f,s,z,R,w,t1,t2,dk;
- __int32_t k,ix,i,j;
-
- GET_FLOAT_WORD(ix,x);
-
- k=0;
- if (FLT_UWORD_IS_ZERO(ix&0x7fffffff))
- return -two25/zero; /* log(+-0)=-inf */
- if (ix<0) return (x-x)/zero; /* log(-#) = NaN */
- if (!FLT_UWORD_IS_FINITE(ix)) return x+x;
- if (FLT_UWORD_IS_SUBNORMAL(ix)) {
- k -= 25; x *= two25; /* subnormal number, scale up x */
- GET_FLOAT_WORD(ix,x);
- }
- k += (ix>>23)-127;
- ix &= 0x007fffff;
- i = (ix+(0x95f64<<3))&0x800000;
- SET_FLOAT_WORD(x,ix|(i^0x3f800000)); /* normalize x or x/2 */
- k += (i>>23);
- f = x-(float)1.0;
- if((0x007fffff&(15+ix))<16) { /* |f| < 2**-20 */
- if(f==zero) { if(k==0) return zero; else {dk=(float)k;
- return dk*ln2_hi+dk*ln2_lo;}}
- R = f*f*((float)0.5-(float)0.33333333333333333*f);
- if(k==0) return f-R; else {dk=(float)k;
- return dk*ln2_hi-((R-dk*ln2_lo)-f);}
- }
- s = f/((float)2.0+f);
- dk = (float)k;
- z = s*s;
- i = ix-(0x6147a<<3);
- w = z*z;
- j = (0x6b851<<3)-ix;
- t1= w*(Lg2+w*(Lg4+w*Lg6));
- t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
- i |= j;
- R = t2+t1;
- if(i>0) {
- hfsq=(float)0.5*f*f;
- if(k==0) return f-(hfsq-s*(hfsq+R)); else
- return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
- } else {
- if(k==0) return f-s*(f-R); else
- return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
- }
-}
diff --git a/newlib/libm/math/ef_log10.c b/newlib/libm/math/ef_log10.c
deleted file mode 100644
index 5ab23c4..0000000
--- a/newlib/libm/math/ef_log10.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/* ef_log10.c -- float version of e_log10.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-two25 = 3.3554432000e+07, /* 0x4c000000 */
-ivln10 = 4.3429449201e-01, /* 0x3ede5bd9 */
-log10_2hi = 3.0102920532e-01, /* 0x3e9a2080 */
-log10_2lo = 7.9034151668e-07; /* 0x355427db */
-
-#ifdef __STDC__
-static const float zero = 0.0;
-#else
-static float zero = 0.0;
-#endif
-
-#ifdef __STDC__
- float __ieee754_log10f(float x)
-#else
- float __ieee754_log10f(x)
- float x;
-#endif
-{
- float y,z;
- __int32_t i,k,hx;
-
- GET_FLOAT_WORD(hx,x);
-
- k=0;
- if (FLT_UWORD_IS_ZERO(hx&0x7fffffff))
- return -two25/zero; /* log(+-0)=-inf */
- if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
- if (!FLT_UWORD_IS_FINITE(hx)) return x+x;
- if (FLT_UWORD_IS_SUBNORMAL(hx)) {
- k -= 25; x *= two25; /* subnormal number, scale up x */
- GET_FLOAT_WORD(hx,x);
- }
- k += (hx>>23)-127;
- i = ((__uint32_t)k&0x80000000)>>31;
- hx = (hx&0x007fffff)|((0x7f-i)<<23);
- y = (float)(k+i);
- SET_FLOAT_WORD(x,hx);
- z = y*log10_2lo + ivln10*__ieee754_logf(x);
- return z+y*log10_2hi;
-}
diff --git a/newlib/libm/math/ef_pow.c b/newlib/libm/math/ef_pow.c
deleted file mode 100644
index e50cc58..0000000
--- a/newlib/libm/math/ef_pow.c
+++ /dev/null
@@ -1,253 +0,0 @@
-/* ef_pow.c -- float version of e_pow.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __v810__
-#define const
-#endif
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-bp[] = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
-dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
-zero = 0.0,
-one = 1.0,
-two = 2.0,
-two24 = 16777216.0, /* 0x4b800000 */
-huge = 1.0e30,
-tiny = 1.0e-30,
- /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
-L1 = 6.0000002384e-01, /* 0x3f19999a */
-L2 = 4.2857143283e-01, /* 0x3edb6db7 */
-L3 = 3.3333334327e-01, /* 0x3eaaaaab */
-L4 = 2.7272811532e-01, /* 0x3e8ba305 */
-L5 = 2.3066075146e-01, /* 0x3e6c3255 */
-L6 = 2.0697501302e-01, /* 0x3e53f142 */
-P1 = 1.6666667163e-01, /* 0x3e2aaaab */
-P2 = -2.7777778450e-03, /* 0xbb360b61 */
-P3 = 6.6137559770e-05, /* 0x388ab355 */
-P4 = -1.6533901999e-06, /* 0xb5ddea0e */
-P5 = 4.1381369442e-08, /* 0x3331bb4c */
-lg2 = 6.9314718246e-01, /* 0x3f317218 */
-lg2_h = 6.93145752e-01, /* 0x3f317200 */
-lg2_l = 1.42860654e-06, /* 0x35bfbe8c */
-ovt = 4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
-cp = 9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
-cp_h = 9.6179199219e-01, /* 0x3f763800 =head of cp */
-cp_l = 4.7017383622e-06, /* 0x369dc3a0 =tail of cp_h */
-ivln2 = 1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
-ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
-ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
-
-#ifdef __STDC__
- float __ieee754_powf(float x, float y)
-#else
- float __ieee754_powf(x,y)
- float x, y;
-#endif
-{
- float z,ax,z_h,z_l,p_h,p_l;
- float y1,t1,t2,r,s,t,u,v,w;
- __int32_t i,j,k,yisint,n;
- __int32_t hx,hy,ix,iy,is;
-
- GET_FLOAT_WORD(hx,x);
- GET_FLOAT_WORD(hy,y);
- ix = hx&0x7fffffff; iy = hy&0x7fffffff;
-
- /* y==zero: x**0 = 1 */
- if(FLT_UWORD_IS_ZERO(iy)) return one;
-
- /* +-NaN return x+y */
- if(FLT_UWORD_IS_NAN(ix) ||
- FLT_UWORD_IS_NAN(iy))
- return x+y;
-
- /* determine if y is an odd int when x < 0
- * yisint = 0 ... y is not an integer
- * yisint = 1 ... y is an odd int
- * yisint = 2 ... y is an even int
- */
- yisint = 0;
- if(hx<0) {
- if(iy>=0x4b800000) yisint = 2; /* even integer y */
- else if(iy>=0x3f800000) {
- k = (iy>>23)-0x7f; /* exponent */
- j = iy>>(23-k);
- if((j<<(23-k))==iy) yisint = 2-(j&1);
- }
- }
-
- /* special value of y */
- if (FLT_UWORD_IS_INFINITE(iy)) { /* y is +-inf */
- if (ix==0x3f800000)
- return y - y; /* inf**+-1 is NaN */
- else if (ix > 0x3f800000)/* (|x|>1)**+-inf = inf,0 */
- return (hy>=0)? y: zero;
- else /* (|x|<1)**-,+inf = inf,0 */
- return (hy<0)?-y: zero;
- }
- if(iy==0x3f800000) { /* y is +-1 */
- if(hy<0) return one/x; else return x;
- }
- if(hy==0x40000000) return x*x; /* y is 2 */
- if(hy==0x3f000000) { /* y is 0.5 */
- if(hx>=0) /* x >= +0 */
- return __ieee754_sqrtf(x);
- }
-
- ax = fabsf(x);
- /* special value of x */
- if(FLT_UWORD_IS_INFINITE(ix)||FLT_UWORD_IS_ZERO(ix)||ix==0x3f800000){
- z = ax; /*x is +-0,+-inf,+-1*/
- if(hy<0) z = one/z; /* z = (1/|x|) */
- if(hx<0) {
- if(((ix-0x3f800000)|yisint)==0) {
- z = (z-z)/(z-z); /* (-1)**non-int is NaN */
- } else if(yisint==1)
- z = -z; /* (x<0)**odd = -(|x|**odd) */
- }
- return z;
- }
-
- /* (x<0)**(non-int) is NaN */
- if(((((__uint32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
-
- /* |y| is huge */
- if(iy>0x4d000000) { /* if |y| > 2**27 */
- /* over/underflow if x is not close to one */
- if(ix<0x3f7ffff8) return (hy<0)? huge*huge:tiny*tiny;
- if(ix>0x3f800007) return (hy>0)? huge*huge:tiny*tiny;
- /* now |1-x| is tiny <= 2**-20, suffice to compute
- log(x) by x-x^2/2+x^3/3-x^4/4 */
- t = x-1; /* t has 20 trailing zeros */
- w = (t*t)*((float)0.5-t*((float)0.333333333333-t*(float)0.25));
- u = ivln2_h*t; /* ivln2_h has 16 sig. bits */
- v = t*ivln2_l-w*ivln2;
- t1 = u+v;
- GET_FLOAT_WORD(is,t1);
- SET_FLOAT_WORD(t1,is&0xfffff000);
- t2 = v-(t1-u);
- } else {
- float s2,s_h,s_l,t_h,t_l;
- n = 0;
- /* take care subnormal number */
- if(FLT_UWORD_IS_SUBNORMAL(ix))
- {ax *= two24; n -= 24; GET_FLOAT_WORD(ix,ax); }
- n += ((ix)>>23)-0x7f;
- j = ix&0x007fffff;
- /* determine interval */
- ix = j|0x3f800000; /* normalize ix */
- if(j<=0x1cc471) k=0; /* |x|<sqrt(3/2) */
- else if(j<0x5db3d7) k=1; /* |x|<sqrt(3) */
- else {k=0;n+=1;ix -= 0x00800000;}
- SET_FLOAT_WORD(ax,ix);
-
- /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
- u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
- v = one/(ax+bp[k]);
- s = u*v;
- s_h = s;
- GET_FLOAT_WORD(is,s_h);
- SET_FLOAT_WORD(s_h,is&0xfffff000);
- /* t_h=ax+bp[k] High */
- SET_FLOAT_WORD(t_h,((ix>>1)|0x20000000)+0x0040000+(k<<21));
- t_l = ax - (t_h-bp[k]);
- s_l = v*((u-s_h*t_h)-s_h*t_l);
- /* compute log(ax) */
- s2 = s*s;
- r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
- r += s_l*(s_h+s);
- s2 = s_h*s_h;
- t_h = (float)3.0+s2+r;
- GET_FLOAT_WORD(is,t_h);
- SET_FLOAT_WORD(t_h,is&0xfffff000);
- t_l = r-((t_h-(float)3.0)-s2);
- /* u+v = s*(1+...) */
- u = s_h*t_h;
- v = s_l*t_h+t_l*s;
- /* 2/(3log2)*(s+...) */
- p_h = u+v;
- GET_FLOAT_WORD(is,p_h);
- SET_FLOAT_WORD(p_h,is&0xfffff000);
- p_l = v-(p_h-u);
- z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
- z_l = cp_l*p_h+p_l*cp+dp_l[k];
- /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
- t = (float)n;
- t1 = (((z_h+z_l)+dp_h[k])+t);
- GET_FLOAT_WORD(is,t1);
- SET_FLOAT_WORD(t1,is&0xfffff000);
- t2 = z_l-(((t1-t)-dp_h[k])-z_h);
- }
-
- s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
- if(((((__uint32_t)hx>>31)-1)|(yisint-1))==0)
- s = -one; /* (-ve)**(odd int) */
-
- /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
- GET_FLOAT_WORD(is,y);
- SET_FLOAT_WORD(y1,is&0xfffff000);
- p_l = (y-y1)*t1+y*t2;
- p_h = y1*t1;
- z = p_l+p_h;
- GET_FLOAT_WORD(j,z);
- i = j&0x7fffffff;
- if (j>0) {
- if (i>FLT_UWORD_EXP_MAX)
- return s*huge*huge; /* overflow */
- else if (i==FLT_UWORD_EXP_MAX)
- if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
- } else {
- if (i>FLT_UWORD_EXP_MIN)
- return s*tiny*tiny; /* underflow */
- else if (i==FLT_UWORD_EXP_MIN)
- if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
- }
- /*
- * compute 2**(p_h+p_l)
- */
- k = (i>>23)-0x7f;
- n = 0;
- if(i>0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
- n = j+(0x00800000>>(k+1));
- k = ((n&0x7fffffff)>>23)-0x7f; /* new k for n */
- SET_FLOAT_WORD(t,n&~(0x007fffff>>k));
- n = ((n&0x007fffff)|0x00800000)>>(23-k);
- if(j<0) n = -n;
- p_h -= t;
- }
- t = p_l+p_h;
- GET_FLOAT_WORD(is,t);
- SET_FLOAT_WORD(t,is&0xfffff000);
- u = t*lg2_h;
- v = (p_l-(t-p_h))*lg2+t*lg2_l;
- z = u+v;
- w = v-(z-u);
- t = z*z;
- t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
- r = (z*t1)/(t1-two)-(w+z*w);
- z = one-(r-z);
- GET_FLOAT_WORD(j,z);
- j += (n<<23);
- if((j>>23)<=0) z = scalbnf(z,(int)n); /* subnormal output */
- else SET_FLOAT_WORD(z,j);
- return s*z;
-}
diff --git a/newlib/libm/math/ef_rem_pio2.c b/newlib/libm/math/ef_rem_pio2.c
deleted file mode 100644
index f1191d0..0000000
--- a/newlib/libm/math/ef_rem_pio2.c
+++ /dev/null
@@ -1,193 +0,0 @@
-/* ef_rem_pio2.c -- float version of e_rem_pio2.c
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_rem_pio2f(x,y)
- *
- * return the remainder of x rem pi/2 in y[0]+y[1]
- * use __kernel_rem_pio2f()
- */
-
-#include "fdlibm.h"
-
-/*
- * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
- */
-#ifdef __STDC__
-static const __int32_t two_over_pi[] = {
-#else
-static __int32_t two_over_pi[] = {
-#endif
-0xA2, 0xF9, 0x83, 0x6E, 0x4E, 0x44, 0x15, 0x29, 0xFC,
-0x27, 0x57, 0xD1, 0xF5, 0x34, 0xDD, 0xC0, 0xDB, 0x62,
-0x95, 0x99, 0x3C, 0x43, 0x90, 0x41, 0xFE, 0x51, 0x63,
-0xAB, 0xDE, 0xBB, 0xC5, 0x61, 0xB7, 0x24, 0x6E, 0x3A,
-0x42, 0x4D, 0xD2, 0xE0, 0x06, 0x49, 0x2E, 0xEA, 0x09,
-0xD1, 0x92, 0x1C, 0xFE, 0x1D, 0xEB, 0x1C, 0xB1, 0x29,
-0xA7, 0x3E, 0xE8, 0x82, 0x35, 0xF5, 0x2E, 0xBB, 0x44,
-0x84, 0xE9, 0x9C, 0x70, 0x26, 0xB4, 0x5F, 0x7E, 0x41,
-0x39, 0x91, 0xD6, 0x39, 0x83, 0x53, 0x39, 0xF4, 0x9C,
-0x84, 0x5F, 0x8B, 0xBD, 0xF9, 0x28, 0x3B, 0x1F, 0xF8,
-0x97, 0xFF, 0xDE, 0x05, 0x98, 0x0F, 0xEF, 0x2F, 0x11,
-0x8B, 0x5A, 0x0A, 0x6D, 0x1F, 0x6D, 0x36, 0x7E, 0xCF,
-0x27, 0xCB, 0x09, 0xB7, 0x4F, 0x46, 0x3F, 0x66, 0x9E,
-0x5F, 0xEA, 0x2D, 0x75, 0x27, 0xBA, 0xC7, 0xEB, 0xE5,
-0xF1, 0x7B, 0x3D, 0x07, 0x39, 0xF7, 0x8A, 0x52, 0x92,
-0xEA, 0x6B, 0xFB, 0x5F, 0xB1, 0x1F, 0x8D, 0x5D, 0x08,
-0x56, 0x03, 0x30, 0x46, 0xFC, 0x7B, 0x6B, 0xAB, 0xF0,
-0xCF, 0xBC, 0x20, 0x9A, 0xF4, 0x36, 0x1D, 0xA9, 0xE3,
-0x91, 0x61, 0x5E, 0xE6, 0x1B, 0x08, 0x65, 0x99, 0x85,
-0x5F, 0x14, 0xA0, 0x68, 0x40, 0x8D, 0xFF, 0xD8, 0x80,
-0x4D, 0x73, 0x27, 0x31, 0x06, 0x06, 0x15, 0x56, 0xCA,
-0x73, 0xA8, 0xC9, 0x60, 0xE2, 0x7B, 0xC0, 0x8C, 0x6B,
-};
-
-/* This array is like the one in e_rem_pio2.c, but the numbers are
- single precision and the last 8 bits are forced to 0. */
-#ifdef __STDC__
-static const __int32_t npio2_hw[] = {
-#else
-static __int32_t npio2_hw[] = {
-#endif
-0x3fc90f00, 0x40490f00, 0x4096cb00, 0x40c90f00, 0x40fb5300, 0x4116cb00,
-0x412fed00, 0x41490f00, 0x41623100, 0x417b5300, 0x418a3a00, 0x4196cb00,
-0x41a35c00, 0x41afed00, 0x41bc7e00, 0x41c90f00, 0x41d5a000, 0x41e23100,
-0x41eec200, 0x41fb5300, 0x4203f200, 0x420a3a00, 0x42108300, 0x4216cb00,
-0x421d1400, 0x42235c00, 0x4229a500, 0x422fed00, 0x42363600, 0x423c7e00,
-0x4242c700, 0x42490f00
-};
-
-/*
- * invpio2: 24 bits of 2/pi
- * pio2_1: first 17 bit of pi/2
- * pio2_1t: pi/2 - pio2_1
- * pio2_2: second 17 bit of pi/2
- * pio2_2t: pi/2 - (pio2_1+pio2_2)
- * pio2_3: third 17 bit of pi/2
- * pio2_3t: pi/2 - (pio2_1+pio2_2+pio2_3)
- */
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-zero = 0.0000000000e+00, /* 0x00000000 */
-half = 5.0000000000e-01, /* 0x3f000000 */
-two8 = 2.5600000000e+02, /* 0x43800000 */
-invpio2 = 6.3661980629e-01, /* 0x3f22f984 */
-pio2_1 = 1.5707855225e+00, /* 0x3fc90f80 */
-pio2_1t = 1.0804334124e-05, /* 0x37354443 */
-pio2_2 = 1.0804273188e-05, /* 0x37354400 */
-pio2_2t = 6.0770999344e-11, /* 0x2e85a308 */
-pio2_3 = 6.0770943833e-11, /* 0x2e85a300 */
-pio2_3t = 6.1232342629e-17; /* 0x248d3132 */
-
-#ifdef __STDC__
- __int32_t __ieee754_rem_pio2f(float x, float *y)
-#else
- __int32_t __ieee754_rem_pio2f(x,y)
- float x,y[];
-#endif
-{
- float z,w,t,r,fn;
- float tx[3];
- __int32_t i,j,n,ix,hx;
- int e0,nx;
-
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix<=0x3f490fd8) /* |x| ~<= pi/4 , no need for reduction */
- {y[0] = x; y[1] = 0; return 0;}
- if(ix<0x4016cbe4) { /* |x| < 3pi/4, special case with n=+-1 */
- if(hx>0) {
- z = x - pio2_1;
- if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
- y[0] = z - pio2_1t;
- y[1] = (z-y[0])-pio2_1t;
- } else { /* near pi/2, use 24+24+24 bit pi */
- z -= pio2_2;
- y[0] = z - pio2_2t;
- y[1] = (z-y[0])-pio2_2t;
- }
- return 1;
- } else { /* negative x */
- z = x + pio2_1;
- if((ix&0xfffffff0)!=0x3fc90fd0) { /* 24+24 bit pi OK */
- y[0] = z + pio2_1t;
- y[1] = (z-y[0])+pio2_1t;
- } else { /* near pi/2, use 24+24+24 bit pi */
- z += pio2_2;
- y[0] = z + pio2_2t;
- y[1] = (z-y[0])+pio2_2t;
- }
- return -1;
- }
- }
- if(ix<=0x43490f80) { /* |x| ~<= 2^7*(pi/2), medium size */
- t = fabsf(x);
- n = (__int32_t) (t*invpio2+half);
- fn = (float)n;
- r = t-fn*pio2_1;
- w = fn*pio2_1t; /* 1st round good to 40 bit */
- if(n<32&&(ix&0xffffff00)!=npio2_hw[n-1]) {
- y[0] = r-w; /* quick check no cancellation */
- } else {
- __uint32_t high;
- j = ix>>23;
- y[0] = r-w;
- GET_FLOAT_WORD(high,y[0]);
- i = j-((high>>23)&0xff);
- if(i>8) { /* 2nd iteration needed, good to 57 */
- t = r;
- w = fn*pio2_2;
- r = t-w;
- w = fn*pio2_2t-((t-r)-w);
- y[0] = r-w;
- GET_FLOAT_WORD(high,y[0]);
- i = j-((high>>23)&0xff);
- if(i>25) { /* 3rd iteration need, 74 bits acc */
- t = r; /* will cover all possible cases */
- w = fn*pio2_3;
- r = t-w;
- w = fn*pio2_3t-((t-r)-w);
- y[0] = r-w;
- }
- }
- }
- y[1] = (r-y[0])-w;
- if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
- else return n;
- }
- /*
- * all other (large) arguments
- */
- if(!FLT_UWORD_IS_FINITE(ix)) {
- y[0]=y[1]=x-x; return 0;
- }
- /* set z = scalbn(|x|,ilogb(x)-7) */
- e0 = (int)((ix>>23)-134); /* e0 = ilogb(z)-7; */
- SET_FLOAT_WORD(z, ix - ((__int32_t)e0<<23));
- for(i=0;i<2;i++) {
- tx[i] = (float)((__int32_t)(z));
- z = (z-tx[i])*two8;
- }
- tx[2] = z;
- nx = 3;
- while(tx[nx-1]==zero) nx--; /* skip zero term */
- n = __kernel_rem_pio2f(tx,y,e0,nx,2,two_over_pi);
- if(hx<0) {y[0] = -y[0]; y[1] = -y[1]; return -n;}
- return n;
-}
diff --git a/newlib/libm/math/ef_remainder.c b/newlib/libm/math/ef_remainder.c
deleted file mode 100644
index 23d29d0..0000000
--- a/newlib/libm/math/ef_remainder.c
+++ /dev/null
@@ -1,68 +0,0 @@
-/* ef_remainder.c -- float version of e_remainder.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float zero = 0.0;
-#else
-static float zero = 0.0;
-#endif
-
-
-#ifdef __STDC__
- float __ieee754_remainderf(float x, float p)
-#else
- float __ieee754_remainderf(x,p)
- float x,p;
-#endif
-{
- __int32_t hx,hp;
- __uint32_t sx;
- float p_half;
-
- GET_FLOAT_WORD(hx,x);
- GET_FLOAT_WORD(hp,p);
- sx = hx&0x80000000;
- hp &= 0x7fffffff;
- hx &= 0x7fffffff;
-
- /* purge off exception values */
- if(FLT_UWORD_IS_ZERO(hp)||
- !FLT_UWORD_IS_FINITE(hx)||
- FLT_UWORD_IS_NAN(hp))
- return (x*p)/(x*p);
-
-
- if (hp<=FLT_UWORD_HALF_MAX) x = __ieee754_fmodf(x,p+p); /* now x < 2p */
- if ((hx-hp)==0) return zero*x;
- x = fabsf(x);
- p = fabsf(p);
- if (hp<0x01000000) {
- if(x+x>p) {
- x-=p;
- if(x+x>=p) x -= p;
- }
- } else {
- p_half = (float)0.5*p;
- if(x>p_half) {
- x-=p;
- if(x>=p_half) x -= p;
- }
- }
- GET_FLOAT_WORD(hx,x);
- SET_FLOAT_WORD(x,hx^sx);
- return x;
-}
diff --git a/newlib/libm/math/ef_scalb.c b/newlib/libm/math/ef_scalb.c
deleted file mode 100644
index 3677a3b..0000000
--- a/newlib/libm/math/ef_scalb.c
+++ /dev/null
@@ -1,53 +0,0 @@
-/* ef_scalb.c -- float version of e_scalb.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-#include <limits.h>
-
-#ifdef _SCALB_INT
-#ifdef __STDC__
- float __ieee754_scalbf(float x, int fn)
-#else
- float __ieee754_scalbf(x,fn)
- float x; int fn;
-#endif
-#else
-#ifdef __STDC__
- float __ieee754_scalbf(float x, float fn)
-#else
- float __ieee754_scalbf(x,fn)
- float x, fn;
-#endif
-#endif
-{
-#ifdef _SCALB_INT
- return scalbnf(x,fn);
-#else
- if (isnanf(x)||isnanf(fn)) return x*fn;
- if (!finitef(fn)) {
- if(fn>(float)0.0) return x*fn;
- else return x/(-fn);
- }
- if (rintf(fn)!=fn) return (fn-fn)/(fn-fn);
-#if INT_MAX > 65000
- if ( fn > (float)65000.0) return scalbnf(x, 65000);
- if (-fn > (float)65000.0) return scalbnf(x,-65000);
-#else
- if ( fn > (float)32000.0) return scalbnf(x, 32000);
- if (-fn > (float)32000.0) return scalbnf(x,-32000);
-#endif
- return scalbnf(x,(int)fn);
-#endif
-}
diff --git a/newlib/libm/math/ef_sinh.c b/newlib/libm/math/ef_sinh.c
deleted file mode 100644
index a61b172..0000000
--- a/newlib/libm/math/ef_sinh.c
+++ /dev/null
@@ -1,63 +0,0 @@
-/* ef_sinh.c -- float version of e_sinh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float one = 1.0, shuge = 1.0e37;
-#else
-static float one = 1.0, shuge = 1.0e37;
-#endif
-
-#ifdef __STDC__
- float __ieee754_sinhf(float x)
-#else
- float __ieee754_sinhf(x)
- float x;
-#endif
-{
- float t,w,h;
- __int32_t ix,jx;
-
- GET_FLOAT_WORD(jx,x);
- ix = jx&0x7fffffff;
-
- /* x is INF or NaN */
- if(!FLT_UWORD_IS_FINITE(ix)) return x+x;
-
- h = 0.5;
- if (jx<0) h = -h;
- /* |x| in [0,22], return sign(x)*0.5*(E+E/(E+1))) */
- if (ix < 0x41b00000) { /* |x|<22 */
- if (ix<0x31800000) /* |x|<2**-28 */
- if(shuge+x>one) return x;/* sinh(tiny) = tiny with inexact */
- t = expm1f(fabsf(x));
- if(ix<0x3f800000) return h*((float)2.0*t-t*t/(t+one));
- return h*(t+t/(t+one));
- }
-
- /* |x| in [22, log(maxdouble)] return 0.5*exp(|x|) */
- if (ix<=FLT_UWORD_LOG_MAX) return h*__ieee754_expf(fabsf(x));
-
- /* |x| in [log(maxdouble), overflowthresold] */
- if (ix<=FLT_UWORD_LOG_2MAX) {
- w = __ieee754_expf((float)0.5*fabsf(x));
- t = h*w;
- return t*w;
- }
-
- /* |x| > overflowthresold, sinh(x) overflow */
- return x*shuge;
-}
diff --git a/newlib/libm/math/ef_sqrt.c b/newlib/libm/math/ef_sqrt.c
deleted file mode 100644
index 17dab93..0000000
--- a/newlib/libm/math/ef_sqrt.c
+++ /dev/null
@@ -1,90 +0,0 @@
-/* ef_sqrtf.c -- float version of e_sqrt.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float one = 1.0, tiny=1.0e-30;
-#else
-static float one = 1.0, tiny=1.0e-30;
-#endif
-
-#ifdef __STDC__
- float __ieee754_sqrtf(float x)
-#else
- float __ieee754_sqrtf(x)
- float x;
-#endif
-{
- float z;
- __int32_t sign = (__int32_t)0x80000000;
- __uint32_t r,hx;
- __int32_t ix,s,q,m,t,i;
-
- GET_FLOAT_WORD(ix,x);
- hx = ix&0x7fffffff;
-
- /* take care of Inf and NaN */
- if(!FLT_UWORD_IS_FINITE(hx))
- return x*x+x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf
- sqrt(-inf)=sNaN */
- /* take care of zero and -ves */
- if(FLT_UWORD_IS_ZERO(hx)) return x;/* sqrt(+-0) = +-0 */
- if(ix<0) return (x-x)/(x-x); /* sqrt(-ve) = sNaN */
-
- /* normalize x */
- m = (ix>>23);
- if(FLT_UWORD_IS_SUBNORMAL(hx)) { /* subnormal x */
- for(i=0;(ix&0x00800000L)==0;i++) ix<<=1;
- m -= i-1;
- }
- m -= 127; /* unbias exponent */
- ix = (ix&0x007fffffL)|0x00800000L;
- if(m&1) /* odd m, double x to make it even */
- ix += ix;
- m >>= 1; /* m = [m/2] */
-
- /* generate sqrt(x) bit by bit */
- ix += ix;
- q = s = 0; /* q = sqrt(x) */
- r = 0x01000000L; /* r = moving bit from right to left */
-
- while(r!=0) {
- t = s+r;
- if(t<=ix) {
- s = t+r;
- ix -= t;
- q += r;
- }
- ix += ix;
- r>>=1;
- }
-
- /* use floating add to find out rounding direction */
- if(ix!=0) {
- z = one-tiny; /* trigger inexact flag */
- if (z>=one) {
- z = one+tiny;
- if (z>one)
- q += 2;
- else
- q += (q&1);
- }
- }
- ix = (q>>1)+0x3f000000L;
- ix += (m <<23);
- SET_FLOAT_WORD(z,ix);
- return z;
-}
diff --git a/newlib/libm/math/er_gamma.c b/newlib/libm/math/er_gamma.c
deleted file mode 100644
index a7183c5..0000000
--- a/newlib/libm/math/er_gamma.c
+++ /dev/null
@@ -1,32 +0,0 @@
-
-/* @(#)er_gamma.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_gamma_r(x, signgamp)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method: See __ieee754_lgamma_r
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- double __ieee754_gamma_r(double x, int *signgamp)
-#else
- double __ieee754_gamma_r(x,signgamp)
- double x; int *signgamp;
-#endif
-{
- return __ieee754_lgamma_r(x,signgamp);
-}
diff --git a/newlib/libm/math/er_lgamma.c b/newlib/libm/math/er_lgamma.c
deleted file mode 100644
index 7c9a153..0000000
--- a/newlib/libm/math/er_lgamma.c
+++ /dev/null
@@ -1,309 +0,0 @@
-
-/* @(#)er_lgamma.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_lgamma_r(x, signgamp)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method:
- * 1. Argument Reduction for 0 < x <= 8
- * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
- * reduce x to a number in [1.5,2.5] by
- * lgamma(1+s) = log(s) + lgamma(s)
- * for example,
- * lgamma(7.3) = log(6.3) + lgamma(6.3)
- * = log(6.3*5.3) + lgamma(5.3)
- * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
- * 2. Polynomial approximation of lgamma around its
- * minimun ymin=1.461632144968362245 to maintain monotonicity.
- * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
- * Let z = x-ymin;
- * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
- * where
- * poly(z) is a 14 degree polynomial.
- * 2. Rational approximation in the primary interval [2,3]
- * We use the following approximation:
- * s = x-2.0;
- * lgamma(x) = 0.5*s + s*P(s)/Q(s)
- * with accuracy
- * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
- * Our algorithms are based on the following observation
- *
- * zeta(2)-1 2 zeta(3)-1 3
- * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
- * 2 3
- *
- * where Euler = 0.5771... is the Euler constant, which is very
- * close to 0.5.
- *
- * 3. For x>=8, we have
- * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
- * (better formula:
- * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
- * Let z = 1/x, then we approximation
- * f(z) = lgamma(x) - (x-0.5)(log(x)-1)
- * by
- * 3 5 11
- * w = w0 + w1*z + w2*z + w3*z + ... + w6*z
- * where
- * |w - f(z)| < 2**-58.74
- *
- * 4. For negative x, since (G is gamma function)
- * -x*G(-x)*G(x) = pi/sin(pi*x),
- * we have
- * G(x) = pi/(sin(pi*x)*(-x)*G(-x))
- * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
- * Hence, for x<0, signgam = sign(sin(pi*x)) and
- * lgamma(x) = log(|Gamma(x)|)
- * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
- * Note: one should avoid compute pi*(-x) directly in the
- * computation of sin(pi*(-x)).
- *
- * 5. Special Cases
- * lgamma(2+s) ~ s*(1-Euler) for tiny s
- * lgamma(1)=lgamma(2)=0
- * lgamma(x) ~ -log(x) for tiny x
- * lgamma(0) = lgamma(inf) = inf
- * lgamma(-integer) = +-inf
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-two52= 4.50359962737049600000e+15, /* 0x43300000, 0x00000000 */
-half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
-a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
-a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
-a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
-a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
-a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
-a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
-a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
-a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
-a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
-a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
-a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
-a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
-tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
-tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
-/* tt = -(tail of tf) */
-tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
-t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
-t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
-t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
-t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
-t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
-t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
-t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
-t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
-t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
-t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
-t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
-t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
-t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
-t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
-t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
-u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
-u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
-u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
-u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
-u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
-u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
-v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
-v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
-v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
-v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
-v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
-s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
-s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
-s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
-s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
-s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
-s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
-s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
-r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
-r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
-r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
-r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
-r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
-r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
-w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
-w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
-w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
-w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
-w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
-w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
-w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
-
-#ifdef __STDC__
-static const double zero= 0.00000000000000000000e+00;
-#else
-static double zero= 0.00000000000000000000e+00;
-#endif
-
-#ifdef __STDC__
- static double sin_pi(double x)
-#else
- static double sin_pi(x)
- double x;
-#endif
-{
- double y,z;
- __int32_t n,ix;
-
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff;
-
- if(ix<0x3fd00000) return __kernel_sin(pi*x,zero,0);
- y = -x; /* x is assume negative */
-
- /*
- * argument reduction, make sure inexact flag not raised if input
- * is an integer
- */
- z = floor(y);
- if(z!=y) { /* inexact anyway */
- y *= 0.5;
- y = 2.0*(y - floor(y)); /* y = |x| mod 2.0 */
- n = (__int32_t) (y*4.0);
- } else {
- if(ix>=0x43400000) {
- y = zero; n = 0; /* y must be even */
- } else {
- if(ix<0x43300000) z = y+two52; /* exact */
- GET_LOW_WORD(n,z);
- n &= 1;
- y = n;
- n<<= 2;
- }
- }
- switch (n) {
- case 0: y = __kernel_sin(pi*y,zero,0); break;
- case 1:
- case 2: y = __kernel_cos(pi*(0.5-y),zero); break;
- case 3:
- case 4: y = __kernel_sin(pi*(one-y),zero,0); break;
- case 5:
- case 6: y = -__kernel_cos(pi*(y-1.5),zero); break;
- default: y = __kernel_sin(pi*(y-2.0),zero,0); break;
- }
- return -y;
-}
-
-
-#ifdef __STDC__
- double __ieee754_lgamma_r(double x, int *signgamp)
-#else
- double __ieee754_lgamma_r(x,signgamp)
- double x; int *signgamp;
-#endif
-{
- double t,y,z,nadj,p,p1,p2,p3,q,r,w;
- __int32_t i,hx,lx,ix;
-
- EXTRACT_WORDS(hx,lx,x);
-
- /* purge off +-inf, NaN, +-0, and negative arguments */
- *signgamp = 1;
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) return x*x;
- if((ix|lx)==0) return one/zero;
- if(ix<0x3b900000) { /* |x|<2**-70, return -log(|x|) */
- if(hx<0) {
- *signgamp = -1;
- return -__ieee754_log(-x);
- } else return -__ieee754_log(x);
- }
- if(hx<0) {
- if(ix>=0x43300000) /* |x|>=2**52, must be -integer */
- return one/zero;
- t = sin_pi(x);
- if(t==zero) return one/zero; /* -integer */
- nadj = __ieee754_log(pi/fabs(t*x));
- if(t<zero) *signgamp = -1;
- x = -x;
- }
-
- /* purge off 1 and 2 */
- if((((ix-0x3ff00000)|lx)==0)||(((ix-0x40000000)|lx)==0)) r = 0;
- /* for x < 2.0 */
- else if(ix<0x40000000) {
- if(ix<=0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
- r = -__ieee754_log(x);
- if(ix>=0x3FE76944) {y = one-x; i= 0;}
- else if(ix>=0x3FCDA661) {y= x-(tc-one); i=1;}
- else {y = x; i=2;}
- } else {
- r = zero;
- if(ix>=0x3FFBB4C3) {y=2.0-x;i=0;} /* [1.7316,2] */
- else if(ix>=0x3FF3B4C4) {y=x-tc;i=1;} /* [1.23,1.73] */
- else {y=x-one;i=2;}
- }
- switch(i) {
- case 0:
- z = y*y;
- p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
- p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
- p = y*p1+p2;
- r += (p-0.5*y); break;
- case 1:
- z = y*y;
- w = z*y;
- p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
- p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
- p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
- p = z*p1-(tt-w*(p2+y*p3));
- r += (tf + p); break;
- case 2:
- p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
- p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
- r += (-0.5*y + p1/p2);
- }
- }
- else if(ix<0x40200000) { /* x < 8.0 */
- i = (__int32_t)x;
- t = zero;
- y = x-(double)i;
- p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
- q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
- r = half*y+p/q;
- z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
- switch(i) {
- case 7: z *= (y+6.0); /* FALLTHRU */
- case 6: z *= (y+5.0); /* FALLTHRU */
- case 5: z *= (y+4.0); /* FALLTHRU */
- case 4: z *= (y+3.0); /* FALLTHRU */
- case 3: z *= (y+2.0); /* FALLTHRU */
- r += __ieee754_log(z); break;
- }
- /* 8.0 <= x < 2**58 */
- } else if (ix < 0x43900000) {
- t = __ieee754_log(x);
- z = one/x;
- y = z*z;
- w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
- r = (x-half)*(t-one)+w;
- } else
- /* 2**58 <= x <= inf */
- r = x*(__ieee754_log(x)-one);
- if(hx<0) r = nadj - r;
- return r;
-}
diff --git a/newlib/libm/math/erf_gamma.c b/newlib/libm/math/erf_gamma.c
deleted file mode 100644
index c619dfb..0000000
--- a/newlib/libm/math/erf_gamma.c
+++ /dev/null
@@ -1,34 +0,0 @@
-/* erf_gamma.c -- float version of er_gamma.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* __ieee754_gammaf_r(x, signgamp)
- * Reentrant version of the logarithm of the Gamma function
- * with user provide pointer for the sign of Gamma(x).
- *
- * Method: See __ieee754_lgammaf_r
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- float __ieee754_gammaf_r(float x, int *signgamp)
-#else
- float __ieee754_gammaf_r(x,signgamp)
- float x; int *signgamp;
-#endif
-{
- return __ieee754_lgammaf_r(x,signgamp);
-}
diff --git a/newlib/libm/math/erf_lgamma.c b/newlib/libm/math/erf_lgamma.c
deleted file mode 100644
index 90cc542..0000000
--- a/newlib/libm/math/erf_lgamma.c
+++ /dev/null
@@ -1,244 +0,0 @@
-/* erf_lgamma.c -- float version of er_lgamma.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-two23= 8.3886080000e+06, /* 0x4b000000 */
-half= 5.0000000000e-01, /* 0x3f000000 */
-one = 1.0000000000e+00, /* 0x3f800000 */
-pi = 3.1415927410e+00, /* 0x40490fdb */
-a0 = 7.7215664089e-02, /* 0x3d9e233f */
-a1 = 3.2246702909e-01, /* 0x3ea51a66 */
-a2 = 6.7352302372e-02, /* 0x3d89f001 */
-a3 = 2.0580807701e-02, /* 0x3ca89915 */
-a4 = 7.3855509982e-03, /* 0x3bf2027e */
-a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
-a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
-a7 = 5.1006977446e-04, /* 0x3a05b634 */
-a8 = 2.2086278477e-04, /* 0x39679767 */
-a9 = 1.0801156895e-04, /* 0x38e28445 */
-a10 = 2.5214456400e-05, /* 0x37d383a2 */
-a11 = 4.4864096708e-05, /* 0x383c2c75 */
-tc = 1.4616321325e+00, /* 0x3fbb16c3 */
-tf = -1.2148628384e-01, /* 0xbdf8cdcd */
-/* tt = -(tail of tf) */
-tt = 6.6971006518e-09, /* 0x31e61c52 */
-t0 = 4.8383611441e-01, /* 0x3ef7b95e */
-t1 = -1.4758771658e-01, /* 0xbe17213c */
-t2 = 6.4624942839e-02, /* 0x3d845a15 */
-t3 = -3.2788541168e-02, /* 0xbd064d47 */
-t4 = 1.7970675603e-02, /* 0x3c93373d */
-t5 = -1.0314224288e-02, /* 0xbc28fcfe */
-t6 = 6.1005386524e-03, /* 0x3bc7e707 */
-t7 = -3.6845202558e-03, /* 0xbb7177fe */
-t8 = 2.2596477065e-03, /* 0x3b141699 */
-t9 = -1.4034647029e-03, /* 0xbab7f476 */
-t10 = 8.8108185446e-04, /* 0x3a66f867 */
-t11 = -5.3859531181e-04, /* 0xba0d3085 */
-t12 = 3.1563205994e-04, /* 0x39a57b6b */
-t13 = -3.1275415677e-04, /* 0xb9a3f927 */
-t14 = 3.3552918467e-04, /* 0x39afe9f7 */
-u0 = -7.7215664089e-02, /* 0xbd9e233f */
-u1 = 6.3282704353e-01, /* 0x3f2200f4 */
-u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
-u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
-u4 = 2.2896373272e-01, /* 0x3e6a7578 */
-u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
-v1 = 2.4559779167e+00, /* 0x401d2ebe */
-v2 = 2.1284897327e+00, /* 0x4008392d */
-v3 = 7.6928514242e-01, /* 0x3f44efdf */
-v4 = 1.0422264785e-01, /* 0x3dd572af */
-v5 = 3.2170924824e-03, /* 0x3b52d5db */
-s0 = -7.7215664089e-02, /* 0xbd9e233f */
-s1 = 2.1498242021e-01, /* 0x3e5c245a */
-s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
-s3 = 1.4635047317e-01, /* 0x3e15dce6 */
-s4 = 2.6642270386e-02, /* 0x3cda40e4 */
-s5 = 1.8402845599e-03, /* 0x3af135b4 */
-s6 = 3.1947532989e-05, /* 0x3805ff67 */
-r1 = 1.3920053244e+00, /* 0x3fb22d3b */
-r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
-r3 = 1.7193385959e-01, /* 0x3e300f6e */
-r4 = 1.8645919859e-02, /* 0x3c98bf54 */
-r5 = 7.7794247773e-04, /* 0x3a4beed6 */
-r6 = 7.3266842264e-06, /* 0x36f5d7bd */
-w0 = 4.1893854737e-01, /* 0x3ed67f1d */
-w1 = 8.3333335817e-02, /* 0x3daaaaab */
-w2 = -2.7777778450e-03, /* 0xbb360b61 */
-w3 = 7.9365057172e-04, /* 0x3a500cfd */
-w4 = -5.9518753551e-04, /* 0xba1c065c */
-w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
-w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
-
-#ifdef __STDC__
-static const float zero= 0.0000000000e+00;
-#else
-static float zero= 0.0000000000e+00;
-#endif
-
-#ifdef __STDC__
- static float sin_pif(float x)
-#else
- static float sin_pif(x)
- float x;
-#endif
-{
- float y,z;
- __int32_t n,ix;
-
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
-
- if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
- y = -x; /* x is assume negative */
-
- /*
- * argument reduction, make sure inexact flag not raised if input
- * is an integer
- */
- z = floorf(y);
- if(z!=y) { /* inexact anyway */
- y *= (float)0.5;
- y = (float)2.0*(y - floorf(y)); /* y = |x| mod 2.0 */
- n = (__int32_t) (y*(float)4.0);
- } else {
- if(ix>=0x4b800000) {
- y = zero; n = 0; /* y must be even */
- } else {
- if(ix<0x4b000000) z = y+two23; /* exact */
- GET_FLOAT_WORD(n,z);
- n &= 1;
- y = n;
- n<<= 2;
- }
- }
- switch (n) {
- case 0: y = __kernel_sinf(pi*y,zero,0); break;
- case 1:
- case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
- case 3:
- case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
- case 5:
- case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
- default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
- }
- return -y;
-}
-
-
-#ifdef __STDC__
- float __ieee754_lgammaf_r(float x, int *signgamp)
-#else
- float __ieee754_lgammaf_r(x,signgamp)
- float x; int *signgamp;
-#endif
-{
- float t,y,z,nadj,p,p1,p2,p3,q,r,w;
- __int32_t i,hx,ix;
-
- GET_FLOAT_WORD(hx,x);
-
- /* purge off +-inf, NaN, +-0, and negative arguments */
- *signgamp = 1;
- ix = hx&0x7fffffff;
- if(ix>=0x7f800000) return x*x;
- if(ix==0) return one/zero;
- if(ix<0x1c800000) { /* |x|<2**-70, return -log(|x|) */
- if(hx<0) {
- *signgamp = -1;
- return -__ieee754_logf(-x);
- } else return -__ieee754_logf(x);
- }
- if(hx<0) {
- if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
- return one/zero;
- t = sin_pif(x);
- if(t==zero) return one/zero; /* -integer */
- nadj = __ieee754_logf(pi/fabsf(t*x));
- if(t<zero) *signgamp = -1;
- x = -x;
- }
-
- /* purge off 1 and 2 */
- if (ix==0x3f800000||ix==0x40000000) r = 0;
- /* for x < 2.0 */
- else if(ix<0x40000000) {
- if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
- r = -__ieee754_logf(x);
- if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
- else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
- else {y = x; i=2;}
- } else {
- r = zero;
- if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
- else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
- else {y=x-one;i=2;}
- }
- switch(i) {
- case 0:
- z = y*y;
- p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
- p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
- p = y*p1+p2;
- r += (p-(float)0.5*y); break;
- case 1:
- z = y*y;
- w = z*y;
- p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
- p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
- p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
- p = z*p1-(tt-w*(p2+y*p3));
- r += (tf + p); break;
- case 2:
- p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
- p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
- r += (-(float)0.5*y + p1/p2);
- }
- }
- else if(ix<0x41000000) { /* x < 8.0 */
- i = (__int32_t)x;
- t = zero;
- y = x-(float)i;
- p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
- q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
- r = half*y+p/q;
- z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
- switch(i) {
- case 7: z *= (y+(float)6.0); /* FALLTHRU */
- case 6: z *= (y+(float)5.0); /* FALLTHRU */
- case 5: z *= (y+(float)4.0); /* FALLTHRU */
- case 4: z *= (y+(float)3.0); /* FALLTHRU */
- case 3: z *= (y+(float)2.0); /* FALLTHRU */
- r += __ieee754_logf(z); break;
- }
- /* 8.0 <= x < 2**58 */
- } else if (ix < 0x5c800000) {
- t = __ieee754_logf(x);
- z = one/x;
- y = z*z;
- w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
- r = (x-half)*(t-one)+w;
- } else
- /* 2**58 <= x <= inf */
- r = x*(__ieee754_logf(x)-one);
- if(hx<0) r = nadj - r;
- return r;
-}
diff --git a/newlib/libm/math/k_cos.c b/newlib/libm/math/k_cos.c
deleted file mode 100644
index 6c60c24..0000000
--- a/newlib/libm/math/k_cos.c
+++ /dev/null
@@ -1,96 +0,0 @@
-
-/* @(#)k_cos.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __kernel_cos( x, y )
- * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- *
- * Algorithm
- * 1. Since cos(-x) = cos(x), we need only to consider positive x.
- * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
- * 3. cos(x) is approximated by a polynomial of degree 14 on
- * [0,pi/4]
- * 4 14
- * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
- * where the remez error is
- *
- * | 2 4 6 8 10 12 14 | -58
- * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2
- * | |
- *
- * 4 6 8 10 12 14
- * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then
- * cos(x) = 1 - x*x/2 + r
- * since cos(x+y) ~ cos(x) - sin(x)*y
- * ~ cos(x) - x*y,
- * a correction term is necessary in cos(x) and hence
- * cos(x+y) = 1 - (x*x/2 - (r - x*y))
- * For better accuracy when x > 0.3, let qx = |x|/4 with
- * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
- * Then
- * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
- * Note that 1-qx and (x*x/2-qx) is EXACT here, and the
- * magnitude of the latter is at least a quarter of x*x/2,
- * thus, reducing the rounding error in the subtraction.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
-C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
-C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
-C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
-C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
-C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
-
-#ifdef __STDC__
- double __kernel_cos(double x, double y)
-#else
- double __kernel_cos(x, y)
- double x,y;
-#endif
-{
- double a,hz,z,r,qx;
- __int32_t ix;
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff; /* ix = |x|'s high word*/
- if(ix<0x3e400000) { /* if x < 2**27 */
- if(((int)x)==0) return one; /* generate inexact */
- }
- z = x*x;
- r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
- if(ix < 0x3FD33333) /* if |x| < 0.3 */
- return one - (0.5*z - (z*r - x*y));
- else {
- if(ix > 0x3fe90000) { /* x > 0.78125 */
- qx = 0.28125;
- } else {
- INSERT_WORDS(qx,ix-0x00200000,0); /* x/4 */
- }
- hz = 0.5*z-qx;
- a = one-qx;
- return a - (hz - (z*r-x*y));
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/k_rem_pio2.c b/newlib/libm/math/k_rem_pio2.c
deleted file mode 100644
index 8569256..0000000
--- a/newlib/libm/math/k_rem_pio2.c
+++ /dev/null
@@ -1,320 +0,0 @@
-
-/* @(#)k_rem_pio2.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
- * double x[],y[]; int e0,nx,prec; int ipio2[];
- *
- * __kernel_rem_pio2 return the last three digits of N with
- * y = x - N*pi/2
- * so that |y| < pi/2.
- *
- * The method is to compute the integer (mod 8) and fraction parts of
- * (2/pi)*x without doing the full multiplication. In general we
- * skip the part of the product that are known to be a huge integer (
- * more accurately, = 0 mod 8 ). Thus the number of operations are
- * independent of the exponent of the input.
- *
- * (2/pi) is represented by an array of 24-bit integers in ipio2[].
- *
- * Input parameters:
- * x[] The input value (must be positive) is broken into nx
- * pieces of 24-bit integers in double precision format.
- * x[i] will be the i-th 24 bit of x. The scaled exponent
- * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
- * match x's up to 24 bits.
- *
- * Example of breaking a double positive z into x[0]+x[1]+x[2]:
- * e0 = ilogb(z)-23
- * z = scalbn(z,-e0)
- * for i = 0,1,2
- * x[i] = floor(z)
- * z = (z-x[i])*2**24
- *
- *
- * y[] ouput result in an array of double precision numbers.
- * The dimension of y[] is:
- * 24-bit precision 1
- * 53-bit precision 2
- * 64-bit precision 2
- * 113-bit precision 3
- * The actual value is the sum of them. Thus for 113-bit
- * precison, one may have to do something like:
- *
- * long double t,w,r_head, r_tail;
- * t = (long double)y[2] + (long double)y[1];
- * w = (long double)y[0];
- * r_head = t+w;
- * r_tail = w - (r_head - t);
- *
- * e0 The exponent of x[0]
- *
- * nx dimension of x[]
- *
- * prec an integer indicating the precision:
- * 0 24 bits (single)
- * 1 53 bits (double)
- * 2 64 bits (extended)
- * 3 113 bits (quad)
- *
- * ipio2[]
- * integer array, contains the (24*i)-th to (24*i+23)-th
- * bit of 2/pi after binary point. The corresponding
- * floating value is
- *
- * ipio2[i] * 2^(-24(i+1)).
- *
- * External function:
- * double scalbn(), floor();
- *
- *
- * Here is the description of some local variables:
- *
- * jk jk+1 is the initial number of terms of ipio2[] needed
- * in the computation. The recommended value is 2,3,4,
- * 6 for single, double, extended,and quad.
- *
- * jz local integer variable indicating the number of
- * terms of ipio2[] used.
- *
- * jx nx - 1
- *
- * jv index for pointing to the suitable ipio2[] for the
- * computation. In general, we want
- * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
- * is an integer. Thus
- * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
- * Hence jv = max(0,(e0-3)/24).
- *
- * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
- *
- * q[] double array with integral value, representing the
- * 24-bits chunk of the product of x and 2/pi.
- *
- * q0 the corresponding exponent of q[0]. Note that the
- * exponent for q[i] would be q0-24*i.
- *
- * PIo2[] double precision array, obtained by cutting pi/2
- * into 24 bits chunks.
- *
- * f[] ipio2[] in floating point
- *
- * iq[] integer array by breaking up q[] in 24-bits chunk.
- *
- * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
- *
- * ih integer. If >0 it indicates q[] is >= 0.5, hence
- * it also indicates the *sign* of the result.
- *
- */
-
-
-/*
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const int init_jk[] = {2,3,4,6}; /* initial value for jk */
-#else
-static int init_jk[] = {2,3,4,6};
-#endif
-
-#ifdef __STDC__
-static const double PIo2[] = {
-#else
-static double PIo2[] = {
-#endif
- 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
- 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
- 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
- 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
- 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
- 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
- 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
- 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
-};
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-zero = 0.0,
-one = 1.0,
-two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
-twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
-
-#ifdef __STDC__
- int __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, const __int32_t *ipio2)
-#else
- int __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
- double x[], y[]; int e0,nx,prec; __int32_t ipio2[];
-#endif
-{
- __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
- double z,fw,f[20],fq[20],q[20];
-
- /* initialize jk*/
- jk = init_jk[prec];
- jp = jk;
-
- /* determine jx,jv,q0, note that 3>q0 */
- jx = nx-1;
- jv = (e0-3)/24; if(jv<0) jv=0;
- q0 = e0-24*(jv+1);
-
- /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
- j = jv-jx; m = jx+jk;
- for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (double) ipio2[j];
-
- /* compute q[0],q[1],...q[jk] */
- for (i=0;i<=jk;i++) {
- for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
- }
-
- jz = jk;
-recompute:
- /* distill q[] into iq[] reversingly */
- for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
- fw = (double)((__int32_t)(twon24* z));
- iq[i] = (__int32_t)(z-two24*fw);
- z = q[j-1]+fw;
- }
-
- /* compute n */
- z = scalbn(z,(int)q0); /* actual value of z */
- z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
- n = (__int32_t) z;
- z -= (double)n;
- ih = 0;
- if(q0>0) { /* need iq[jz-1] to determine n */
- i = (iq[jz-1]>>(24-q0)); n += i;
- iq[jz-1] -= i<<(24-q0);
- ih = iq[jz-1]>>(23-q0);
- }
- else if(q0==0) ih = iq[jz-1]>>23;
- else if(z>=0.5) ih=2;
-
- if(ih>0) { /* q > 0.5 */
- n += 1; carry = 0;
- for(i=0;i<jz ;i++) { /* compute 1-q */
- j = iq[i];
- if(carry==0) {
- if(j!=0) {
- carry = 1; iq[i] = 0x1000000- j;
- }
- } else iq[i] = 0xffffff - j;
- }
- if(q0>0) { /* rare case: chance is 1 in 12 */
- switch(q0) {
- case 1:
- iq[jz-1] &= 0x7fffff; break;
- case 2:
- iq[jz-1] &= 0x3fffff; break;
- }
- }
- if(ih==2) {
- z = one - z;
- if(carry!=0) z -= scalbn(one,(int)q0);
- }
- }
-
- /* check if recomputation is needed */
- if(z==zero) {
- j = 0;
- for (i=jz-1;i>=jk;i--) j |= iq[i];
- if(j==0) { /* need recomputation */
- for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
-
- for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
- f[jx+i] = (double) ipio2[jv+i];
- for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
- q[i] = fw;
- }
- jz += k;
- goto recompute;
- }
- }
-
- /* chop off zero terms */
- if(z==0.0) {
- jz -= 1; q0 -= 24;
- while(iq[jz]==0) { jz--; q0-=24;}
- } else { /* break z into 24-bit if necessary */
- z = scalbn(z,-(int)q0);
- if(z>=two24) {
- fw = (double)((__int32_t)(twon24*z));
- iq[jz] = (__int32_t)(z-two24*fw);
- jz += 1; q0 += 24;
- iq[jz] = (__int32_t) fw;
- } else iq[jz] = (__int32_t) z ;
- }
-
- /* convert integer "bit" chunk to floating-point value */
- fw = scalbn(one,(int)q0);
- for(i=jz;i>=0;i--) {
- q[i] = fw*(double)iq[i]; fw*=twon24;
- }
-
- /* compute PIo2[0,...,jp]*q[jz,...,0] */
- for(i=jz;i>=0;i--) {
- for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
- fq[jz-i] = fw;
- }
-
- /* compress fq[] into y[] */
- switch(prec) {
- case 0:
- fw = 0.0;
- for (i=jz;i>=0;i--) fw += fq[i];
- y[0] = (ih==0)? fw: -fw;
- break;
- case 1:
- case 2:
- fw = 0.0;
- for (i=jz;i>=0;i--) fw += fq[i];
- y[0] = (ih==0)? fw: -fw;
- fw = fq[0]-fw;
- for (i=1;i<=jz;i++) fw += fq[i];
- y[1] = (ih==0)? fw: -fw;
- break;
- case 3: /* painful */
- for (i=jz;i>0;i--) {
- fw = fq[i-1]+fq[i];
- fq[i] += fq[i-1]-fw;
- fq[i-1] = fw;
- }
- for (i=jz;i>1;i--) {
- fw = fq[i-1]+fq[i];
- fq[i] += fq[i-1]-fw;
- fq[i-1] = fw;
- }
- for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
- if(ih==0) {
- y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
- } else {
- y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
- }
- }
- return n&7;
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/k_sin.c b/newlib/libm/math/k_sin.c
deleted file mode 100644
index f119916..0000000
--- a/newlib/libm/math/k_sin.c
+++ /dev/null
@@ -1,79 +0,0 @@
-
-/* @(#)k_sin.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __kernel_sin( x, y, iy)
- * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
- *
- * Algorithm
- * 1. Since sin(-x) = -sin(x), we need only to consider positive x.
- * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
- * 3. sin(x) is approximated by a polynomial of degree 13 on
- * [0,pi/4]
- * 3 13
- * sin(x) ~ x + S1*x + ... + S6*x
- * where
- *
- * |sin(x) 2 4 6 8 10 12 | -58
- * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2
- * | x |
- *
- * 4. sin(x+y) = sin(x) + sin'(x')*y
- * ~ sin(x) + (1-x*x/2)*y
- * For better accuracy, let
- * 3 2 2 2 2
- * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
- * then 3 2
- * sin(x) = x + (S1*x + (x *(r-y/2)+y))
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
-S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
-S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
-S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
-S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
-S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
-
-#ifdef __STDC__
- double __kernel_sin(double x, double y, int iy)
-#else
- double __kernel_sin(x, y, iy)
- double x,y; int iy; /* iy=0 if y is zero */
-#endif
-{
- double z,r,v;
- __int32_t ix;
- GET_HIGH_WORD(ix,x);
- ix &= 0x7fffffff; /* high word of x */
- if(ix<0x3e400000) /* |x| < 2**-27 */
- {if((int)x==0) return x;} /* generate inexact */
- z = x*x;
- v = z*x;
- r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
- if(iy==0) return x+v*(S1+z*r);
- else return x-((z*(half*y-v*r)-y)-v*S1);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/k_standard.c b/newlib/libm/math/k_standard.c
deleted file mode 100644
index 0d72f1a..0000000
--- a/newlib/libm/math/k_standard.c
+++ /dev/null
@@ -1,784 +0,0 @@
-
-/* @(#)k_standard.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _USE_WRITE
-#include <stdio.h> /* fputs(), stderr */
-#define WRITE2(u,v) fputs(u, stderr)
-#else /* !defined(_USE_WRITE) */
-#include <unistd.h> /* write */
-#define WRITE2(u,v) write(2, u, v)
-#undef fflush
-#endif /* !defined(_USE_WRITE) */
-
-#ifdef __STDC__
-static const double zero = 0.0; /* used as const */
-#else
-static double zero = 0.0; /* used as const */
-#endif
-
-/*
- * Standard conformance (non-IEEE) on exception cases.
- * Mapping:
- * 1 -- acos(|x|>1)
- * 2 -- asin(|x|>1)
- * 3 -- atan2(+-0,+-0)
- * 4 -- hypot overflow
- * 5 -- cosh overflow
- * 6 -- exp overflow
- * 7 -- exp underflow
- * 8 -- y0(0)
- * 9 -- y0(-ve)
- * 10-- y1(0)
- * 11-- y1(-ve)
- * 12-- yn(0)
- * 13-- yn(-ve)
- * 14-- lgamma(finite) overflow
- * 15-- lgamma(-integer)
- * 16-- log(0)
- * 17-- log(x<0)
- * 18-- log10(0)
- * 19-- log10(x<0)
- * 20-- pow(0.0,0.0)
- * 21-- pow(x,y) overflow
- * 22-- pow(x,y) underflow
- * 23-- pow(0,negative)
- * 24-- pow(neg,non-integral)
- * 25-- sinh(finite) overflow
- * 26-- sqrt(negative)
- * 27-- fmod(x,0)
- * 28-- remainder(x,0)
- * 29-- acosh(x<1)
- * 30-- atanh(|x|>1)
- * 31-- atanh(|x|=1)
- * 32-- scalb overflow
- * 33-- scalb underflow
- * 34-- j0(|x|>X_TLOSS)
- * 35-- y0(x>X_TLOSS)
- * 36-- j1(|x|>X_TLOSS)
- * 37-- y1(x>X_TLOSS)
- * 38-- jn(|x|>X_TLOSS, n)
- * 39-- yn(x>X_TLOSS, n)
- * 40-- gamma(finite) overflow
- * 41-- gamma(-integer)
- * 42-- pow(NaN,0.0)
- */
-
-
-#ifdef __STDC__
- double __kernel_standard(double x, double y, int type)
-#else
- double __kernel_standard(x,y,type)
- double x,y; int type;
-#endif
-{
- struct exception exc;
-#ifndef HUGE_VAL /* this is the only routine that uses HUGE_VAL */
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
-
-#ifdef _USE_WRITE
- /* (void) fflush(_stdout_r(p)); */
-#endif
- exc.arg1 = x;
- exc.arg2 = y;
- exc.err = 0;
- switch(type) {
- case 1:
- case 101:
- /* acos(|x|>1) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "acos" : "acosf";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if(_LIB_VERSION == _SVID_) {
- (void) WRITE2("acos: DOMAIN error\n", 19);
- } */
- errno = EDOM;
- }
- break;
- case 2:
- case 102:
- /* asin(|x|>1) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "asin" : "asinf";
- exc.retval = zero;
- if(_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if(_LIB_VERSION == _SVID_) {
- (void) WRITE2("asin: DOMAIN error\n", 19);
- } */
- errno = EDOM;
- }
- break;
- case 3:
- case 103:
- /* atan2(+-0,+-0) */
- exc.arg1 = y;
- exc.arg2 = x;
- exc.type = DOMAIN;
- exc.name = type < 100 ? "atan2" : "atan2f";
- exc.retval = zero;
- if(_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if(_LIB_VERSION == _SVID_) {
- (void) WRITE2("atan2: DOMAIN error\n", 20);
- } */
- errno = EDOM;
- }
- break;
- case 4:
- case 104:
- /* hypot(finite,finite) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "hypot" : "hypotf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 5:
- case 105:
- /* cosh(finite) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "cosh" : "coshf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 6:
- case 106:
- /* exp(finite) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "exp" : "expf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 7:
- case 107:
- /* exp(finite) underflow */
- exc.type = UNDERFLOW;
- exc.name = type < 100 ? "exp" : "expf";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 8:
- case 108:
- /* y0(0) = -inf */
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = type < 100 ? "y0" : "y0f";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("y0: DOMAIN error\n", 17);
- } */
- errno = EDOM;
- }
- break;
- case 9:
- case 109:
- /* y0(x<0) = NaN */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "y0" : "y0f";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /*if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("y0: DOMAIN error\n", 17);
- } */
- errno = EDOM;
- }
- break;
- case 10:
- case 110:
- /* y1(0) = -inf */
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = type < 100 ? "y1" : "y1f";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("y1: DOMAIN error\n", 17);
- } */
- errno = EDOM;
- }
- break;
- case 11:
- case 111:
- /* y1(x<0) = NaN */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "y1" : "y1f";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("y1: DOMAIN error\n", 17);
- } */
- errno = EDOM;
- }
- break;
- case 12:
- case 112:
- /* yn(n,0) = -inf */
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = type < 100 ? "yn" : "ynf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("yn: DOMAIN error\n", 17);
- } */
- errno = EDOM;
- }
- break;
- case 13:
- case 113:
- /* yn(x<0) = NaN */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "yn" : "ynf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("yn: DOMAIN error\n", 17);
- } */
- errno = EDOM;
- }
- break;
- case 14:
- case 114:
- /* lgamma(finite) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "lgamma" : "lgammaf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 15:
- case 115:
- /* lgamma(-integer) or lgamma(0) */
- exc.type = SING;
- exc.name = type < 100 ? "lgamma" : "lgammaf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("lgamma: SING error\n", 19);
- } */
- errno = EDOM;
- }
- break;
- case 16:
- case 116:
- /* log(0) */
- exc.type = SING;
- exc.name = type < 100 ? "log" : "logf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("log: SING error\n", 16);
- } */
- errno = EDOM;
- }
- break;
- case 17:
- case 117:
- /* log(x<0) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "log" : "logf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("log: DOMAIN error\n", 18);
- } */
- errno = EDOM;
- }
- break;
- case 18:
- case 118:
- /* log10(0) */
- exc.type = SING;
- exc.name = type < 100 ? "log10" : "log10f";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("log10: SING error\n", 18);
- } */
- errno = EDOM;
- }
- break;
- case 19:
- case 119:
- /* log10(x<0) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "log10" : "log10f";
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("log10: DOMAIN error\n", 20);
- } */
- errno = EDOM;
- }
- break;
- case 20:
- case 120:
- /* pow(0.0,0.0) */
- /* error only if _LIB_VERSION == _SVID_ */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "pow" : "powf";
- exc.retval = zero;
- if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
- else if (!matherr(&exc)) {
- /* (void) WRITE2("pow(0,0): DOMAIN error\n", 23); */
- errno = EDOM;
- }
- break;
- case 21:
- case 121:
- /* pow(x,y) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "pow" : "powf";
- if (_LIB_VERSION == _SVID_) {
- exc.retval = HUGE;
- y *= 0.5;
- if(x<zero&&rint(y)!=y) exc.retval = -HUGE;
- } else {
- exc.retval = HUGE_VAL;
- y *= 0.5;
- if(x<zero&&rint(y)!=y) exc.retval = -HUGE_VAL;
- }
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 22:
- case 122:
- /* pow(x,y) underflow */
- exc.type = UNDERFLOW;
- exc.name = type < 100 ? "pow" : "powf";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 23:
- case 123:
- /* 0**neg */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "pow" : "powf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = zero;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("pow(0,neg): DOMAIN error\n", 25);
- } */
- errno = EDOM;
- }
- break;
- case 24:
- case 124:
- /* neg**non-integral */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "pow" : "powf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = zero;
- else
- exc.retval = zero/zero; /* X/Open allow NaN */
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("neg**non-integral: DOMAIN error\n", 32);
- } */
- errno = EDOM;
- }
- break;
- case 25:
- case 125:
- /* sinh(finite) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "sinh" : "sinhf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = ( (x>zero) ? HUGE : -HUGE);
- else
- exc.retval = ( (x>zero) ? HUGE_VAL : -HUGE_VAL);
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 26:
- case 126:
- /* sqrt(x<0) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "sqrt" : "sqrtf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = zero;
- else
- exc.retval = zero/zero;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("sqrt: DOMAIN error\n", 19);
- } */
- errno = EDOM;
- }
- break;
- case 27:
- case 127:
- /* fmod(x,0) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "fmod" : "fmodf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = x;
- else
- exc.retval = zero/zero;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("fmod: DOMAIN error\n", 20);
- } */
- errno = EDOM;
- }
- break;
- case 28:
- case 128:
- /* remainder(x,0) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "remainder" : "remainderf";
- exc.retval = zero/zero;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("remainder: DOMAIN error\n", 24);
- } */
- errno = EDOM;
- }
- break;
- case 29:
- case 129:
- /* acosh(x<1) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "acosh" : "acoshf";
- exc.retval = zero/zero;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("acosh: DOMAIN error\n", 20);
- } */
- errno = EDOM;
- }
- break;
- case 30:
- case 130:
- /* atanh(|x|>1) */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "atanh" : "atanhf";
- exc.retval = zero/zero;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("atanh: DOMAIN error\n", 20);
- } */
- errno = EDOM;
- }
- break;
- case 31:
- case 131:
- /* atanh(|x|=1) */
- exc.type = SING;
- exc.name = type < 100 ? "atanh" : "atanhf";
- exc.retval = x/zero; /* sign(x)*inf */
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("atanh: SING error\n", 18);
- } */
- errno = EDOM;
- }
- break;
- case 32:
- case 132:
- /* scalb overflow; SVID also returns +-HUGE_VAL */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "scalb" : "scalbf";
- exc.retval = x > zero ? HUGE_VAL : -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 33:
- case 133:
- /* scalb underflow */
- exc.type = UNDERFLOW;
- exc.name = type < 100 ? "scalb" : "scalbf";
- exc.retval = copysign(zero,x);
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 34:
- case 134:
- /* j0(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = type < 100 ? "j0" : "j0f";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2(exc.name, 2);
- (void) WRITE2(": TLOSS error\n", 14);
- } */
- errno = ERANGE;
- }
- break;
- case 35:
- case 135:
- /* y0(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = type < 100 ? "y0" : "y0f";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2(exc.name, 2);
- (void) WRITE2(": TLOSS error\n", 14);
- } */
- errno = ERANGE;
- }
- break;
- case 36:
- case 136:
- /* j1(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = type < 100 ? "j1" : "j1f";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2(exc.name, 2);
- (void) WRITE2(": TLOSS error\n", 14);
- } */
- errno = ERANGE;
- }
- break;
- case 37:
- case 137:
- /* y1(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = type < 100 ? "y1" : "y1f";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2(exc.name, 2);
- (void) WRITE2(": TLOSS error\n", 14);
- } */
- errno = ERANGE;
- }
- break;
- case 38:
- case 138:
- /* jn(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = type < 100 ? "jn" : "jnf";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2(exc.name, 2);
- (void) WRITE2(": TLOSS error\n", 14);
- } */
- errno = ERANGE;
- }
- break;
- case 39:
- case 139:
- /* yn(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = type < 100 ? "yn" : "ynf";
- exc.retval = zero;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2(exc.name, 2);
- (void) WRITE2(": TLOSS error\n", 14);
- } */
- errno = ERANGE;
- }
- break;
- case 40:
- case 140:
- /* gamma(finite) overflow */
- exc.type = OVERFLOW;
- exc.name = type < 100 ? "gamma" : "gammaf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- break;
- case 41:
- case 141:
- /* gamma(-integer) or gamma(0) */
- exc.type = SING;
- exc.name = type < 100 ? "gamma" : "gammaf";
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- /* if (_LIB_VERSION == _SVID_) {
- (void) WRITE2("gamma: SING error\n", 18);
- } */
- errno = EDOM;
- }
- break;
- case 42:
- case 142:
- /* pow(NaN,0.0) */
- /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
- exc.type = DOMAIN;
- exc.name = type < 100 ? "pow" : "powf";
- exc.retval = x;
- if (_LIB_VERSION == _IEEE_ ||
- _LIB_VERSION == _POSIX_) exc.retval = 1.0;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- break;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
-}
-
-
diff --git a/newlib/libm/math/k_tan.c b/newlib/libm/math/k_tan.c
deleted file mode 100644
index 9f5b307..0000000
--- a/newlib/libm/math/k_tan.c
+++ /dev/null
@@ -1,132 +0,0 @@
-
-/* @(#)k_tan.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* __kernel_tan( x, y, k )
- * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
- * Input x is assumed to be bounded by ~pi/4 in magnitude.
- * Input y is the tail of x.
- * Input k indicates whether tan (if k=1) or
- * -1/tan (if k= -1) is returned.
- *
- * Algorithm
- * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
- * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
- * 3. tan(x) is approximated by a odd polynomial of degree 27 on
- * [0,0.67434]
- * 3 27
- * tan(x) ~ x + T1*x + ... + T13*x
- * where
- *
- * |tan(x) 2 4 26 | -59.2
- * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
- * | x |
- *
- * Note: tan(x+y) = tan(x) + tan'(x)*y
- * ~ tan(x) + (1+x*x)*y
- * Therefore, for better accuracy in computing tan(x+y), let
- * 3 2 2 2 2
- * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
- * then
- * 3 2
- * tan(x+y) = x + (T1*x + (x *(r+y)+y))
- *
- * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
- * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
- * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-pio4 = 7.85398163397448278999e-01, /* 0x3FE921FB, 0x54442D18 */
-pio4lo= 3.06161699786838301793e-17, /* 0x3C81A626, 0x33145C07 */
-T[] = {
- 3.33333333333334091986e-01, /* 0x3FD55555, 0x55555563 */
- 1.33333333333201242699e-01, /* 0x3FC11111, 0x1110FE7A */
- 5.39682539762260521377e-02, /* 0x3FABA1BA, 0x1BB341FE */
- 2.18694882948595424599e-02, /* 0x3F9664F4, 0x8406D637 */
- 8.86323982359930005737e-03, /* 0x3F8226E3, 0xE96E8493 */
- 3.59207910759131235356e-03, /* 0x3F6D6D22, 0xC9560328 */
- 1.45620945432529025516e-03, /* 0x3F57DBC8, 0xFEE08315 */
- 5.88041240820264096874e-04, /* 0x3F4344D8, 0xF2F26501 */
- 2.46463134818469906812e-04, /* 0x3F3026F7, 0x1A8D1068 */
- 7.81794442939557092300e-05, /* 0x3F147E88, 0xA03792A6 */
- 7.14072491382608190305e-05, /* 0x3F12B80F, 0x32F0A7E9 */
- -1.85586374855275456654e-05, /* 0xBEF375CB, 0xDB605373 */
- 2.59073051863633712884e-05, /* 0x3EFB2A70, 0x74BF7AD4 */
-};
-
-#ifdef __STDC__
- double __kernel_tan(double x, double y, int iy)
-#else
- double __kernel_tan(x, y, iy)
- double x,y; int iy;
-#endif
-{
- double z,r,v,w,s;
- __int32_t ix,hx;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff; /* high word of |x| */
- if(ix<0x3e300000) /* x < 2**-28 */
- {if((int)x==0) { /* generate inexact */
- __uint32_t low;
- GET_LOW_WORD(low,x);
- if(((ix|low)|(iy+1))==0) return one/fabs(x);
- else return (iy==1)? x: -one/x;
- }
- }
- if(ix>=0x3FE59428) { /* |x|>=0.6744 */
- if(hx<0) {x = -x; y = -y;}
- z = pio4-x;
- w = pio4lo-y;
- x = z+w; y = 0.0;
- }
- z = x*x;
- w = z*z;
- /* Break x^5*(T[1]+x^2*T[2]+...) into
- * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
- * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
- */
- r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
- v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
- s = z*x;
- r = y + z*(s*(r+v)+y);
- r += T[0]*s;
- w = x+r;
- if(ix>=0x3FE59428) {
- v = (double)iy;
- return (double)(1-((hx>>30)&2))*(v-2.0*(x-(w*w/(w+v)-r)));
- }
- if(iy==1) return w;
- else { /* if allow error up to 2 ulp,
- simply return -1.0/(x+r) here */
- /* compute -1.0/(x+r) accurately */
- double a,t;
- z = w;
- SET_LOW_WORD(z,0);
- v = r-(z - x); /* z+v = r+x */
- t = a = -1.0/w; /* a = -1.0/w */
- SET_LOW_WORD(t,0);
- s = 1.0+t*z;
- return t+a*(s+t*v);
- }
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/kf_cos.c b/newlib/libm/math/kf_cos.c
deleted file mode 100644
index 4f71af2..0000000
--- a/newlib/libm/math/kf_cos.c
+++ /dev/null
@@ -1,59 +0,0 @@
-/* kf_cos.c -- float version of k_cos.c
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0000000000e+00, /* 0x3f800000 */
-C1 = 4.1666667908e-02, /* 0x3d2aaaab */
-C2 = -1.3888889225e-03, /* 0xbab60b61 */
-C3 = 2.4801587642e-05, /* 0x37d00d01 */
-C4 = -2.7557314297e-07, /* 0xb493f27c */
-C5 = 2.0875723372e-09, /* 0x310f74f6 */
-C6 = -1.1359647598e-11; /* 0xad47d74e */
-
-#ifdef __STDC__
- float __kernel_cosf(float x, float y)
-#else
- float __kernel_cosf(x, y)
- float x,y;
-#endif
-{
- float a,hz,z,r,qx;
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff; /* ix = |x|'s high word*/
- if(ix<0x32000000) { /* if x < 2**27 */
- if(((int)x)==0) return one; /* generate inexact */
- }
- z = x*x;
- r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
- if(ix < 0x3e99999a) /* if |x| < 0.3 */
- return one - ((float)0.5*z - (z*r - x*y));
- else {
- if(ix > 0x3f480000) { /* x > 0.78125 */
- qx = (float)0.28125;
- } else {
- SET_FLOAT_WORD(qx,ix-0x01000000); /* x/4 */
- }
- hz = (float)0.5*z-qx;
- a = one-qx;
- return a - (hz - (z*r-x*y));
- }
-}
diff --git a/newlib/libm/math/kf_rem_pio2.c b/newlib/libm/math/kf_rem_pio2.c
deleted file mode 100644
index 261c481..0000000
--- a/newlib/libm/math/kf_rem_pio2.c
+++ /dev/null
@@ -1,208 +0,0 @@
-/* kf_rem_pio2.c -- float version of k_rem_pio2.c
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-/* In the float version, the input parameter x contains 8 bit
- integers, not 24 bit integers. 113 bit precision is not supported. */
-
-#ifdef __STDC__
-static const int init_jk[] = {4,7,9}; /* initial value for jk */
-#else
-static int init_jk[] = {4,7,9};
-#endif
-
-#ifdef __STDC__
-static const float PIo2[] = {
-#else
-static float PIo2[] = {
-#endif
- 1.5703125000e+00, /* 0x3fc90000 */
- 4.5776367188e-04, /* 0x39f00000 */
- 2.5987625122e-05, /* 0x37da0000 */
- 7.5437128544e-08, /* 0x33a20000 */
- 6.0026650317e-11, /* 0x2e840000 */
- 7.3896444519e-13, /* 0x2b500000 */
- 5.3845816694e-15, /* 0x27c20000 */
- 5.6378512969e-18, /* 0x22d00000 */
- 8.3009228831e-20, /* 0x1fc40000 */
- 3.2756352257e-22, /* 0x1bc60000 */
- 6.3331015649e-25, /* 0x17440000 */
-};
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-zero = 0.0,
-one = 1.0,
-two8 = 2.5600000000e+02, /* 0x43800000 */
-twon8 = 3.9062500000e-03; /* 0x3b800000 */
-
-#ifdef __STDC__
- int __kernel_rem_pio2f(float *x, float *y, int e0, int nx, int prec, const __int32_t *ipio2)
-#else
- int __kernel_rem_pio2f(x,y,e0,nx,prec,ipio2)
- float x[], y[]; int e0,nx,prec; __int32_t ipio2[];
-#endif
-{
- __int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
- float z,fw,f[20],fq[20],q[20];
-
- /* initialize jk*/
- jk = init_jk[prec];
- jp = jk;
-
- /* determine jx,jv,q0, note that 3>q0 */
- jx = nx-1;
- jv = (e0-3)/8; if(jv<0) jv=0;
- q0 = e0-8*(jv+1);
-
- /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
- j = jv-jx; m = jx+jk;
- for(i=0;i<=m;i++,j++) f[i] = (j<0)? zero : (float) ipio2[j];
-
- /* compute q[0],q[1],...q[jk] */
- for (i=0;i<=jk;i++) {
- for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j]; q[i] = fw;
- }
-
- jz = jk;
-recompute:
- /* distill q[] into iq[] reversingly */
- for(i=0,j=jz,z=q[jz];j>0;i++,j--) {
- fw = (float)((__int32_t)(twon8* z));
- iq[i] = (__int32_t)(z-two8*fw);
- z = q[j-1]+fw;
- }
-
- /* compute n */
- z = scalbnf(z,(int)q0); /* actual value of z */
- z -= (float)8.0*floorf(z*(float)0.125); /* trim off integer >= 8 */
- n = (__int32_t) z;
- z -= (float)n;
- ih = 0;
- if(q0>0) { /* need iq[jz-1] to determine n */
- i = (iq[jz-1]>>(8-q0)); n += i;
- iq[jz-1] -= i<<(8-q0);
- ih = iq[jz-1]>>(7-q0);
- }
- else if(q0==0) ih = iq[jz-1]>>8;
- else if(z>=(float)0.5) ih=2;
-
- if(ih>0) { /* q > 0.5 */
- n += 1; carry = 0;
- for(i=0;i<jz ;i++) { /* compute 1-q */
- j = iq[i];
- if(carry==0) {
- if(j!=0) {
- carry = 1; iq[i] = 0x100- j;
- }
- } else iq[i] = 0xff - j;
- }
- if(q0>0) { /* rare case: chance is 1 in 12 */
- switch(q0) {
- case 1:
- iq[jz-1] &= 0x7f; break;
- case 2:
- iq[jz-1] &= 0x3f; break;
- }
- }
- if(ih==2) {
- z = one - z;
- if(carry!=0) z -= scalbnf(one,(int)q0);
- }
- }
-
- /* check if recomputation is needed */
- if(z==zero) {
- j = 0;
- for (i=jz-1;i>=jk;i--) j |= iq[i];
- if(j==0) { /* need recomputation */
- for(k=1;iq[jk-k]==0;k++); /* k = no. of terms needed */
-
- for(i=jz+1;i<=jz+k;i++) { /* add q[jz+1] to q[jz+k] */
- f[jx+i] = (float) ipio2[jv+i];
- for(j=0,fw=0.0;j<=jx;j++) fw += x[j]*f[jx+i-j];
- q[i] = fw;
- }
- jz += k;
- goto recompute;
- }
- }
-
- /* chop off zero terms */
- if(z==(float)0.0) {
- jz -= 1; q0 -= 8;
- while(iq[jz]==0) { jz--; q0-=8;}
- } else { /* break z into 8-bit if necessary */
- z = scalbnf(z,-(int)q0);
- if(z>=two8) {
- fw = (float)((__int32_t)(twon8*z));
- iq[jz] = (__int32_t)(z-two8*fw);
- jz += 1; q0 += 8;
- iq[jz] = (__int32_t) fw;
- } else iq[jz] = (__int32_t) z ;
- }
-
- /* convert integer "bit" chunk to floating-point value */
- fw = scalbnf(one,(int)q0);
- for(i=jz;i>=0;i--) {
- q[i] = fw*(float)iq[i]; fw*=twon8;
- }
-
- /* compute PIo2[0,...,jp]*q[jz,...,0] */
- for(i=jz;i>=0;i--) {
- for(fw=0.0,k=0;k<=jp&&k<=jz-i;k++) fw += PIo2[k]*q[i+k];
- fq[jz-i] = fw;
- }
-
- /* compress fq[] into y[] */
- switch(prec) {
- case 0:
- fw = 0.0;
- for (i=jz;i>=0;i--) fw += fq[i];
- y[0] = (ih==0)? fw: -fw;
- break;
- case 1:
- case 2:
- fw = 0.0;
- for (i=jz;i>=0;i--) fw += fq[i];
- y[0] = (ih==0)? fw: -fw;
- fw = fq[0]-fw;
- for (i=1;i<=jz;i++) fw += fq[i];
- y[1] = (ih==0)? fw: -fw;
- break;
- case 3: /* painful */
- for (i=jz;i>0;i--) {
- fw = fq[i-1]+fq[i];
- fq[i] += fq[i-1]-fw;
- fq[i-1] = fw;
- }
- for (i=jz;i>1;i--) {
- fw = fq[i-1]+fq[i];
- fq[i] += fq[i-1]-fw;
- fq[i-1] = fw;
- }
- for (fw=0.0,i=jz;i>=2;i--) fw += fq[i];
- if(ih==0) {
- y[0] = fq[0]; y[1] = fq[1]; y[2] = fw;
- } else {
- y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
- }
- }
- return n&7;
-}
diff --git a/newlib/libm/math/kf_sin.c b/newlib/libm/math/kf_sin.c
deleted file mode 100644
index e81fa0b..0000000
--- a/newlib/libm/math/kf_sin.c
+++ /dev/null
@@ -1,49 +0,0 @@
-/* kf_sin.c -- float version of k_sin.c
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-half = 5.0000000000e-01,/* 0x3f000000 */
-S1 = -1.6666667163e-01, /* 0xbe2aaaab */
-S2 = 8.3333337680e-03, /* 0x3c088889 */
-S3 = -1.9841270114e-04, /* 0xb9500d01 */
-S4 = 2.7557314297e-06, /* 0x3638ef1b */
-S5 = -2.5050759689e-08, /* 0xb2d72f34 */
-S6 = 1.5896910177e-10; /* 0x2f2ec9d3 */
-
-#ifdef __STDC__
- float __kernel_sinf(float x, float y, int iy)
-#else
- float __kernel_sinf(x, y, iy)
- float x,y; int iy; /* iy=0 if y is zero */
-#endif
-{
- float z,r,v;
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff; /* high word of x */
- if(ix<0x32000000) /* |x| < 2**-27 */
- {if((int)x==0) return x;} /* generate inexact */
- z = x*x;
- v = z*x;
- r = S2+z*(S3+z*(S4+z*(S5+z*S6)));
- if(iy==0) return x+v*(S1+z*r);
- else return x-((z*(half*y-v*r)-y)-v*S1);
-}
diff --git a/newlib/libm/math/kf_tan.c b/newlib/libm/math/kf_tan.c
deleted file mode 100644
index 285d7f6..0000000
--- a/newlib/libm/math/kf_tan.c
+++ /dev/null
@@ -1,96 +0,0 @@
-/* kf_tan.c -- float version of k_tan.c
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0000000000e+00, /* 0x3f800000 */
-pio4 = 7.8539812565e-01, /* 0x3f490fda */
-pio4lo= 3.7748947079e-08, /* 0x33222168 */
-T[] = {
- 3.3333334327e-01, /* 0x3eaaaaab */
- 1.3333334029e-01, /* 0x3e088889 */
- 5.3968254477e-02, /* 0x3d5d0dd1 */
- 2.1869488060e-02, /* 0x3cb327a4 */
- 8.8632395491e-03, /* 0x3c11371f */
- 3.5920790397e-03, /* 0x3b6b6916 */
- 1.4562094584e-03, /* 0x3abede48 */
- 5.8804126456e-04, /* 0x3a1a26c8 */
- 2.4646313977e-04, /* 0x398137b9 */
- 7.8179444245e-05, /* 0x38a3f445 */
- 7.1407252108e-05, /* 0x3895c07a */
- -1.8558637748e-05, /* 0xb79bae5f */
- 2.5907305826e-05, /* 0x37d95384 */
-};
-
-#ifdef __STDC__
- float __kernel_tanf(float x, float y, int iy)
-#else
- float __kernel_tanf(x, y, iy)
- float x,y; int iy;
-#endif
-{
- float z,r,v,w,s;
- __int32_t ix,hx;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff; /* high word of |x| */
- if(ix<0x31800000) /* x < 2**-28 */
- {if((int)x==0) { /* generate inexact */
- if((ix|(iy+1))==0) return one/fabsf(x);
- else return (iy==1)? x: -one/x;
- }
- }
- if(ix>=0x3f2ca140) { /* |x|>=0.6744 */
- if(hx<0) {x = -x; y = -y;}
- z = pio4-x;
- w = pio4lo-y;
- x = z+w; y = 0.0;
- }
- z = x*x;
- w = z*z;
- /* Break x^5*(T[1]+x^2*T[2]+...) into
- * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
- * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
- */
- r = T[1]+w*(T[3]+w*(T[5]+w*(T[7]+w*(T[9]+w*T[11]))));
- v = z*(T[2]+w*(T[4]+w*(T[6]+w*(T[8]+w*(T[10]+w*T[12])))));
- s = z*x;
- r = y + z*(s*(r+v)+y);
- r += T[0]*s;
- w = x+r;
- if(ix>=0x3f2ca140) {
- v = (float)iy;
- return (float)(1-((hx>>30)&2))*(v-(float)2.0*(x-(w*w/(w+v)-r)));
- }
- if(iy==1) return w;
- else { /* if allow error up to 2 ulp,
- simply return -1.0/(x+r) here */
- /* compute -1.0/(x+r) accurately */
- float a,t;
- __int32_t i;
- z = w;
- GET_FLOAT_WORD(i,z);
- SET_FLOAT_WORD(z,i&0xfffff000);
- v = r-(z - x); /* z+v = r+x */
- t = a = -(float)1.0/w; /* a = -1.0/w */
- GET_FLOAT_WORD(i,t);
- SET_FLOAT_WORD(t,i&0xfffff000);
- s = (float)1.0+t*z;
- return t+a*(s+t*v);
- }
-}
diff --git a/newlib/libm/math/math.tex b/newlib/libm/math/math.tex
deleted file mode 100644
index c6035de..0000000
--- a/newlib/libm/math/math.tex
+++ /dev/null
@@ -1,199 +0,0 @@
-@node Math
-@chapter Mathematical Functions (@file{math.h})
-
-This chapter groups a wide variety of mathematical functions. The
-corresponding definitions and declarations are in @file{math.h}.
-Two definitions from @file{math.h} are of particular interest.
-
-@enumerate
-@item
-The representation of infinity as a @code{double} is defined as
-@code{HUGE_VAL}; this number is returned on overflow by many functions.
-
-@item
-The structure @code{exception} is used when you write customized error
-handlers for the mathematical functions. You can customize error
-handling for most of these functions by defining your own version of
-@code{matherr}; see the section on @code{matherr} for details.
-@end enumerate
-
-@cindex system calls
-@cindex support subroutines
-@cindex stubs
-@cindex OS stubs
-Since the error handling code calls @code{fputs}, the mathematical
-subroutines require stubs or minimal implementations for the same list
-of OS subroutines as @code{fputs}: @code{close}, @code{fstat},
-@code{isatty}, @code{lseek}, @code{read}, @code{sbrk}, @code{write}.
-@xref{syscalls,,System Calls, libc.info, The Cygnus C Support Library},
-for a discussion and for sample minimal implementations of these support
-subroutines.
-
-Alternative declarations of the mathematical functions, which exploit
-specific machine capabilities to operate faster---but generally have
-less error checking and may reflect additional limitations on some
-machines---are available when you include @file{fastmath.h} instead of
-@file{math.h}.
-
-@menu
-* version:: Version of library
-* acos:: Arccosine
-* acosh:: Inverse hyperbolic cosine
-* asin:: Arcsine
-* asinh:: Inverse hyperbolic sine
-* atan:: Arctangent
-* atan2:: Arctangent of y/x
-* atanh:: Inverse hyperbolic tangent
-* jN:: Bessel functions (jN, yN)
-* cbrt:: Cube root
-* copysign:: Sign of Y, magnitude of X
-* cosh:: Hyperbolic cosine
-* erf:: Error function (erf, erfc)
-* exp:: Exponential
-* expm1:: Exponential of x, - 1
-* fabs:: Absolute value (magnitude)
-* floor:: Floor and ceiling (floor, ceil)
-* fmod:: Floating-point remainder (modulo)
-* frexp:: Split floating-point number
-* gamma:: Logarithmic gamma function
-* hypot:: Distance from origin
-* ilogb:: Get exponent
-* infinity:: Floating infinity
-* isnan:: Check type of number
-* ldexp:: Load exponent
-* log:: Natural logarithms
-* log10:: Base 10 logarithms
-* log1p:: Log of 1 + X
-* matherr:: Modifiable math error handler
-* modf:: Split fractional and integer parts
-* nan:: Floating Not a Number
-* nextafter:: Get next representable number
-* pow:: X to the power Y
-* remainder:: remainder of X divided by Y
-* scalbn:: scalbn
-* sin:: Sine or cosine (sin, cos)
-* sinh:: Hyperbolic sine
-* sqrt:: Positive square root
-* tan:: Tangent
-* tanh:: Hyperbolic tangent
-@end menu
-
-@page
-@node version
-@section Version of library
-
-There are four different versions of the math library routines: IEEE,
-POSIX, X/Open, or SVID. The version may be selected at runtime by
-setting the global variable @code{_LIB_VERSION}, defined in
-@file{math.h}. It may be set to one of the following constants defined
-in @file{math.h}: @code{_IEEE_}, @code{_POSIX_}, @code{_XOPEN_}, or
-@code{_SVID_}. The @code{_LIB_VERSION} variable is not specific to any
-thread, and changing it will affect all threads.
-
-The versions of the library differ only in how errors are handled.
-
-In IEEE mode, the @code{matherr} function is never called, no warning
-messages are printed, and @code{errno} is never set.
-
-In POSIX mode, @code{errno} is set correctly, but the @code{matherr}
-function is never called and no warning messages are printed.
-
-In X/Open mode, @code{errno} is set correctly, and @code{matherr} is
-called, but warning message are not printed.
-
-In SVID mode, functions which overflow return 3.40282346638528860e+38,
-the maximum single precision floating point value, rather than infinity.
-Also, @code{errno} is set correctly, @code{matherr} is called, and, if
-@code{matherr} returns 0, warning messages are printed for some errors.
-For example, by default @samp{log(-1.0)} writes this message on standard
-error output:
-
-@example
-log: DOMAIN error
-@end example
-
-The library is set to X/Open mode by default.
-
-@page
-@include math/wacos.def
-
-@page
-@include math/wacosh.def
-
-@page
-@include math/wasin.def
-
-@page
-@include math/sasinh.def
-
-@page
-@include math/satan.def
-
-@page
-@include math/watan2.def
-
-@page
-@include math/watanh.def
-
-@page
-@include math/wj0.def
-
-@page
-@include math/wcosh.def
-
-@page
-@include math/serf.def
-
-@page
-@include math/wexp.def
-
-@page
-@include math/sfabs.def
-
-@page
-@include math/sfloor.def
-
-@page
-@include math/wfmod.def
-
-@page
-@include math/sfrexp.def
-
-@page
-@include math/wgamma.def
-
-@page
-@include math/whypot.def
-
-@page
-@include math/sisnan.def
-
-@page
-@include math/sldexp.def
-
-@page
-@include math/wlog.def
-
-@page
-@include math/wlog10.def
-
-@page
-@include math/wpow.def
-
-@page
-@include math/wremainder.def
-
-@page
-@include math/wsqrt.def
-
-@page
-@include math/ssin.def
-
-@page
-@include math/wsinh.def
-
-@page
-@include math/stan.def
-
-@page
-@include math/stanh.def
diff --git a/newlib/libm/math/s_asinh.c b/newlib/libm/math/s_asinh.c
deleted file mode 100644
index 958b71f..0000000
--- a/newlib/libm/math/s_asinh.c
+++ /dev/null
@@ -1,107 +0,0 @@
-
-/* @(#)s_asinh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<asinh>>, <<asinhf>>---inverse hyperbolic sine
-
-INDEX
- asinh
-INDEX
- asinhf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double asinh(double <[x]>);
- float asinhf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double asinh(<[x]>)
- double <[x]>;
-
- float asinhf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
-<<asinh>> calculates the inverse hyperbolic sine of <[x]>.
-<<asinh>> is defined as
-@ifinfo
-. sgn(<[x]>) * log(abs(<[x]>) + sqrt(1+<[x]>*<[x]>))
-@end ifinfo
-@tex
-$$sign(x) \times ln\Bigl(|x| + \sqrt{1+x^2}\Bigr)$$
-@end tex
-
-<<asinhf>> is identical, other than taking and returning floats.
-
-RETURNS
-<<asinh>> and <<asinhf>> return the calculated value.
-
-PORTABILITY
-Neither <<asinh>> nor <<asinhf>> are ANSI C.
-
-*/
-
-/* asinh(x)
- * Method :
- * Based on
- * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
- * we have
- * asinh(x) := x if 1+x*x=1,
- * := sign(x)*(log(x)+ln2)) for large |x|, else
- * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
- * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-ln2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
-huge= 1.00000000000000000000e+300;
-
-#ifdef __STDC__
- double asinh(double x)
-#else
- double asinh(x)
- double x;
-#endif
-{
- double t,w;
- __int32_t hx,ix;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) return x+x; /* x is inf or NaN */
- if(ix< 0x3e300000) { /* |x|<2**-28 */
- if(huge+x>one) return x; /* return x inexact except 0 */
- }
- if(ix>0x41b00000) { /* |x| > 2**28 */
- w = __ieee754_log(fabs(x))+ln2;
- } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
- t = fabs(x);
- w = __ieee754_log(2.0*t+one/(__ieee754_sqrt(x*x+one)+t));
- } else { /* 2.0 > |x| > 2**-28 */
- t = x*x;
- w =log1p(fabs(x)+t/(one+__ieee754_sqrt(one+t)));
- }
- if(hx>0) return w; else return -w;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_atan.c b/newlib/libm/math/s_atan.c
deleted file mode 100644
index b1410ec..0000000
--- a/newlib/libm/math/s_atan.c
+++ /dev/null
@@ -1,181 +0,0 @@
-
-/* @(#)s_atan.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
-FUNCTION
- <<atan>>, <<atanf>>---arc tangent
-
-INDEX
- atan
-INDEX
- atanf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double atan(double <[x]>);
- float atanf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double atan(<[x]>);
- double <[x]>;
-
- float atanf(<[x]>);
- float <[x]>;
-
-DESCRIPTION
-
-<<atan>> computes the inverse tangent (arc tangent) of the input value.
-
-<<atanf>> is identical to <<atan>>, save that it operates on <<floats>>.
-
-RETURNS
-@ifinfo
-<<atan>> returns a value in radians, in the range of -pi/2 to pi/2.
-@end ifinfo
-@tex
-<<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
-@end tex
-
-PORTABILITY
-<<atan>> is ANSI C. <<atanf>> is an extension.
-
-*/
-
-/* atan(x)
- * Method
- * 1. Reduce x to positive by atan(x) = -atan(-x).
- * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
- * is further reduced to one of the following intervals and the
- * arctangent of t is evaluated by the corresponding formula:
- *
- * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
- * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
- * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
- * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
- * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double atanhi[] = {
-#else
-static double atanhi[] = {
-#endif
- 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
- 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
- 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
- 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
-};
-
-#ifdef __STDC__
-static const double atanlo[] = {
-#else
-static double atanlo[] = {
-#endif
- 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
- 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
- 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
- 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
-};
-
-#ifdef __STDC__
-static const double aT[] = {
-#else
-static double aT[] = {
-#endif
- 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
- -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
- 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
- -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
- 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
- -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
- 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
- -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
- 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
- -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
- 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
-};
-
-#ifdef __STDC__
- static const double
-#else
- static double
-#endif
-one = 1.0,
-huge = 1.0e300;
-
-#ifdef __STDC__
- double atan(double x)
-#else
- double atan(x)
- double x;
-#endif
-{
- double w,s1,s2,z;
- __int32_t ix,hx,id;
-
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x44100000) { /* if |x| >= 2^66 */
- __uint32_t low;
- GET_LOW_WORD(low,x);
- if(ix>0x7ff00000||
- (ix==0x7ff00000&&(low!=0)))
- return x+x; /* NaN */
- if(hx>0) return atanhi[3]+atanlo[3];
- else return -atanhi[3]-atanlo[3];
- } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
- if (ix < 0x3e200000) { /* |x| < 2^-29 */
- if(huge+x>one) return x; /* raise inexact */
- }
- id = -1;
- } else {
- x = fabs(x);
- if (ix < 0x3ff30000) { /* |x| < 1.1875 */
- if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
- id = 0; x = (2.0*x-one)/(2.0+x);
- } else { /* 11/16<=|x|< 19/16 */
- id = 1; x = (x-one)/(x+one);
- }
- } else {
- if (ix < 0x40038000) { /* |x| < 2.4375 */
- id = 2; x = (x-1.5)/(one+1.5*x);
- } else { /* 2.4375 <= |x| < 2^66 */
- id = 3; x = -1.0/x;
- }
- }}
- /* end of argument reduction */
- z = x*x;
- w = z*z;
- /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
- s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
- s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
- if (id<0) return x - x*(s1+s2);
- else {
- z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
- return (hx<0)? -z:z;
- }
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_ceil.c b/newlib/libm/math/s_ceil.c
deleted file mode 100644
index 24d6916..0000000
--- a/newlib/libm/math/s_ceil.c
+++ /dev/null
@@ -1,80 +0,0 @@
-
-/* @(#)s_ceil.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * ceil(x)
- * Return x rounded toward -inf to integral value
- * Method:
- * Bit twiddling.
- * Exception:
- * Inexact flag raised if x not equal to ceil(x).
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double huge = 1.0e300;
-#else
-static double huge = 1.0e300;
-#endif
-
-#ifdef __STDC__
- double ceil(double x)
-#else
- double ceil(x)
- double x;
-#endif
-{
- __int32_t i0,i1,j0;
- __uint32_t i,j;
- EXTRACT_WORDS(i0,i1,x);
- j0 = ((i0>>20)&0x7ff)-0x3ff;
- if(j0<20) {
- if(j0<0) { /* raise inexact if x != 0 */
- if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
- if(i0<0) {i0=0x80000000;i1=0;}
- else if((i0|i1)!=0) { i0=0x3ff00000;i1=0;}
- }
- } else {
- i = (0x000fffff)>>j0;
- if(((i0&i)|i1)==0) return x; /* x is integral */
- if(huge+x>0.0) { /* raise inexact flag */
- if(i0>0) i0 += (0x00100000)>>j0;
- i0 &= (~i); i1=0;
- }
- }
- } else if (j0>51) {
- if(j0==0x400) return x+x; /* inf or NaN */
- else return x; /* x is integral */
- } else {
- i = ((__uint32_t)(0xffffffff))>>(j0-20);
- if((i1&i)==0) return x; /* x is integral */
- if(huge+x>0.0) { /* raise inexact flag */
- if(i0>0) {
- if(j0==20) i0+=1;
- else {
- j = i1 + (1<<(52-j0));
- if(j<i1) i0+=1; /* got a carry */
- i1 = j;
- }
- }
- i1 &= (~i);
- }
- }
- INSERT_WORDS(x,i0,i1);
- return x;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_cos.c b/newlib/libm/math/s_cos.c
deleted file mode 100644
index c471233..0000000
--- a/newlib/libm/math/s_cos.c
+++ /dev/null
@@ -1,82 +0,0 @@
-
-/* @(#)s_cos.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/* cos(x)
- * Return cosine function of x.
- *
- * kernel function:
- * __kernel_sin ... sine function on [-pi/4,pi/4]
- * __kernel_cos ... cosine function on [-pi/4,pi/4]
- * __ieee754_rem_pio2 ... argument reduction routine
- *
- * Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
- * in [-pi/4 , +pi/4], and let n = k mod 4.
- * We have
- *
- * n sin(x) cos(x) tan(x)
- * ----------------------------------------------------------
- * 0 S C T
- * 1 C -S -1/T
- * 2 -S -C T
- * 3 -C S -1/T
- * ----------------------------------------------------------
- *
- * Special cases:
- * Let trig be any of sin, cos, or tan.
- * trig(+-INF) is NaN, with signals;
- * trig(NaN) is that NaN;
- *
- * Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double cos(double x)
-#else
- double cos(x)
- double x;
-#endif
-{
- double y[2],z=0.0;
- __int32_t n,ix;
-
- /* High word of x. */
- GET_HIGH_WORD(ix,x);
-
- /* |x| ~< pi/4 */
- ix &= 0x7fffffff;
- if(ix <= 0x3fe921fb) return __kernel_cos(x,z);
-
- /* cos(Inf or NaN) is NaN */
- else if (ix>=0x7ff00000) return x-x;
-
- /* argument reduction needed */
- else {
- n = __ieee754_rem_pio2(x,y);
- switch(n&3) {
- case 0: return __kernel_cos(y[0],y[1]);
- case 1: return -__kernel_sin(y[0],y[1],1);
- case 2: return -__kernel_cos(y[0],y[1]);
- default:
- return __kernel_sin(y[0],y[1],1);
- }
- }
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_erf.c b/newlib/libm/math/s_erf.c
deleted file mode 100644
index 825309d..0000000
--- a/newlib/libm/math/s_erf.c
+++ /dev/null
@@ -1,373 +0,0 @@
-
-/* @(#)s_erf.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<erf>>, <<erff>>, <<erfc>>, <<erfcf>>---error function
-INDEX
- erf
-INDEX
- erff
-INDEX
- erfc
-INDEX
- erfcf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double erf(double <[x]>);
- float erff(float <[x]>);
- double erfc(double <[x]>);
- float erfcf(float <[x]>);
-TRAD_SYNOPSIS
- #include <math.h>
-
- double erf(<[x]>)
- double <[x]>;
-
- float erff(<[x]>)
- float <[x]>;
-
- double erfc(<[x]>)
- double <[x]>;
-
- float erfcf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
- <<erf>> calculates an approximation to the ``error function'',
- which estimates the probability that an observation will fall within
- <[x]> standard deviations of the mean (assuming a normal
- distribution).
- @tex
- The error function is defined as
- $${2\over\sqrt\pi}\times\int_0^x e^{-t^2}dt$$
- @end tex
-
- <<erfc>> calculates the complementary probability; that is,
- <<erfc(<[x]>)>> is <<1 - erf(<[x]>)>>. <<erfc>> is computed directly,
- so that you can use it to avoid the loss of precision that would
- result from subtracting large probabilities (on large <[x]>) from 1.
-
- <<erff>> and <<erfcf>> differ from <<erf>> and <<erfc>> only in the
- argument and result types.
-
-RETURNS
- For positive arguments, <<erf>> and all its variants return a
- probability---a number between 0 and 1.
-
-PORTABILITY
- None of the variants of <<erf>> are ANSI C.
-*/
-
-/* double erf(double x)
- * double erfc(double x)
- * x
- * 2 |\
- * erf(x) = --------- | exp(-t*t)dt
- * sqrt(pi) \|
- * 0
- *
- * erfc(x) = 1-erf(x)
- * Note that
- * erf(-x) = -erf(x)
- * erfc(-x) = 2 - erfc(x)
- *
- * Method:
- * 1. For |x| in [0, 0.84375]
- * erf(x) = x + x*R(x^2)
- * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
- * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
- * where R = P/Q where P is an odd poly of degree 8 and
- * Q is an odd poly of degree 10.
- * -57.90
- * | R - (erf(x)-x)/x | <= 2
- *
- *
- * Remark. The formula is derived by noting
- * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
- * and that
- * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
- * is close to one. The interval is chosen because the fix
- * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
- * near 0.6174), and by some experiment, 0.84375 is chosen to
- * guarantee the error is less than one ulp for erf.
- *
- * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
- * c = 0.84506291151 rounded to single (24 bits)
- * erf(x) = sign(x) * (c + P1(s)/Q1(s))
- * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
- * 1+(c+P1(s)/Q1(s)) if x < 0
- * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
- * Remark: here we use the taylor series expansion at x=1.
- * erf(1+s) = erf(1) + s*Poly(s)
- * = 0.845.. + P1(s)/Q1(s)
- * That is, we use rational approximation to approximate
- * erf(1+s) - (c = (single)0.84506291151)
- * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
- * where
- * P1(s) = degree 6 poly in s
- * Q1(s) = degree 6 poly in s
- *
- * 3. For x in [1.25,1/0.35(~2.857143)],
- * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
- * erf(x) = 1 - erfc(x)
- * where
- * R1(z) = degree 7 poly in z, (z=1/x^2)
- * S1(z) = degree 8 poly in z
- *
- * 4. For x in [1/0.35,28]
- * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
- * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
- * = 2.0 - tiny (if x <= -6)
- * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
- * erf(x) = sign(x)*(1.0 - tiny)
- * where
- * R2(z) = degree 6 poly in z, (z=1/x^2)
- * S2(z) = degree 7 poly in z
- *
- * Note1:
- * To compute exp(-x*x-0.5625+R/S), let s be a single
- * precision number and s := x; then
- * -x*x = -s*s + (s-x)*(s+x)
- * exp(-x*x-0.5626+R/S) =
- * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
- * Note2:
- * Here 4 and 5 make use of the asymptotic series
- * exp(-x*x)
- * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
- * x*sqrt(pi)
- * We use rational approximation to approximate
- * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
- * Here is the error bound for R1/S1 and R2/S2
- * |R1/S1 - f(x)| < 2**(-62.57)
- * |R2/S2 - f(x)| < 2**(-61.52)
- *
- * 5. For inf > x >= 28
- * erf(x) = sign(x) *(1 - tiny) (raise inexact)
- * erfc(x) = tiny*tiny (raise underflow) if x > 0
- * = 2 - tiny if x<0
- *
- * 7. Special case:
- * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
- * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
- * erfc/erf(NaN) is NaN
- */
-
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-tiny = 1e-300,
-half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
-one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
-two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
- /* c = (float)0.84506291151 */
-erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
-/*
- * Coefficients for approximation to erf on [0,0.84375]
- */
-efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
-efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
-pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
-pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
-pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
-pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
-pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
-qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
-qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
-qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
-qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
-qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
-/*
- * Coefficients for approximation to erf in [0.84375,1.25]
- */
-pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
-pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
-pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
-pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
-pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
-pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
-pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
-qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
-qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
-qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
-qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
-qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
-qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
-/*
- * Coefficients for approximation to erfc in [1.25,1/0.35]
- */
-ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
-ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
-ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
-ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
-ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
-ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
-ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
-ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
-sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
-sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
-sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
-sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
-sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
-sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
-sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
-sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
-/*
- * Coefficients for approximation to erfc in [1/.35,28]
- */
-rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
-rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
-rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
-rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
-rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
-rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
-rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
-sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
-sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
-sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
-sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
-sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
-sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
-sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
-
-#ifdef __STDC__
- double erf(double x)
-#else
- double erf(x)
- double x;
-#endif
-{
- __int32_t hx,ix,i;
- double R,S,P,Q,s,y,z,r;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) { /* erf(nan)=nan */
- i = ((__uint32_t)hx>>31)<<1;
- return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
- }
-
- if(ix < 0x3feb0000) { /* |x|<0.84375 */
- if(ix < 0x3e300000) { /* |x|<2**-28 */
- if (ix < 0x00800000)
- return 0.125*(8.0*x+efx8*x); /*avoid underflow */
- return x + efx*x;
- }
- z = x*x;
- r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
- s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
- y = r/s;
- return x + x*y;
- }
- if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
- s = fabs(x)-one;
- P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
- Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
- if(hx>=0) return erx + P/Q; else return -erx - P/Q;
- }
- if (ix >= 0x40180000) { /* inf>|x|>=6 */
- if(hx>=0) return one-tiny; else return tiny-one;
- }
- x = fabs(x);
- s = one/(x*x);
- if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
- R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
- ra5+s*(ra6+s*ra7))))));
- S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
- sa5+s*(sa6+s*(sa7+s*sa8)))))));
- } else { /* |x| >= 1/0.35 */
- R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
- rb5+s*rb6)))));
- S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
- sb5+s*(sb6+s*sb7))))));
- }
- z = x;
- SET_LOW_WORD(z,0);
- r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
- if(hx>=0) return one-r/x; else return r/x-one;
-}
-
-#ifdef __STDC__
- double erfc(double x)
-#else
- double erfc(x)
- double x;
-#endif
-{
- __int32_t hx,ix;
- double R,S,P,Q,s,y,z,r;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x7ff00000) { /* erfc(nan)=nan */
- /* erfc(+-inf)=0,2 */
- return (double)(((__uint32_t)hx>>31)<<1)+one/x;
- }
-
- if(ix < 0x3feb0000) { /* |x|<0.84375 */
- if(ix < 0x3c700000) /* |x|<2**-56 */
- return one-x;
- z = x*x;
- r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
- s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
- y = r/s;
- if(hx < 0x3fd00000) { /* x<1/4 */
- return one-(x+x*y);
- } else {
- r = x*y;
- r += (x-half);
- return half - r ;
- }
- }
- if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
- s = fabs(x)-one;
- P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
- Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
- if(hx>=0) {
- z = one-erx; return z - P/Q;
- } else {
- z = erx+P/Q; return one+z;
- }
- }
- if (ix < 0x403c0000) { /* |x|<28 */
- x = fabs(x);
- s = one/(x*x);
- if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
- R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
- ra5+s*(ra6+s*ra7))))));
- S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
- sa5+s*(sa6+s*(sa7+s*sa8)))))));
- } else { /* |x| >= 1/.35 ~ 2.857143 */
- if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
- R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
- rb5+s*rb6)))));
- S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
- sb5+s*(sb6+s*sb7))))));
- }
- z = x;
- SET_LOW_WORD(z,0);
- r = __ieee754_exp(-z*z-0.5625)*
- __ieee754_exp((z-x)*(z+x)+R/S);
- if(hx>0) return r/x; else return two-r/x;
- } else {
- if(hx>0) return tiny*tiny; else return two-tiny;
- }
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_fabs.c b/newlib/libm/math/s_fabs.c
deleted file mode 100644
index 95b871c..0000000
--- a/newlib/libm/math/s_fabs.c
+++ /dev/null
@@ -1,73 +0,0 @@
-
-/* @(#)s_fabs.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<fabs>>, <<fabsf>>---absolute value (magnitude)
-INDEX
- fabs
-INDEX
- fabsf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double fabs(double <[x]>);
- float fabsf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double fabs(<[x]>)
- double <[x]>;
-
- float fabsf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
-<<fabs>> and <<fabsf>> calculate
-@tex
-$|x|$,
-@end tex
-the absolute value (magnitude) of the argument <[x]>, by direct
-manipulation of the bit representation of <[x]>.
-
-RETURNS
-The calculated value is returned. No errors are detected.
-
-PORTABILITY
-<<fabs>> is ANSI.
-<<fabsf>> is an extension.
-
-*/
-
-/*
- * fabs(x) returns the absolute value of x.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double fabs(double x)
-#else
- double fabs(x)
- double x;
-#endif
-{
- __uint32_t high;
- GET_HIGH_WORD(high,x);
- SET_HIGH_WORD(x,high&0x7fffffff);
- return x;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_floor.c b/newlib/libm/math/s_floor.c
deleted file mode 100644
index 65e234e..0000000
--- a/newlib/libm/math/s_floor.c
+++ /dev/null
@@ -1,134 +0,0 @@
-
-/* @(#)s_floor.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
-<<floor>>, <<floorf>>, <<ceil>>, <<ceilf>>---floor and ceiling
-INDEX
- floor
-INDEX
- floorf
-INDEX
- ceil
-INDEX
- ceilf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double floor(double <[x]>);
- float floorf(float <[x]>);
- double ceil(double <[x]>);
- float ceilf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double floor(<[x]>)
- double <[x]>;
- float floorf(<[x]>)
- float <[x]>;
- double ceil(<[x]>)
- double <[x]>;
- float ceilf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
-<<floor>> and <<floorf>> find
-@tex
-$\lfloor x \rfloor$,
-@end tex
-the nearest integer less than or equal to <[x]>.
-<<ceil>> and <<ceilf>> find
-@tex
-$\lceil x\rceil$,
-@end tex
-the nearest integer greater than or equal to <[x]>.
-
-RETURNS
-<<floor>> and <<ceil>> return the integer result as a double.
-<<floorf>> and <<ceilf>> return the integer result as a float.
-
-PORTABILITY
-<<floor>> and <<ceil>> are ANSI.
-<<floorf>> and <<ceilf>> are extensions.
-
-
-*/
-
-/*
- * floor(x)
- * Return x rounded toward -inf to integral value
- * Method:
- * Bit twiddling.
- * Exception:
- * Inexact flag raised if x not equal to floor(x).
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double huge = 1.0e300;
-#else
-static double huge = 1.0e300;
-#endif
-
-#ifdef __STDC__
- double floor(double x)
-#else
- double floor(x)
- double x;
-#endif
-{
- __int32_t i0,i1,j0;
- __uint32_t i,j;
- EXTRACT_WORDS(i0,i1,x);
- j0 = ((i0>>20)&0x7ff)-0x3ff;
- if(j0<20) {
- if(j0<0) { /* raise inexact if x != 0 */
- if(huge+x>0.0) {/* return 0*sign(x) if |x|<1 */
- if(i0>=0) {i0=i1=0;}
- else if(((i0&0x7fffffff)|i1)!=0)
- { i0=0xbff00000;i1=0;}
- }
- } else {
- i = (0x000fffff)>>j0;
- if(((i0&i)|i1)==0) return x; /* x is integral */
- if(huge+x>0.0) { /* raise inexact flag */
- if(i0<0) i0 += (0x00100000)>>j0;
- i0 &= (~i); i1=0;
- }
- }
- } else if (j0>51) {
- if(j0==0x400) return x+x; /* inf or NaN */
- else return x; /* x is integral */
- } else {
- i = ((__uint32_t)(0xffffffff))>>(j0-20);
- if((i1&i)==0) return x; /* x is integral */
- if(huge+x>0.0) { /* raise inexact flag */
- if(i0<0) {
- if(j0==20) i0+=1;
- else {
- j = i1+(1<<(52-j0));
- if(j<i1) i0 +=1 ; /* got a carry */
- i1=j;
- }
- }
- i1 &= (~i);
- }
- }
- INSERT_WORDS(x,i0,i1);
- return x;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_frexp.c b/newlib/libm/math/s_frexp.c
deleted file mode 100644
index aaa3606..0000000
--- a/newlib/libm/math/s_frexp.c
+++ /dev/null
@@ -1,114 +0,0 @@
-
-/* @(#)s_frexp.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<frexp>>, <<frexpf>>---split floating-point number
-INDEX
- frexp
-INDEX
- frexpf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double frexp(double <[val]>, int *<[exp]>);
- float frexpf(float <[val]>, int *<[exp]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double frexp(<[val]>, <[exp]>)
- double <[val]>;
- int *<[exp]>;
-
- float frexpf(<[val]>, <[exp]>)
- float <[val]>;
- int *<[exp]>;
-
-
-DESCRIPTION
- All non zero, normal numbers can be described as <[m]> * 2**<[p]>.
- <<frexp>> represents the double <[val]> as a mantissa <[m]>
- and a power of two <[p]>. The resulting mantissa will always
- be greater than or equal to <<0.5>>, and less than <<1.0>> (as
- long as <[val]> is nonzero). The power of two will be stored
- in <<*>><[exp]>.
-
-@ifinfo
-<[m]> and <[p]> are calculated so that
-<[val]> is <[m]> times <<2>> to the power <[p]>.
-@end ifinfo
-@tex
-<[m]> and <[p]> are calculated so that
-$ val = m \times 2^p $.
-@end tex
-
-<<frexpf>> is identical, other than taking and returning
-floats rather than doubles.
-
-RETURNS
-<<frexp>> returns the mantissa <[m]>. If <[val]> is <<0>>, infinity,
-or Nan, <<frexp>> will set <<*>><[exp]> to <<0>> and return <[val]>.
-
-PORTABILITY
-<<frexp>> is ANSI.
-<<frexpf>> is an extension.
-
-
-*/
-
-/*
- * for non-zero x
- * x = frexp(arg,&exp);
- * return a double fp quantity x such that 0.5 <= |x| <1.0
- * and the corresponding binary exponent "exp". That is
- * arg = x*2^exp.
- * If arg is inf, 0.0, or NaN, then frexp(arg,&exp) returns arg
- * with *exp=0.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-two54 = 1.80143985094819840000e+16; /* 0x43500000, 0x00000000 */
-
-#ifdef __STDC__
- double frexp(double x, int *eptr)
-#else
- double frexp(x, eptr)
- double x; int *eptr;
-#endif
-{
- __int32_t hx, ix, lx;
- EXTRACT_WORDS(hx,lx,x);
- ix = 0x7fffffff&hx;
- *eptr = 0;
- if(ix>=0x7ff00000||((ix|lx)==0)) return x; /* 0,inf,nan */
- if (ix<0x00100000) { /* subnormal */
- x *= two54;
- GET_HIGH_WORD(hx,x);
- ix = hx&0x7fffffff;
- *eptr = -54;
- }
- *eptr += (ix>>20)-1022;
- hx = (hx&0x800fffff)|0x3fe00000;
- SET_HIGH_WORD(x,hx);
- return x;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_infconst.c b/newlib/libm/math/s_infconst.c
deleted file mode 100644
index 6b63afb..0000000
--- a/newlib/libm/math/s_infconst.c
+++ /dev/null
@@ -1,15 +0,0 @@
-/* Infinity as a constant value. This is used for HUGE_VAL.
- * Added by Cygnus Support.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-#ifdef __IEEE_BIG_ENDIAN
-const union __dmath __infinity[1] = {{{ 0x7ff00000, 0 }}};
-#else
-const union __dmath __infinity[1] = {{{ 0, 0x7ff00000 }}};
-#endif
-#else /* defined (_DOUBLE_IS_32BITS) */
-const union __dmath __infinity[1] = {{{ 0x7f800000, 0 }}};
-#endif /* defined (_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/s_isinf.c b/newlib/libm/math/s_isinf.c
deleted file mode 100644
index 87f0995..0000000
--- a/newlib/libm/math/s_isinf.c
+++ /dev/null
@@ -1,26 +0,0 @@
-/*
- * isinf(x) returns 1 if x is infinity, else 0;
- * no branching!
- * Added by Cygnus Support.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- int isinf(double x)
-#else
- int isinf(x)
- double x;
-#endif
-{
- __int32_t hx,lx;
- EXTRACT_WORDS(hx,lx,x);
- hx &= 0x7fffffff;
- hx |= (__uint32_t)(lx|(-lx))>>31;
- hx = 0x7ff00000 - hx;
- return 1 - (int)((__uint32_t)(hx|(-hx))>>31);
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_isnan.c b/newlib/libm/math/s_isnan.c
deleted file mode 100644
index 5d83fc0..0000000
--- a/newlib/libm/math/s_isnan.c
+++ /dev/null
@@ -1,122 +0,0 @@
-
-/* @(#)s_isnan.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<isnan>>,<<isnanf>>,<<isinf>>,<<isinff>>,<<finite>>,<<finitef>>---test for exceptional numbers
-
-INDEX
- isnan
-INDEX
- isinf
-INDEX
- finite
-
-INDEX
- isnanf
-INDEX
- isinff
-INDEX
- finitef
-
-ANSI_SYNOPSIS
- #include <ieeefp.h>
- int isnan(double <[arg]>);
- int isinf(double <[arg]>);
- int finite(double <[arg]>);
- int isnanf(float <[arg]>);
- int isinff(float <[arg]>);
- int finitef(float <[arg]>);
-
-TRAD_SYNOPSIS
- #include <ieeefp.h>
- int isnan(<[arg]>)
- double <[arg]>;
- int isinf(<[arg]>)
- double <[arg]>;
- int finite(<[arg]>);
- double <[arg]>;
- int isnanf(<[arg]>);
- float <[arg]>;
- int isinff(<[arg]>);
- float <[arg]>;
- int finitef(<[arg]>);
- float <[arg]>;
-
-
-DESCRIPTION
- These functions provide information on the floating point
- argument supplied.
-
- There are five major number formats -
- o+
- o zero
- a number which contains all zero bits.
- o subnormal
- Is used to represent number with a zero exponent, but a non zero fraction.
- o normal
- A number with an exponent, and a fraction
- o infinity
- A number with an all 1's exponent and a zero fraction.
- o NAN
- A number with an all 1's exponent and a non zero fraction.
-
- o-
-
- <<isnan>> returns 1 if the argument is a nan. <<isinf>>
- returns 1 if the argument is infinity. <<finite>> returns 1 if the
- argument is zero, subnormal or normal.
-
- The <<isnanf>>, <<isinff>> and <<finitef>> perform the same
- operations as their <<isnan>>, <<isinf>> and <<finite>>
- counterparts, but on single precision floating point numbers.
-
-QUICKREF
- isnan - pure
-QUICKREF
- isinf - pure
-QUICKREF
- finite - pure
-QUICKREF
- isnan - pure
-QUICKREF
- isinf - pure
-QUICKREF
- finite - pure
-*/
-
-/*
- * isnan(x) returns 1 is x is nan, else 0;
- * no branching!
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- int isnan(double x)
-#else
- int isnan(x)
- double x;
-#endif
-{
- __int32_t hx,lx;
- EXTRACT_WORDS(hx,lx,x);
- hx &= 0x7fffffff;
- hx |= (__uint32_t)(lx|(-lx))>>31;
- hx = 0x7ff00000 - hx;
- return (int)(((__uint32_t)(hx))>>31);
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_ldexp.c b/newlib/libm/math/s_ldexp.c
deleted file mode 100644
index ccf7171..0000000
--- a/newlib/libm/math/s_ldexp.c
+++ /dev/null
@@ -1,81 +0,0 @@
-
-/* @(#)s_ldexp.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<ldexp>>, <<ldexpf>>---load exponent
-
-INDEX
- ldexp
-INDEX
- ldexpf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double ldexp(double <[val]>, int <[exp]>);
- float ldexpf(float <[val]>, int <[exp]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
-
- double ldexp(<[val]>, <[exp]>)
- double <[val]>;
- int <[exp]>;
-
- float ldexpf(<[val]>, <[exp]>)
- float <[val]>;
- int <[exp]>;
-
-
-DESCRIPTION
-<<ldexp>> calculates the value
-@ifinfo
-<[val]> times 2 to the power <[exp]>.
-@end ifinfo
-@tex
-$val\times 2^{exp}$.
-@end tex
-<<ldexpf>> is identical, save that it takes and returns <<float>>
-rather than <<double>> values.
-
-RETURNS
-<<ldexp>> returns the calculated value.
-
-Underflow and overflow both set <<errno>> to <<ERANGE>>.
-On underflow, <<ldexp>> and <<ldexpf>> return 0.0.
-On overflow, <<ldexp>> returns plus or minus <<HUGE_VAL>>.
-
-PORTABILITY
-<<ldexp>> is ANSI, <<ldexpf>> is an extension.
-
-*/
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double ldexp(double value, int exp)
-#else
- double ldexp(value, exp)
- double value; int exp;
-#endif
-{
- if(!finite(value)||value==0.0) return value;
- value = scalbn(value,exp);
- if(!finite(value)||value==0.0) errno = ERANGE;
- return value;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_signif.c b/newlib/libm/math/s_signif.c
deleted file mode 100644
index f68046b..0000000
--- a/newlib/libm/math/s_signif.c
+++ /dev/null
@@ -1,34 +0,0 @@
-
-/* @(#)s_signif.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * significand(x) computes just
- * scalb(x, (double) -ilogb(x)),
- * for exercising the fraction-part(F) IEEE 754-1985 test vector.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double significand(double x)
-#else
- double significand(x)
- double x;
-#endif
-{
- return __ieee754_scalb(x,(double) -ilogb(x));
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_sin.c b/newlib/libm/math/s_sin.c
deleted file mode 100644
index 28259f3..0000000
--- a/newlib/libm/math/s_sin.c
+++ /dev/null
@@ -1,132 +0,0 @@
-
-/* @(#)s_sin.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<sin>>, <<sinf>>, <<cos>>, <<cosf>>---sine or cosine
-INDEX
-sin
-INDEX
-sinf
-INDEX
-cos
-INDEX
-cosf
-ANSI_SYNOPSIS
- #include <math.h>
- double sin(double <[x]>);
- float sinf(float <[x]>);
- double cos(double <[x]>);
- float cosf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double sin(<[x]>)
- double <[x]>;
- float sinf(<[x]>)
- float <[x]>;
-
- double cos(<[x]>)
- double <[x]>;
- float cosf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
- <<sin>> and <<cos>> compute (respectively) the sine and cosine
- of the argument <[x]>. Angles are specified in radians.
-
- <<sinf>> and <<cosf>> are identical, save that they take and
- return <<float>> values.
-
-
-RETURNS
- The sine or cosine of <[x]> is returned.
-
-PORTABILITY
- <<sin>> and <<cos>> are ANSI C.
- <<sinf>> and <<cosf>> are extensions.
-
-QUICKREF
- sin ansi pure
- sinf - pure
-*/
-
-/* sin(x)
- * Return sine function of x.
- *
- * kernel function:
- * __kernel_sin ... sine function on [-pi/4,pi/4]
- * __kernel_cos ... cose function on [-pi/4,pi/4]
- * __ieee754_rem_pio2 ... argument reduction routine
- *
- * Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
- * in [-pi/4 , +pi/4], and let n = k mod 4.
- * We have
- *
- * n sin(x) cos(x) tan(x)
- * ----------------------------------------------------------
- * 0 S C T
- * 1 C -S -1/T
- * 2 -S -C T
- * 3 -C S -1/T
- * ----------------------------------------------------------
- *
- * Special cases:
- * Let trig be any of sin, cos, or tan.
- * trig(+-INF) is NaN, with signals;
- * trig(NaN) is that NaN;
- *
- * Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double sin(double x)
-#else
- double sin(x)
- double x;
-#endif
-{
- double y[2],z=0.0;
- __int32_t n,ix;
-
- /* High word of x. */
- GET_HIGH_WORD(ix,x);
-
- /* |x| ~< pi/4 */
- ix &= 0x7fffffff;
- if(ix <= 0x3fe921fb) return __kernel_sin(x,z,0);
-
- /* sin(Inf or NaN) is NaN */
- else if (ix>=0x7ff00000) return x-x;
-
- /* argument reduction needed */
- else {
- n = __ieee754_rem_pio2(x,y);
- switch(n&3) {
- case 0: return __kernel_sin(y[0],y[1],1);
- case 1: return __kernel_cos(y[0],y[1]);
- case 2: return -__kernel_sin(y[0],y[1],1);
- default:
- return -__kernel_cos(y[0],y[1]);
- }
- }
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_tan.c b/newlib/libm/math/s_tan.c
deleted file mode 100644
index 2959f41..0000000
--- a/newlib/libm/math/s_tan.c
+++ /dev/null
@@ -1,114 +0,0 @@
-
-/* @(#)s_tan.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-
-/*
-
-FUNCTION
- <<tan>>, <<tanf>>---tangent
-
-INDEX
-tan
-INDEX
-tanf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double tan(double <[x]>);
- float tanf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double tan(<[x]>)
- double <[x]>;
-
- float tanf(<[x]>)
- float <[x]>;
-
-
-DESCRIPTION
-<<tan>> computes the tangent of the argument <[x]>.
-Angles are specified in radians.
-
-<<tanf>> is identical, save that it takes and returns <<float>> values.
-
-RETURNS
-The tangent of <[x]> is returned.
-
-PORTABILITY
-<<tan>> is ANSI. <<tanf>> is an extension.
-*/
-
-/* tan(x)
- * Return tangent function of x.
- *
- * kernel function:
- * __kernel_tan ... tangent function on [-pi/4,pi/4]
- * __ieee754_rem_pio2 ... argument reduction routine
- *
- * Method.
- * Let S,C and T denote the sin, cos and tan respectively on
- * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
- * in [-pi/4 , +pi/4], and let n = k mod 4.
- * We have
- *
- * n sin(x) cos(x) tan(x)
- * ----------------------------------------------------------
- * 0 S C T
- * 1 C -S -1/T
- * 2 -S -C T
- * 3 -C S -1/T
- * ----------------------------------------------------------
- *
- * Special cases:
- * Let trig be any of sin, cos, or tan.
- * trig(+-INF) is NaN, with signals;
- * trig(NaN) is that NaN;
- *
- * Accuracy:
- * TRIG(x) returns trig(x) nearly rounded
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double tan(double x)
-#else
- double tan(x)
- double x;
-#endif
-{
- double y[2],z=0.0;
- __int32_t n,ix;
-
- /* High word of x. */
- GET_HIGH_WORD(ix,x);
-
- /* |x| ~< pi/4 */
- ix &= 0x7fffffff;
- if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1);
-
- /* tan(Inf or NaN) is NaN */
- else if (ix>=0x7ff00000) return x-x; /* NaN */
-
- /* argument reduction needed */
- else {
- n = __ieee754_rem_pio2(x,y);
- return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
- -1 -- n odd */
- }
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/s_tanh.c b/newlib/libm/math/s_tanh.c
deleted file mode 100644
index b5541d0..0000000
--- a/newlib/libm/math/s_tanh.c
+++ /dev/null
@@ -1,128 +0,0 @@
-
-/* @(#)s_tanh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-
-FUNCTION
- <<tanh>>, <<tanhf>>---hyperbolic tangent
-
-INDEX
-tanh
-INDEX
-tanhf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double tanh(double <[x]>);
- float tanhf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double tanh(<[x]>)
- double <[x]>;
-
- float tanhf(<[x]>)
- float <[x]>;
-
-
-DESCRIPTION
-
-<<tanh>> computes the hyperbolic tangent of
-the argument <[x]>. Angles are specified in radians.
-
-<<tanh(<[x]>)>> is defined as
-. sinh(<[x]>)/cosh(<[x]>)
-
-<<tanhf>> is identical, save that it takes and returns <<float>> values.
-
-RETURNS
-The hyperbolic tangent of <[x]> is returned.
-
-PORTABILITY
-<<tanh>> is ANSI C. <<tanhf>> is an extension.
-
-*/
-
-/* Tanh(x)
- * Return the Hyperbolic Tangent of x
- *
- * Method :
- * x -x
- * e - e
- * 0. tanh(x) is defined to be -----------
- * x -x
- * e + e
- * 1. reduce x to non-negative by tanh(-x) = -tanh(x).
- * 2. 0 <= x <= 2**-55 : tanh(x) := x*(one+x)
- * -t
- * 2**-55 < x <= 1 : tanh(x) := -----; t = expm1(-2x)
- * t + 2
- * 2
- * 1 <= x <= 22.0 : tanh(x) := 1- ----- ; t=expm1(2x)
- * t + 2
- * 22.0 < x <= INF : tanh(x) := 1.
- *
- * Special cases:
- * tanh(NaN) is NaN;
- * only tanh(0)=0 is exact for finite argument.
- */
-
-#include "fdlibm.h"
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double one=1.0, two=2.0, tiny = 1.0e-300;
-#else
-static double one=1.0, two=2.0, tiny = 1.0e-300;
-#endif
-
-#ifdef __STDC__
- double tanh(double x)
-#else
- double tanh(x)
- double x;
-#endif
-{
- double t,z;
- __int32_t jx,ix;
-
- /* High word of |x|. */
- GET_HIGH_WORD(jx,x);
- ix = jx&0x7fffffff;
-
- /* x is INF or NaN */
- if(ix>=0x7ff00000) {
- if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
- else return one/x-one; /* tanh(NaN) = NaN */
- }
-
- /* |x| < 22 */
- if (ix < 0x40360000) { /* |x|<22 */
- if (ix<0x3c800000) /* |x|<2**-55 */
- return x*(one+x); /* tanh(small) = small */
- if (ix>=0x3ff00000) { /* |x|>=1 */
- t = expm1(two*fabs(x));
- z = one - two/(t+two);
- } else {
- t = expm1(-two*fabs(x));
- z= -t/(t+two);
- }
- /* |x| > 22, return +-1 */
- } else {
- z = one - tiny; /* raised inexact flag */
- }
- return (jx>=0)? z: -z;
-}
-
-#endif /* _DOUBLE_IS_32BITS */
diff --git a/newlib/libm/math/sf_asinh.c b/newlib/libm/math/sf_asinh.c
deleted file mode 100644
index 4688ea8..0000000
--- a/newlib/libm/math/sf_asinh.c
+++ /dev/null
@@ -1,66 +0,0 @@
-/* sf_asinh.c -- float version of s_asinh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-one = 1.0000000000e+00, /* 0x3F800000 */
-ln2 = 6.9314718246e-01, /* 0x3f317218 */
-huge= 1.0000000000e+30;
-
-#ifdef __STDC__
- float asinhf(float x)
-#else
- float asinhf(x)
- float x;
-#endif
-{
- float t,w;
- __int32_t hx,ix;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* x is inf or NaN */
- if(ix< 0x31800000) { /* |x|<2**-28 */
- if(huge+x>one) return x; /* return x inexact except 0 */
- }
- if(ix>0x4d800000) { /* |x| > 2**28 */
- w = __ieee754_logf(fabsf(x))+ln2;
- } else if (ix>0x40000000) { /* 2**28 > |x| > 2.0 */
- t = fabsf(x);
- w = __ieee754_logf((float)2.0*t+one/(__ieee754_sqrtf(x*x+one)+t));
- } else { /* 2.0 > |x| > 2**-28 */
- t = x*x;
- w =log1pf(fabsf(x)+t/(one+__ieee754_sqrtf(one+t)));
- }
- if(hx>0) return w; else return -w;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double asinh(double x)
-#else
- double asinh(x)
- double x;
-#endif
-{
- return (double) asinhf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_atan.c b/newlib/libm/math/sf_atan.c
deleted file mode 100644
index 6edf05f..0000000
--- a/newlib/libm/math/sf_atan.c
+++ /dev/null
@@ -1,129 +0,0 @@
-/* sf_atan.c -- float version of s_atan.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float atanhi[] = {
-#else
-static float atanhi[] = {
-#endif
- 4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
- 7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
- 9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
- 1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
-};
-
-#ifdef __STDC__
-static const float atanlo[] = {
-#else
-static float atanlo[] = {
-#endif
- 5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
- 3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
- 3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
- 7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
-};
-
-#ifdef __STDC__
-static const float aT[] = {
-#else
-static float aT[] = {
-#endif
- 3.3333334327e-01, /* 0x3eaaaaaa */
- -2.0000000298e-01, /* 0xbe4ccccd */
- 1.4285714924e-01, /* 0x3e124925 */
- -1.1111110449e-01, /* 0xbde38e38 */
- 9.0908870101e-02, /* 0x3dba2e6e */
- -7.6918758452e-02, /* 0xbd9d8795 */
- 6.6610731184e-02, /* 0x3d886b35 */
- -5.8335702866e-02, /* 0xbd6ef16b */
- 4.9768779427e-02, /* 0x3d4bda59 */
- -3.6531571299e-02, /* 0xbd15a221 */
- 1.6285819933e-02, /* 0x3c8569d7 */
-};
-
-#ifdef __STDC__
- static const float
-#else
- static float
-#endif
-one = 1.0,
-huge = 1.0e30;
-
-#ifdef __STDC__
- float atanf(float x)
-#else
- float atanf(x)
- float x;
-#endif
-{
- float w,s1,s2,z;
- __int32_t ix,hx,id;
-
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(ix>=0x50800000) { /* if |x| >= 2^34 */
- if(FLT_UWORD_IS_NAN(ix))
- return x+x; /* NaN */
- if(hx>0) return atanhi[3]+atanlo[3];
- else return -atanhi[3]-atanlo[3];
- } if (ix < 0x3ee00000) { /* |x| < 0.4375 */
- if (ix < 0x31000000) { /* |x| < 2^-29 */
- if(huge+x>one) return x; /* raise inexact */
- }
- id = -1;
- } else {
- x = fabsf(x);
- if (ix < 0x3f980000) { /* |x| < 1.1875 */
- if (ix < 0x3f300000) { /* 7/16 <=|x|<11/16 */
- id = 0; x = ((float)2.0*x-one)/((float)2.0+x);
- } else { /* 11/16<=|x|< 19/16 */
- id = 1; x = (x-one)/(x+one);
- }
- } else {
- if (ix < 0x401c0000) { /* |x| < 2.4375 */
- id = 2; x = (x-(float)1.5)/(one+(float)1.5*x);
- } else { /* 2.4375 <= |x| < 2^66 */
- id = 3; x = -(float)1.0/x;
- }
- }}
- /* end of argument reduction */
- z = x*x;
- w = z*z;
- /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
- s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
- s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
- if (id<0) return x - x*(s1+s2);
- else {
- z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
- return (hx<0)? -z:z;
- }
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double atan(double x)
-#else
- double atan(x)
- double x;
-#endif
-{
- return (double) atanf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_ceil.c b/newlib/libm/math/sf_ceil.c
deleted file mode 100644
index 8a8edac..0000000
--- a/newlib/libm/math/sf_ceil.c
+++ /dev/null
@@ -1,70 +0,0 @@
-/* sf_ceil.c -- float version of s_ceil.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float huge = 1.0e30;
-#else
-static float huge = 1.0e30;
-#endif
-
-#ifdef __STDC__
- float ceilf(float x)
-#else
- float ceilf(x)
- float x;
-#endif
-{
- __int32_t i0,j0;
- __uint32_t i,ix;
- GET_FLOAT_WORD(i0,x);
- ix = (i0&0x7fffffff);
- j0 = (ix>>23)-0x7f;
- if(j0<23) {
- if(j0<0) { /* raise inexact if x != 0 */
- if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
- if(i0<0) {i0=0x80000000;}
- else if(!FLT_UWORD_IS_ZERO(ix)) { i0=0x3f800000;}
- }
- } else {
- i = (0x007fffff)>>j0;
- if((i0&i)==0) return x; /* x is integral */
- if(huge+x>(float)0.0) { /* raise inexact flag */
- if(i0>0) i0 += (0x00800000)>>j0;
- i0 &= (~i);
- }
- }
- } else {
- if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* inf or NaN */
- else return x; /* x is integral */
- }
- SET_FLOAT_WORD(x,i0);
- return x;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double ceil(double x)
-#else
- double ceil(x)
- double x;
-#endif
-{
- return (double) ceilf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_cos.c b/newlib/libm/math/sf_cos.c
deleted file mode 100644
index 4c0a9a5..0000000
--- a/newlib/libm/math/sf_cos.c
+++ /dev/null
@@ -1,68 +0,0 @@
-/* sf_cos.c -- float version of s_cos.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float one=1.0;
-#else
-static float one=1.0;
-#endif
-
-#ifdef __STDC__
- float cosf(float x)
-#else
- float cosf(x)
- float x;
-#endif
-{
- float y[2],z=0.0;
- __int32_t n,ix;
-
- GET_FLOAT_WORD(ix,x);
-
- /* |x| ~< pi/4 */
- ix &= 0x7fffffff;
- if(ix <= 0x3f490fd8) return __kernel_cosf(x,z);
-
- /* cos(Inf or NaN) is NaN */
- else if (!FLT_UWORD_IS_FINITE(ix)) return x-x;
-
- /* argument reduction needed */
- else {
- n = __ieee754_rem_pio2f(x,y);
- switch(n&3) {
- case 0: return __kernel_cosf(y[0],y[1]);
- case 1: return -__kernel_sinf(y[0],y[1],1);
- case 2: return -__kernel_cosf(y[0],y[1]);
- default:
- return __kernel_sinf(y[0],y[1],1);
- }
- }
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double cos(double x)
-#else
- double cos(x)
- double x;
-#endif
-{
- return (double) cosf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_erf.c b/newlib/libm/math/sf_erf.c
deleted file mode 100644
index 0329c60..0000000
--- a/newlib/libm/math/sf_erf.c
+++ /dev/null
@@ -1,246 +0,0 @@
-/* sf_erf.c -- float version of s_erf.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __v810__
-#define const
-#endif
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-tiny = 1e-30,
-half= 5.0000000000e-01, /* 0x3F000000 */
-one = 1.0000000000e+00, /* 0x3F800000 */
-two = 2.0000000000e+00, /* 0x40000000 */
- /* c = (subfloat)0.84506291151 */
-erx = 8.4506291151e-01, /* 0x3f58560b */
-/*
- * Coefficients for approximation to erf on [0,0.84375]
- */
-efx = 1.2837916613e-01, /* 0x3e0375d4 */
-efx8= 1.0270333290e+00, /* 0x3f8375d4 */
-pp0 = 1.2837916613e-01, /* 0x3e0375d4 */
-pp1 = -3.2504209876e-01, /* 0xbea66beb */
-pp2 = -2.8481749818e-02, /* 0xbce9528f */
-pp3 = -5.7702702470e-03, /* 0xbbbd1489 */
-pp4 = -2.3763017452e-05, /* 0xb7c756b1 */
-qq1 = 3.9791721106e-01, /* 0x3ecbbbce */
-qq2 = 6.5022252500e-02, /* 0x3d852a63 */
-qq3 = 5.0813062117e-03, /* 0x3ba68116 */
-qq4 = 1.3249473704e-04, /* 0x390aee49 */
-qq5 = -3.9602282413e-06, /* 0xb684e21a */
-/*
- * Coefficients for approximation to erf in [0.84375,1.25]
- */
-pa0 = -2.3621185683e-03, /* 0xbb1acdc6 */
-pa1 = 4.1485610604e-01, /* 0x3ed46805 */
-pa2 = -3.7220788002e-01, /* 0xbebe9208 */
-pa3 = 3.1834661961e-01, /* 0x3ea2fe54 */
-pa4 = -1.1089469492e-01, /* 0xbde31cc2 */
-pa5 = 3.5478305072e-02, /* 0x3d1151b3 */
-pa6 = -2.1663755178e-03, /* 0xbb0df9c0 */
-qa1 = 1.0642088205e-01, /* 0x3dd9f331 */
-qa2 = 5.4039794207e-01, /* 0x3f0a5785 */
-qa3 = 7.1828655899e-02, /* 0x3d931ae7 */
-qa4 = 1.2617121637e-01, /* 0x3e013307 */
-qa5 = 1.3637083583e-02, /* 0x3c5f6e13 */
-qa6 = 1.1984500103e-02, /* 0x3c445aa3 */
-/*
- * Coefficients for approximation to erfc in [1.25,1/0.35]
- */
-ra0 = -9.8649440333e-03, /* 0xbc21a093 */
-ra1 = -6.9385856390e-01, /* 0xbf31a0b7 */
-ra2 = -1.0558626175e+01, /* 0xc128f022 */
-ra3 = -6.2375331879e+01, /* 0xc2798057 */
-ra4 = -1.6239666748e+02, /* 0xc322658c */
-ra5 = -1.8460508728e+02, /* 0xc3389ae7 */
-ra6 = -8.1287437439e+01, /* 0xc2a2932b */
-ra7 = -9.8143291473e+00, /* 0xc11d077e */
-sa1 = 1.9651271820e+01, /* 0x419d35ce */
-sa2 = 1.3765776062e+02, /* 0x4309a863 */
-sa3 = 4.3456588745e+02, /* 0x43d9486f */
-sa4 = 6.4538726807e+02, /* 0x442158c9 */
-sa5 = 4.2900814819e+02, /* 0x43d6810b */
-sa6 = 1.0863500214e+02, /* 0x42d9451f */
-sa7 = 6.5702495575e+00, /* 0x40d23f7c */
-sa8 = -6.0424413532e-02, /* 0xbd777f97 */
-/*
- * Coefficients for approximation to erfc in [1/.35,28]
- */
-rb0 = -9.8649431020e-03, /* 0xbc21a092 */
-rb1 = -7.9928326607e-01, /* 0xbf4c9dd4 */
-rb2 = -1.7757955551e+01, /* 0xc18e104b */
-rb3 = -1.6063638306e+02, /* 0xc320a2ea */
-rb4 = -6.3756646729e+02, /* 0xc41f6441 */
-rb5 = -1.0250950928e+03, /* 0xc480230b */
-rb6 = -4.8351919556e+02, /* 0xc3f1c275 */
-sb1 = 3.0338060379e+01, /* 0x41f2b459 */
-sb2 = 3.2579251099e+02, /* 0x43a2e571 */
-sb3 = 1.5367296143e+03, /* 0x44c01759 */
-sb4 = 3.1998581543e+03, /* 0x4547fdbb */
-sb5 = 2.5530502930e+03, /* 0x451f90ce */
-sb6 = 4.7452853394e+02, /* 0x43ed43a7 */
-sb7 = -2.2440952301e+01; /* 0xc1b38712 */
-
-#ifdef __STDC__
- float erff(float x)
-#else
- float erff(x)
- float x;
-#endif
-{
- __int32_t hx,ix,i;
- float R,S,P,Q,s,y,z,r;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(!FLT_UWORD_IS_FINITE(ix)) { /* erf(nan)=nan */
- i = ((__uint32_t)hx>>31)<<1;
- return (float)(1-i)+one/x; /* erf(+-inf)=+-1 */
- }
-
- if(ix < 0x3f580000) { /* |x|<0.84375 */
- if(ix < 0x31800000) { /* |x|<2**-28 */
- if (ix < 0x04000000)
- /*avoid underflow */
- return (float)0.125*((float)8.0*x+efx8*x);
- return x + efx*x;
- }
- z = x*x;
- r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
- s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
- y = r/s;
- return x + x*y;
- }
- if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
- s = fabsf(x)-one;
- P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
- Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
- if(hx>=0) return erx + P/Q; else return -erx - P/Q;
- }
- if (ix >= 0x40c00000) { /* inf>|x|>=6 */
- if(hx>=0) return one-tiny; else return tiny-one;
- }
- x = fabsf(x);
- s = one/(x*x);
- if(ix< 0x4036DB6E) { /* |x| < 1/0.35 */
- R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
- ra5+s*(ra6+s*ra7))))));
- S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
- sa5+s*(sa6+s*(sa7+s*sa8)))))));
- } else { /* |x| >= 1/0.35 */
- R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
- rb5+s*rb6)))));
- S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
- sb5+s*(sb6+s*sb7))))));
- }
- GET_FLOAT_WORD(ix,x);
- SET_FLOAT_WORD(z,ix&0xfffff000);
- r = __ieee754_expf(-z*z-(float)0.5625)*__ieee754_expf((z-x)*(z+x)+R/S);
- if(hx>=0) return one-r/x; else return r/x-one;
-}
-
-#ifdef __STDC__
- float erfcf(float x)
-#else
- float erfcf(x)
- float x;
-#endif
-{
- __int32_t hx,ix;
- float R,S,P,Q,s,y,z,r;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- if(!FLT_UWORD_IS_FINITE(ix)) { /* erfc(nan)=nan */
- /* erfc(+-inf)=0,2 */
- return (float)(((__uint32_t)hx>>31)<<1)+one/x;
- }
-
- if(ix < 0x3f580000) { /* |x|<0.84375 */
- if(ix < 0x23800000) /* |x|<2**-56 */
- return one-x;
- z = x*x;
- r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
- s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
- y = r/s;
- if(hx < 0x3e800000) { /* x<1/4 */
- return one-(x+x*y);
- } else {
- r = x*y;
- r += (x-half);
- return half - r ;
- }
- }
- if(ix < 0x3fa00000) { /* 0.84375 <= |x| < 1.25 */
- s = fabsf(x)-one;
- P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
- Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
- if(hx>=0) {
- z = one-erx; return z - P/Q;
- } else {
- z = erx+P/Q; return one+z;
- }
- }
- if (ix < 0x41e00000) { /* |x|<28 */
- x = fabsf(x);
- s = one/(x*x);
- if(ix< 0x4036DB6D) { /* |x| < 1/.35 ~ 2.857143*/
- R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
- ra5+s*(ra6+s*ra7))))));
- S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
- sa5+s*(sa6+s*(sa7+s*sa8)))))));
- } else { /* |x| >= 1/.35 ~ 2.857143 */
- if(hx<0&&ix>=0x40c00000) return two-tiny;/* x < -6 */
- R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
- rb5+s*rb6)))));
- S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
- sb5+s*(sb6+s*sb7))))));
- }
- GET_FLOAT_WORD(ix,x);
- SET_FLOAT_WORD(z,ix&0xfffff000);
- r = __ieee754_expf(-z*z-(float)0.5625)*
- __ieee754_expf((z-x)*(z+x)+R/S);
- if(hx>0) return r/x; else return two-r/x;
- } else {
- if(hx>0) return tiny*tiny; else return two-tiny;
- }
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double erf(double x)
-#else
- double erf(x)
- double x;
-#endif
-{
- return (double) erff((float) x);
-}
-
-#ifdef __STDC__
- double erfc(double x)
-#else
- double erfc(x)
- double x;
-#endif
-{
- return (double) erfcf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_fabs.c b/newlib/libm/math/sf_fabs.c
deleted file mode 100644
index 2aaed32..0000000
--- a/newlib/libm/math/sf_fabs.c
+++ /dev/null
@@ -1,47 +0,0 @@
-/* sf_fabs.c -- float version of s_fabs.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * fabsf(x) returns the absolute value of x.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- float fabsf(float x)
-#else
- float fabsf(x)
- float x;
-#endif
-{
- __uint32_t ix;
- GET_FLOAT_WORD(ix,x);
- SET_FLOAT_WORD(x,ix&0x7fffffff);
- return x;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double fabs(double x)
-#else
- double fabs(x)
- double x;
-#endif
-{
- return (double) fabsf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_floor.c b/newlib/libm/math/sf_floor.c
deleted file mode 100644
index 9264d81..0000000
--- a/newlib/libm/math/sf_floor.c
+++ /dev/null
@@ -1,80 +0,0 @@
-/* sf_floor.c -- float version of s_floor.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * floorf(x)
- * Return x rounded toward -inf to integral value
- * Method:
- * Bit twiddling.
- * Exception:
- * Inexact flag raised if x not equal to floorf(x).
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float huge = 1.0e30;
-#else
-static float huge = 1.0e30;
-#endif
-
-#ifdef __STDC__
- float floorf(float x)
-#else
- float floorf(x)
- float x;
-#endif
-{
- __int32_t i0,j0;
- __uint32_t i,ix;
- GET_FLOAT_WORD(i0,x);
- ix = (i0&0x7fffffff);
- j0 = (ix>>23)-0x7f;
- if(j0<23) {
- if(j0<0) { /* raise inexact if x != 0 */
- if(huge+x>(float)0.0) {/* return 0*sign(x) if |x|<1 */
- if(i0>=0) {i0=0;}
- else if(!FLT_UWORD_IS_ZERO(ix))
- { i0=0xbf800000;}
- }
- } else {
- i = (0x007fffff)>>j0;
- if((i0&i)==0) return x; /* x is integral */
- if(huge+x>(float)0.0) { /* raise inexact flag */
- if(i0<0) i0 += (0x00800000)>>j0;
- i0 &= (~i);
- }
- }
- } else {
- if(!FLT_UWORD_IS_FINITE(ix)) return x+x; /* inf or NaN */
- else return x; /* x is integral */
- }
- SET_FLOAT_WORD(x,i0);
- return x;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double floor(double x)
-#else
- double floor(x)
- double x;
-#endif
-{
- return (double) floorf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_frexp.c b/newlib/libm/math/sf_frexp.c
deleted file mode 100644
index 8dd8a97..0000000
--- a/newlib/libm/math/sf_frexp.c
+++ /dev/null
@@ -1,61 +0,0 @@
-/* sf_frexp.c -- float version of s_frexp.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-two25 = 3.3554432000e+07; /* 0x4c000000 */
-
-#ifdef __STDC__
- float frexpf(float x, int *eptr)
-#else
- float frexpf(x, eptr)
- float x; int *eptr;
-#endif
-{
- __int32_t hx, ix;
- GET_FLOAT_WORD(hx,x);
- ix = 0x7fffffff&hx;
- *eptr = 0;
- if(!FLT_UWORD_IS_FINITE(ix)||FLT_UWORD_IS_ZERO(ix)) return x; /* 0,inf,nan */
- if (FLT_UWORD_IS_SUBNORMAL(ix)) { /* subnormal */
- x *= two25;
- GET_FLOAT_WORD(hx,x);
- ix = hx&0x7fffffff;
- *eptr = -25;
- }
- *eptr += (ix>>23)-126;
- hx = (hx&0x807fffff)|0x3f000000;
- SET_FLOAT_WORD(x,hx);
- return x;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double frexp(double x, int *eptr)
-#else
- double frexp(x, eptr)
- double x; int *eptr;
-#endif
-{
- return (double) frexpf((float) x, eptr);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_isinf.c b/newlib/libm/math/sf_isinf.c
deleted file mode 100644
index 43a8abd..0000000
--- a/newlib/libm/math/sf_isinf.c
+++ /dev/null
@@ -1,33 +0,0 @@
-/*
- * isinff(x) returns 1 if x is +-infinity, else 0;
- * Added by Cygnus Support.
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- int isinff(float x)
-#else
- int isinff(x)
- float x;
-#endif
-{
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- return FLT_UWORD_IS_INFINITE(ix);
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- int isinf(double x)
-#else
- int isinf(x)
- double x;
-#endif
-{
- return isinff((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_isnan.c b/newlib/libm/math/sf_isnan.c
deleted file mode 100644
index 0b4be3e..0000000
--- a/newlib/libm/math/sf_isnan.c
+++ /dev/null
@@ -1,47 +0,0 @@
-/* sf_isnan.c -- float version of s_isnan.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * isnanf(x) returns 1 is x is nan, else 0;
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- int isnanf(float x)
-#else
- int isnanf(x)
- float x;
-#endif
-{
- __int32_t ix;
- GET_FLOAT_WORD(ix,x);
- ix &= 0x7fffffff;
- return FLT_UWORD_IS_NAN(ix);
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- int isnan(double x)
-#else
- int isnan(x)
- double x;
-#endif
-{
- return isnanf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_ldexp.c b/newlib/libm/math/sf_ldexp.c
deleted file mode 100644
index 2781304..0000000
--- a/newlib/libm/math/sf_ldexp.c
+++ /dev/null
@@ -1,44 +0,0 @@
-/* sf_ldexp.c -- float version of s_ldexp.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float ldexpf(float value, int exp)
-#else
- float ldexpf(value, exp)
- float value; int exp;
-#endif
-{
- if(!finitef(value)||value==(float)0.0) return value;
- value = scalbnf(value,exp);
- if(!finitef(value)||value==(float)0.0) errno = ERANGE;
- return value;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double ldexp(double value, int exp)
-#else
- double ldexp(value, exp)
- double value; int exp;
-#endif
-{
- return (double) ldexpf((float) value, exp);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_signif.c b/newlib/libm/math/sf_signif.c
deleted file mode 100644
index fd4a072..0000000
--- a/newlib/libm/math/sf_signif.c
+++ /dev/null
@@ -1,40 +0,0 @@
-/* sf_signif.c -- float version of s_signif.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- float significandf(float x)
-#else
- float significandf(x)
- float x;
-#endif
-{
- return __ieee754_scalbf(x,(float) -ilogbf(x));
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double significand(double x)
-#else
- double significand(x)
- double x;
-#endif
-{
- return (double) significandf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_sin.c b/newlib/libm/math/sf_sin.c
deleted file mode 100644
index da81845..0000000
--- a/newlib/libm/math/sf_sin.c
+++ /dev/null
@@ -1,62 +0,0 @@
-/* sf_sin.c -- float version of s_sin.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- float sinf(float x)
-#else
- float sinf(x)
- float x;
-#endif
-{
- float y[2],z=0.0;
- __int32_t n,ix;
-
- GET_FLOAT_WORD(ix,x);
-
- /* |x| ~< pi/4 */
- ix &= 0x7fffffff;
- if(ix <= 0x3f490fd8) return __kernel_sinf(x,z,0);
-
- /* sin(Inf or NaN) is NaN */
- else if (!FLT_UWORD_IS_FINITE(ix)) return x-x;
-
- /* argument reduction needed */
- else {
- n = __ieee754_rem_pio2f(x,y);
- switch(n&3) {
- case 0: return __kernel_sinf(y[0],y[1],1);
- case 1: return __kernel_cosf(y[0],y[1]);
- case 2: return -__kernel_sinf(y[0],y[1],1);
- default:
- return -__kernel_cosf(y[0],y[1]);
- }
- }
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double sin(double x)
-#else
- double sin(x)
- double x;
-#endif
-{
- return (double) sinf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_tan.c b/newlib/libm/math/sf_tan.c
deleted file mode 100644
index 18c47a4..0000000
--- a/newlib/libm/math/sf_tan.c
+++ /dev/null
@@ -1,57 +0,0 @@
-/* sf_tan.c -- float version of s_tan.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
- float tanf(float x)
-#else
- float tanf(x)
- float x;
-#endif
-{
- float y[2],z=0.0;
- __int32_t n,ix;
-
- GET_FLOAT_WORD(ix,x);
-
- /* |x| ~< pi/4 */
- ix &= 0x7fffffff;
- if(ix <= 0x3f490fda) return __kernel_tanf(x,z,1);
-
- /* tan(Inf or NaN) is NaN */
- else if (!FLT_UWORD_IS_FINITE(ix)) return x-x; /* NaN */
-
- /* argument reduction needed */
- else {
- n = __ieee754_rem_pio2f(x,y);
- return __kernel_tanf(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even
- -1 -- n odd */
- }
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double tan(double x)
-#else
- double tan(x)
- double x;
-#endif
-{
- return (double) tanf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/sf_tanh.c b/newlib/libm/math/sf_tanh.c
deleted file mode 100644
index 1eb44a2..0000000
--- a/newlib/libm/math/sf_tanh.c
+++ /dev/null
@@ -1,73 +0,0 @@
-/* sf_tanh.c -- float version of s_tanh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-
-#ifdef __STDC__
-static const float one=1.0, two=2.0, tiny = 1.0e-30;
-#else
-static float one=1.0, two=2.0, tiny = 1.0e-30;
-#endif
-
-#ifdef __STDC__
- float tanhf(float x)
-#else
- float tanhf(x)
- float x;
-#endif
-{
- float t,z;
- __int32_t jx,ix;
-
- GET_FLOAT_WORD(jx,x);
- ix = jx&0x7fffffff;
-
- /* x is INF or NaN */
- if(!FLT_UWORD_IS_FINITE(ix)) {
- if (jx>=0) return one/x+one; /* tanh(+-inf)=+-1 */
- else return one/x-one; /* tanh(NaN) = NaN */
- }
-
- /* |x| < 22 */
- if (ix < 0x41b00000) { /* |x|<22 */
- if (ix<0x24000000) /* |x|<2**-55 */
- return x*(one+x); /* tanh(small) = small */
- if (ix>=0x3f800000) { /* |x|>=1 */
- t = expm1f(two*fabsf(x));
- z = one - two/(t+two);
- } else {
- t = expm1f(-two*fabsf(x));
- z= -t/(t+two);
- }
- /* |x| > 22, return +-1 */
- } else {
- z = one - tiny; /* raised inexact flag */
- }
- return (jx>=0)? z: -z;
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double tanh(double x)
-#else
- double tanh(x)
- double x;
-#endif
-{
- return (double) tanhf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_acos.c b/newlib/libm/math/w_acos.c
deleted file mode 100644
index c9ca99c..0000000
--- a/newlib/libm/math/w_acos.c
+++ /dev/null
@@ -1,118 +0,0 @@
-
-/* @(#)w_acos.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<acos>>, <<acosf>>---arc cosine
-
-INDEX
- acos
-INDEX
- acosf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double acos(double <[x]>);
- float acosf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double acos(<[x]>)
- double <[x]>;
-
- float acosf(<[x]>)
- float <[x]>;
-
-
-
-DESCRIPTION
-
- <<acos>> computes the inverse cosine (arc cosine) of the input value.
- Arguments to <<acos>> must be in the range @minus{}1 to 1.
-
- <<acosf>> is identical to <<acos>>, except that it performs
- its calculations on <<floats>>.
-
-RETURNS
- @ifinfo
- <<acos>> and <<acosf>> return values in radians, in the range of 0 to pi.
- @end ifinfo
- @tex
- <<acos>> and <<acosf>> return values in radians, in the range of <<0>> to $\pi$.
- @end tex
-
- If <[x]> is not between @minus{}1 and 1, the returned value is NaN
- (not a number) the global variable <<errno>> is set to <<EDOM>>, and a
- <<DOMAIN error>> message is sent as standard error output.
-
- You can modify error handling for these functions using <<matherr>>.
-
-
-QUICKREF ANSI SVID POSIX RENTRANT
- acos y,y,y,m
- acosf n,n,n,m
-
-MATHREF
- acos, [-1,1], acos(arg),,,
- acos, NAN, arg,DOMAIN,EDOM
-
-MATHREF
- acosf, [-1,1], acosf(arg),,,
- acosf, NAN, argf,DOMAIN,EDOM
-
-*/
-
-/*
- * wrap_acos(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double acos(double x) /* wrapper acos */
-#else
- double acos(x) /* wrapper acos */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_acos(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_acos(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(fabs(x)>1.0) {
- /* acos(|x|>1) */
- exc.type = DOMAIN;
- exc.name = "acos";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_acosh.c b/newlib/libm/math/w_acosh.c
deleted file mode 100644
index 4120d7b..0000000
--- a/newlib/libm/math/w_acosh.c
+++ /dev/null
@@ -1,122 +0,0 @@
-
-/* @(#)w_acosh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
-FUNCTION
-<<acosh>>, <<acoshf>>---inverse hyperbolic cosine
-
-INDEX
-acosh
-INDEX
-acoshf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double acosh(double <[x]>);
- float acoshf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double acosh(<[x]>)
- double <[x]>;
-
- float acoshf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
-<<acosh>> calculates the inverse hyperbolic cosine of <[x]>.
-<<acosh>> is defined as
-@ifinfo
-. log(<[x]> + sqrt(<[x]>*<[x]>-1))
-@end ifinfo
-@tex
-$$ln\Bigl(x + \sqrt{x^2-1}\Bigr)$$
-@end tex
-
-<[x]> must be a number greater than or equal to 1.
-
-<<acoshf>> is identical, other than taking and returning floats.
-
-RETURNS
-<<acosh>> and <<acoshf>> return the calculated value. If <[x]>
-less than 1, the return value is NaN and <<errno>> is set to <<EDOM>>.
-
-You can change the error-handling behavior with the non-ANSI
-<<matherr>> function.
-
-PORTABILITY
-Neither <<acosh>> nor <<acoshf>> are ANSI C. They are not recommended
-for portable programs.
-
-
-QUICKREF ANSI SVID POSIX RENTRANT
- acos n,n,n,m
- acosf n,n,n,m
-
-MATHREF
- acosh, NAN, arg,DOMAIN,EDOM
- acosh, < 1.0, NAN,DOMAIN,EDOM
- acosh, >=1.0, acosh(arg),,,
-
-MATHREF
- acoshf, NAN, arg,DOMAIN,EDOM
- acoshf, < 1.0, NAN,DOMAIN,EDOM
- acoshf, >=1.0, acosh(arg),,,
-
-*/
-
-/*
- * wrapper acosh(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double acosh(double x) /* wrapper acosh */
-#else
- double acosh(x) /* wrapper acosh */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_acosh(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_acosh(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(x<1.0) {
- /* acosh(x<1) */
- exc.type = DOMAIN;
- exc.name = "acosh";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_asin.c b/newlib/libm/math/w_asin.c
deleted file mode 100644
index f6cb271..0000000
--- a/newlib/libm/math/w_asin.c
+++ /dev/null
@@ -1,121 +0,0 @@
-
-/* @(#)w_asin.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
-FUNCTION
- <<asin>>, <<asinf>>---arc sine
-
-INDEX
- asin
-INDEX
- asinf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double asin(double <[x]>);
- float asinf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double asin(<[x]>)
- double <[x]>;
-
- float asinf(<[x]>)
- float <[x]>;
-
-
-DESCRIPTION
-
-<<asin>> computes the inverse sine (arc sine) of the argument <[x]>.
-Arguments to <<asin>> must be in the range @minus{}1 to 1.
-
-<<asinf>> is identical to <<asin>>, other than taking and
-returning floats.
-
-You can modify error handling for these routines using <<matherr>>.
-
-RETURNS
-@ifinfo
-<<asin>> returns values in radians, in the range of -pi/2 to pi/2.
-@end ifinfo
-@tex
-<<asin>> returns values in radians, in the range of $-\pi/2$ to $\pi/2$.
-@end tex
-
-If <[x]> is not in the range @minus{}1 to 1, <<asin>> and <<asinf>>
-return NaN (not a number), set the global variable <<errno>> to
-<<EDOM>>, and issue a <<DOMAIN error>> message.
-
-You can change this error treatment using <<matherr>>.
-
-QUICKREF ANSI SVID POSIX RENTRANT
- asin y,y,y,m
- asinf n,n,n,m
-
-MATHREF
- asin, -1<=arg<=1, asin(arg),,,
- asin, NAN, arg,EDOM, DOMAIN
-
-MATHREF
- asinf, -1<=arg<=1, asin(arg),,,
- asinf, NAN, arg,EDOM, DOMAIN
-
-
-*/
-
-/*
- * wrapper asin(x)
- */
-
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double asin(double x) /* wrapper asin */
-#else
- double asin(x) /* wrapper asin */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_asin(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_asin(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(fabs(x)>1.0) {
- /* asin(|x|>1) */
- exc.type = DOMAIN;
- exc.name = "asin";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if(_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_atan2.c b/newlib/libm/math/w_atan2.c
deleted file mode 100644
index 91742c7..0000000
--- a/newlib/libm/math/w_atan2.c
+++ /dev/null
@@ -1,117 +0,0 @@
-
-/* @(#)w_atan2.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
-FUNCTION
- <<atan2>>, <<atan2f>>---arc tangent of y/x
-
-INDEX
- atan2
-INDEX
- atan2f
-
-ANSI_SYNOPSIS
- #include <math.h>
- double atan2(double <[y]>,double <[x]>);
- float atan2f(float <[y]>,float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double atan2(<[y]>,<[x]>);
- double <[y]>;
- double <[x]>;
-
- float atan2f(<[y]>,<[x]>);
- float <[y]>;
- float <[x]>;
-
-DESCRIPTION
-
-<<atan2>> computes the inverse tangent (arc tangent) of <[y]>/<[x]>.
-<<atan2>> produces the correct result even for angles near
-@ifinfo
-pi/2 or -pi/2
-@end ifinfo
-@tex
-$\pi/2$ or $-\pi/2$
-@end tex
-(that is, when <[x]> is near 0).
-
-<<atan2f>> is identical to <<atan2>>, save that it takes and returns
-<<float>>.
-
-RETURNS
-<<atan2>> and <<atan2f>> return a value in radians, in the range of
-@ifinfo
--pi to pi.
-@end ifinfo
-@tex
-$-\pi$ to $\pi$.
-@end tex
-
-If both <[x]> and <[y]> are 0.0, <<atan2>> causes a <<DOMAIN>> error.
-
-You can modify error handling for these functions using <<matherr>>.
-
-PORTABILITY
-<<atan2>> is ANSI C. <<atan2f>> is an extension.
-
-
-*/
-
-/*
- * wrapper atan2(y,x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double atan2(double y, double x) /* wrapper atan2 */
-#else
- double atan2(y,x) /* wrapper atan2 */
- double y,x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_atan2(y,x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_atan2(y,x);
- if(_LIB_VERSION == _IEEE_||isnan(x)||isnan(y)) return z;
- if(x==0.0&&y==0.0) {
- /* atan2(+-0,+-0) */
- exc.arg1 = y;
- exc.arg2 = x;
- exc.type = DOMAIN;
- exc.name = "atan2";
- exc.err = 0;
- exc.retval = 0.0;
- if(_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_atanh.c b/newlib/libm/math/w_atanh.c
deleted file mode 100644
index b89d4f0..0000000
--- a/newlib/libm/math/w_atanh.c
+++ /dev/null
@@ -1,140 +0,0 @@
-
-/* @(#)w_atanh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<atanh>>, <<atanhf>>---inverse hyperbolic tangent
-
-INDEX
- atanh
-INDEX
- atanhf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double atanh(double <[x]>);
- float atanhf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double atanh(<[x]>)
- double <[x]>;
-
- float atanhf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
- <<atanh>> calculates the inverse hyperbolic tangent of <[x]>.
-
- <<atanhf>> is identical, other than taking and returning
- <<float>> values.
-
-RETURNS
- <<atanh>> and <<atanhf>> return the calculated value.
-
- If
- @ifinfo
- |<[x]>|
- @end ifinfo
- @tex
- $|x|$
- @end tex
- is greater than 1, the global <<errno>> is set to <<EDOM>> and
- the result is a NaN. A <<DOMAIN error>> is reported.
-
- If
- @ifinfo
- |<[x]>|
- @end ifinfo
- @tex
- $|x|$
- @end tex
- is 1, the global <<errno>> is set to <<EDOM>>; and the result is
- infinity with the same sign as <<x>>. A <<SING error>> is reported.
-
- You can modify the error handling for these routines using
- <<matherr>>.
-
-PORTABILITY
- Neither <<atanh>> nor <<atanhf>> are ANSI C.
-
-QUICKREF
- atanh - pure
- atanhf - pure
-
-
-*/
-
-/*
- * wrapper atanh(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double atanh(double x) /* wrapper atanh */
-#else
- double atanh(x) /* wrapper atanh */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_atanh(x);
-#else
- double z,y;
- struct exception exc;
- z = __ieee754_atanh(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- y = fabs(x);
- if(y>=1.0) {
- if(y>1.0) {
- /* atanh(|x|>1) */
- exc.type = DOMAIN;
- exc.name = "atanh";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* atanh(|x|=1) */
- exc.type = SING;
- exc.name = "atanh";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = x/0.0; /* sign(x)*inf */
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
diff --git a/newlib/libm/math/w_cabs.c b/newlib/libm/math/w_cabs.c
deleted file mode 100644
index bef7668..0000000
--- a/newlib/libm/math/w_cabs.c
+++ /dev/null
@@ -1,20 +0,0 @@
-/*
- * cabs() wrapper for hypot().
- *
- * Written by J.T. Conklin, <jtc@wimsey.com>
- * Placed into the Public Domain, 1994.
- */
-
-#include "fdlibm.h"
-
-struct complex {
- double x;
- double y;
-};
-
-double
-cabs(z)
- struct complex z;
-{
- return hypot(z.x, z.y);
-}
diff --git a/newlib/libm/math/w_cosh.c b/newlib/libm/math/w_cosh.c
deleted file mode 100644
index 7b38dcb..0000000
--- a/newlib/libm/math/w_cosh.c
+++ /dev/null
@@ -1,116 +0,0 @@
-
-/* @(#)w_cosh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-
-FUNCTION
- <<cosh>>, <<coshf>>---hyperbolic cosine
-
-ANSI_SYNOPSIS
- #include <math.h>
- double cosh(double <[x]>);
- float coshf(float <[x]>)
-
-TRAD_SYNOPSIS
- #include <math.h>
- double cosh(<[x]>)
- double <[x]>;
-
- float coshf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
-
- <<cosh>> computes the hyperbolic cosine of the argument <[x]>.
- <<cosh(<[x]>)>> is defined as
- @ifinfo
- . (exp(x) + exp(-x))/2
- @end ifinfo
- @tex
- $${(e^x + e^{-x})} \over 2$$
- @end tex
-
- Angles are specified in radians.
-
- <<coshf>> is identical, save that it takes and returns <<float>>.
-
-RETURNS
- The computed value is returned. When the correct value would create
- an overflow, <<cosh>> returns the value <<HUGE_VAL>> with the
- appropriate sign, and the global value <<errno>> is set to <<ERANGE>>.
-
- You can modify error handling for these functions using the
- function <<matherr>>.
-
-PORTABILITY
- <<cosh>> is ANSI.
- <<coshf>> is an extension.
-
-QUICKREF
- cosh ansi pure
- coshf - pure
-*/
-
-/*
- * wrapper cosh(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double cosh(double x) /* wrapper cosh */
-#else
- double cosh(x) /* wrapper cosh */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_cosh(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_cosh(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(fabs(x)>7.10475860073943863426e+02) {
- /* cosh(finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "cosh";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_drem.c b/newlib/libm/math/w_drem.c
deleted file mode 100644
index d289bda..0000000
--- a/newlib/libm/math/w_drem.c
+++ /dev/null
@@ -1,15 +0,0 @@
-/*
- * drem() wrapper for remainder().
- *
- * Written by J.T. Conklin, <jtc@wimsey.com>
- * Placed into the Public Domain, 1994.
- */
-
-#include "fdlibm.h"
-
-double
-drem(x, y)
- double x, y;
-{
- return remainder(x, y);
-}
diff --git a/newlib/libm/math/w_exp.c b/newlib/libm/math/w_exp.c
deleted file mode 100644
index ae792a8..0000000
--- a/newlib/libm/math/w_exp.c
+++ /dev/null
@@ -1,136 +0,0 @@
-
-/* @(#)w_exp.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<exp>>, <<expf>>---exponential
-INDEX
- exp
-INDEX
- expf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double exp(double <[x]>);
- float expf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double exp(<[x]>);
- double <[x]>;
-
- float expf(<[x]>);
- float <[x]>;
-
-DESCRIPTION
- <<exp>> and <<expf>> calculate the exponential of <[x]>, that is,
- @ifinfo
- e raised to the power <[x]> (where e
- @end ifinfo
- @tex
- $e^x$ (where $e$
- @end tex
- is the base of the natural system of logarithms, approximately 2.71828).
-
- You can use the (non-ANSI) function <<matherr>> to specify
- error handling for these functions.
-
-RETURNS
- On success, <<exp>> and <<expf>> return the calculated value.
- If the result underflows, the returned value is <<0>>. If the
- result overflows, the returned value is <<HUGE_VAL>>. In
- either case, <<errno>> is set to <<ERANGE>>.
-
-PORTABILITY
- <<exp>> is ANSI C. <<expf>> is an extension.
-
-*/
-
-/*
- * wrapper exp(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-static const double
-#else
-static double
-#endif
-o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
-u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */
-
-#ifdef __STDC__
- double exp(double x) /* wrapper exp */
-#else
- double exp(x) /* wrapper exp */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_exp(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_exp(x);
- if(_LIB_VERSION == _IEEE_) return z;
- if(finite(x)) {
- if(x>o_threshold) {
- /* exp(finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "exp";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else if(x<u_threshold) {
- /* exp(finite) underflow */
- exc.type = UNDERFLOW;
- exc.name = "exp";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- }
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_fmod.c b/newlib/libm/math/w_fmod.c
deleted file mode 100644
index b6b36cb..0000000
--- a/newlib/libm/math/w_fmod.c
+++ /dev/null
@@ -1,107 +0,0 @@
-
-/* @(#)w_fmod.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
-<<fmod>>, <<fmodf>>---floating-point remainder (modulo)
-
-INDEX
-fmod
-INDEX
-fmodf
-
-ANSI_SYNOPSIS
-#include <math.h>
-double fmod(double <[x]>, double <[y]>)
-float fmodf(float <[x]>, float <[y]>)
-
-TRAD_SYNOPSIS
-#include <math.h>
-double fmod(<[x]>, <[y]>)
-double (<[x]>, <[y]>);
-
-float fmodf(<[x]>, <[y]>)
-float (<[x]>, <[y]>);
-
-DESCRIPTION
-The <<fmod>> and <<fmodf>> functions compute the floating-point
-remainder of <[x]>/<[y]> (<[x]> modulo <[y]>).
-
-RETURNS
-The <<fmod>> function returns the value
-@ifinfo
-<[x]>-<[i]>*<[y]>,
-@end ifinfo
-@tex
-$x-i\times y$,
-@end tex
-for the largest integer <[i]> such that, if <[y]> is nonzero, the
-result has the same sign as <[x]> and magnitude less than the
-magnitude of <[y]>.
-
-<<fmod(<[x]>,0)>> returns NaN, and sets <<errno>> to <<EDOM>>.
-
-You can modify error treatment for these functions using <<matherr>>.
-
-PORTABILITY
-<<fmod>> is ANSI C. <<fmodf>> is an extension.
-*/
-
-/*
- * wrapper fmod(x,y)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double fmod(double x, double y) /* wrapper fmod */
-#else
- double fmod(x,y) /* wrapper fmod */
- double x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_fmod(x,y);
-#else
- double z;
- struct exception exc;
- z = __ieee754_fmod(x,y);
- if(_LIB_VERSION == _IEEE_ ||isnan(y)||isnan(x)) return z;
- if(y==0.0) {
- /* fmod(x,0) */
- exc.type = DOMAIN;
- exc.name = "fmod";
- exc.arg1 = x;
- exc.arg2 = y;
- exc.err = 0;
- if (_LIB_VERSION == _SVID_)
- exc.retval = x;
- else
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_gamma.c b/newlib/libm/math/w_gamma.c
deleted file mode 100644
index 358a493..0000000
--- a/newlib/libm/math/w_gamma.c
+++ /dev/null
@@ -1,193 +0,0 @@
-
-/* @(#)w_gamma.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
-FUNCTION
- <<gamma>>, <<gammaf>>, <<lgamma>>, <<lgammaf>>, <<gamma_r>>,
- <<gammaf_r>>, <<lgamma_r>>, <<lgammaf_r>>---logarithmic gamma
- function
-INDEX
-gamma
-INDEX
-gammaf
-INDEX
-lgamma
-INDEX
-lgammaf
-INDEX
-gamma_r
-INDEX
-gammaf_r
-INDEX
-lgamma_r
-INDEX
-lgammaf_r
-
-ANSI_SYNOPSIS
-#include <math.h>
-double gamma(double <[x]>);
-float gammaf(float <[x]>);
-double lgamma(double <[x]>);
-float lgammaf(float <[x]>);
-double gamma_r(double <[x]>, int *<[signgamp]>);
-float gammaf_r(float <[x]>, int *<[signgamp]>);
-double lgamma_r(double <[x]>, int *<[signgamp]>);
-float lgammaf_r(float <[x]>, int *<[signgamp]>);
-
-TRAD_SYNOPSIS
-#include <math.h>
-double gamma(<[x]>)
-double <[x]>;
-float gammaf(<[x]>)
-float <[x]>;
-double lgamma(<[x]>)
-double <[x]>;
-float lgammaf(<[x]>)
-float <[x]>;
-double gamma_r(<[x]>, <[signgamp]>)
-double <[x]>;
-int <[signgamp]>;
-float gammaf_r(<[x]>, <[signgamp]>)
-float <[x]>;
-int <[signgamp]>;
-double lgamma_r(<[x]>, <[signgamp]>)
-double <[x]>;
-int <[signgamp]>;
-float lgammaf_r(<[x]>, <[signgamp]>)
-float <[x]>;
-int <[signgamp]>;
-
-DESCRIPTION
-<<gamma>> calculates
-@tex
-$\mit ln\bigl(\Gamma(x)\bigr)$,
-@end tex
-the natural logarithm of the gamma function of <[x]>. The gamma function
-(<<exp(gamma(<[x]>))>>) is a generalization of factorial, and retains
-the property that
-@ifinfo
-<<exp(gamma(N))>> is equivalent to <<N*exp(gamma(N-1))>>.
-@end ifinfo
-@tex
-$\mit \Gamma(N)\equiv N\times\Gamma(N-1)$.
-@end tex
-Accordingly, the results of the gamma function itself grow very
-quickly. <<gamma>> is defined as
-@tex
-$\mit ln\bigl(\Gamma(x)\bigr)$ rather than simply $\mit \Gamma(x)$
-@end tex
-@ifinfo
-the natural log of the gamma function, rather than the gamma function
-itself,
-@end ifinfo
-to extend the useful range of results representable.
-
-The sign of the result is returned in the global variable <<signgam>>,
-which is declared in math.h.
-
-<<gammaf>> performs the same calculation as <<gamma>>, but uses and
-returns <<float>> values.
-
-<<lgamma>> and <<lgammaf>> are alternate names for <<gamma>> and
-<<gammaf>>. The use of <<lgamma>> instead of <<gamma>> is a reminder
-that these functions compute the log of the gamma function, rather
-than the gamma function itself.
-
-The functions <<gamma_r>>, <<gammaf_r>>, <<lgamma_r>>, and
-<<lgammaf_r>> are just like <<gamma>>, <<gammaf>>, <<lgamma>>, and
-<<lgammaf>>, respectively, but take an additional argument. This
-additional argument is a pointer to an integer. This additional
-argument is used to return the sign of the result, and the global
-variable <<signgam>> is not used. These functions may be used for
-reentrant calls (but they will still set the global variable <<errno>>
-if an error occurs).
-
-RETURNS
-Normally, the computed result is returned.
-
-When <[x]> is a nonpositive integer, <<gamma>> returns <<HUGE_VAL>>
-and <<errno>> is set to <<EDOM>>. If the result overflows, <<gamma>>
-returns <<HUGE_VAL>> and <<errno>> is set to <<ERANGE>>.
-
-You can modify this error treatment using <<matherr>>.
-
-PORTABILITY
-Neither <<gamma>> nor <<gammaf>> is ANSI C. */
-
-/* double gamma(double x)
- * Return the logarithm of the Gamma function of x.
- *
- * Method: call gamma_r
- */
-
-#include "fdlibm.h"
-#include <reent.h>
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double gamma(double x)
-#else
- double gamma(x)
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_gamma_r(x,&(_REENT_SIGNGAM(_REENT)));
-#else
- double y;
- struct exception exc;
- y = __ieee754_gamma_r(x,&(_REENT_SIGNGAM(_REENT)));
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finite(y)&&finite(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "gamma";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floor(x)==x&&x<=0.0) {
- /* gamma(-integer) or gamma(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* gamma(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return y;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_hypot.c b/newlib/libm/math/w_hypot.c
deleted file mode 100644
index 318853d..0000000
--- a/newlib/libm/math/w_hypot.c
+++ /dev/null
@@ -1,109 +0,0 @@
-
-/* @(#)w_hypot.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<hypot>>, <<hypotf>>---distance from origin
-INDEX
- hypot
-INDEX
- hypotf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double hypot(double <[x]>, double <[y]>);
- float hypotf(float <[x]>, float <[y]>);
-
-TRAD_SYNOPSIS
- double hypot(<[x]>, <[y]>)
- double <[x]>, <[y]>;
-
- float hypotf(<[x]>, <[y]>)
- float <[x]>, <[y]>;
-
-DESCRIPTION
- <<hypot>> calculates the Euclidean distance
- @tex
- $\sqrt{x^2+y^2}$
- @end tex
- @ifinfo
- <<sqrt(<[x]>*<[x]> + <[y]>*<[y]>)>>
- @end ifinfo
- between the origin (0,0) and a point represented by the
- Cartesian coordinates (<[x]>,<[y]>). <<hypotf>> differs only
- in the type of its arguments and result.
-
-RETURNS
- Normally, the distance value is returned. On overflow,
- <<hypot>> returns <<HUGE_VAL>> and sets <<errno>> to
- <<ERANGE>>.
-
- You can change the error treatment with <<matherr>>.
-
-PORTABILITY
- <<hypot>> and <<hypotf>> are not ANSI C. */
-
-/*
- * wrapper hypot(x,y)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double hypot(double x, double y)/* wrapper hypot */
-#else
- double hypot(x,y) /* wrapper hypot */
- double x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_hypot(x,y);
-#else
- double z;
- struct exception exc;
- z = __ieee754_hypot(x,y);
- if(_LIB_VERSION == _IEEE_) return z;
- if((!finite(z))&&finite(x)&&finite(y)) {
- /* hypot(finite,finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "hypot";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_j0.c b/newlib/libm/math/w_j0.c
deleted file mode 100644
index 4f07908..0000000
--- a/newlib/libm/math/w_j0.c
+++ /dev/null
@@ -1,229 +0,0 @@
-
-/* @(#)w_j0.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
-<<jN>>,<<jNf>>,<<yN>>,<<yNf>>---Bessel functions
-
-INDEX
-j0
-INDEX
-j0f
-INDEX
-j1
-INDEX
-j1f
-INDEX
-jn
-INDEX
-jnf
-INDEX
-y0
-INDEX
-y0f
-INDEX
-y1
-INDEX
-y1f
-INDEX
-yn
-INDEX
-ynf
-
-ANSI_SYNOPSIS
-#include <math.h>
-double j0(double <[x]>);
-float j0f(float <[x]>);
-double j1(double <[x]>);
-float j1f(float <[x]>);
-double jn(int <[n]>, double <[x]>);
-float jnf(int <[n]>, float <[x]>);
-double y0(double <[x]>);
-float y0f(float <[x]>);
-double y1(double <[x]>);
-float y1f(float <[x]>);
-double yn(int <[n]>, double <[x]>);
-float ynf(int <[n]>, float <[x]>);
-
-TRAD_SYNOPSIS
-#include <math.h>
-
-double j0(<[x]>)
-double <[x]>;
-float j0f(<[x]>)
-float <[x]>;
-double j1(<[x]>)
-double <[x]>;
-float j1f(<[x]>)
-float <[x]>;
-double jn(<[n]>, <[x]>)
-int <[n]>;
-double <[x]>;
-float jnf(<[n]>, <[x]>)
-int <[n]>;
-float <[x]>;
-
-double y0(<[x]>)
-double <[x]>;
-float y0f(<[x]>)
-float <[x]>;
-double y1(<[x]>)
-double <[x]>;
-float y1f(<[x]>)
-float <[x]>;
-double yn(<[n]>, <[x]>)
-int <[n]>;
-double <[x]>;
-float ynf(<[n]>, <[x]>)
-int <[n]>;
-float <[x]>;
-
-DESCRIPTION
-The Bessel functions are a family of functions that solve the
-differential equation
-@ifinfo
-. 2 2 2
-. x y'' + xy' + (x - p )y = 0
-@end ifinfo
-@tex
-$$x^2{d^2y\over dx^2} + x{dy\over dx} + (x^2-p^2)y = 0$$
-@end tex
-These functions have many applications in engineering and physics.
-
-<<jn>> calculates the Bessel function of the first kind of order
-<[n]>. <<j0>> and <<j1>> are special cases for order 0 and order
-1 respectively.
-
-Similarly, <<yn>> calculates the Bessel function of the second kind of
-order <[n]>, and <<y0>> and <<y1>> are special cases for order 0 and
-1.
-
-<<jnf>>, <<j0f>>, <<j1f>>, <<ynf>>, <<y0f>>, and <<y1f>> perform the
-same calculations, but on <<float>> rather than <<double>> values.
-
-RETURNS
-The value of each Bessel function at <[x]> is returned.
-
-PORTABILITY
-None of the Bessel functions are in ANSI C.
-*/
-
-/*
- * wrapper j0(double x), y0(double x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double j0(double x) /* wrapper j0 */
-#else
- double j0(x) /* wrapper j0 */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_j0(x);
-#else
- struct exception exc;
- double z = __ieee754_j0(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(fabs(x)>X_TLOSS) {
- /* j0(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "j0";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef __STDC__
- double y0(double x) /* wrapper y0 */
-#else
- double y0(x) /* wrapper y0 */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_y0(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_y0(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
- if(x <= 0.0){
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- /* y0(0) = -inf or y0(x<0) = NaN */
- exc.type = DOMAIN; /* should be SING for IEEE y0(0) */
- exc.name = "y0";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- if(x>X_TLOSS) {
- /* y0(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "y0";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
-
-
-
diff --git a/newlib/libm/math/w_j1.c b/newlib/libm/math/w_j1.c
deleted file mode 100644
index ba7df15..0000000
--- a/newlib/libm/math/w_j1.c
+++ /dev/null
@@ -1,121 +0,0 @@
-
-/* @(#)w_j1.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper of j1,y1
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double j1(double x) /* wrapper j1 */
-#else
- double j1(x) /* wrapper j1 */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_j1(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_j1(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
- if(fabs(x)>X_TLOSS) {
- /* j1(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "j1";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef __STDC__
- double y1(double x) /* wrapper y1 */
-#else
- double y1(x) /* wrapper y1 */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_y1(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_y1(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
- if(x <= 0.0){
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- /* y1(0) = -inf or y1(x<0) = NaN */
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = "y1";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- if(x>X_TLOSS) {
- /* y1(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "y1";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
-
diff --git a/newlib/libm/math/w_jn.c b/newlib/libm/math/w_jn.c
deleted file mode 100644
index 6cadc9a..0000000
--- a/newlib/libm/math/w_jn.c
+++ /dev/null
@@ -1,141 +0,0 @@
-
-/* @(#)w_jn.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper jn(int n, double x), yn(int n, double x)
- * floating point Bessel's function of the 1st and 2nd kind
- * of order n
- *
- * Special cases:
- * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
- * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
- * Note 2. About jn(n,x), yn(n,x)
- * For n=0, j0(x) is called,
- * for n=1, j1(x) is called,
- * for n<x, forward recursion us used starting
- * from values of j0(x) and j1(x).
- * for n>x, a continued fraction approximation to
- * j(n,x)/j(n-1,x) is evaluated and then backward
- * recursion is used starting from a supposed value
- * for j(n,x). The resulting value of j(0,x) is
- * compared with the actual value to correct the
- * supposed value of j(n,x).
- *
- * yn(n,x) is similar in all respects, except
- * that forward recursion is used for all
- * values of n>1.
- *
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double jn(int n, double x) /* wrapper jn */
-#else
- double jn(n,x) /* wrapper jn */
- double x; int n;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_jn(n,x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_jn(n,x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
- if(fabs(x)>X_TLOSS) {
- /* jn(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "jn";
- exc.err = 0;
- exc.arg1 = n;
- exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef __STDC__
- double yn(int n, double x) /* wrapper yn */
-#else
- double yn(n,x) /* wrapper yn */
- double x; int n;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_yn(n,x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_yn(n,x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) ) return z;
- if(x <= 0.0){
- /* yn(n,0) = -inf or yn(x<0) = NaN */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = "yn";
- exc.err = 0;
- exc.arg1 = n;
- exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- if(x>X_TLOSS) {
- /* yn(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "yn";
- exc.err = 0;
- exc.arg1 = n;
- exc.arg2 = x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_lgamma.c b/newlib/libm/math/w_lgamma.c
deleted file mode 100644
index e56e477..0000000
--- a/newlib/libm/math/w_lgamma.c
+++ /dev/null
@@ -1,89 +0,0 @@
-
-/* @(#)w_lgamma.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/* double lgamma(double x)
- * Return the logarithm of the Gamma function of x.
- *
- * Method: call __ieee754_lgamma_r
- */
-
-#include "fdlibm.h"
-#include <reent.h>
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double lgamma(double x)
-#else
- double lgamma(x)
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_lgamma_r(x,&(_REENT_SIGNGAM(_REENT)));
-#else
- double y;
- struct exception exc;
- y = __ieee754_lgamma_r(x,&(_REENT_SIGNGAM(_REENT)));
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finite(y)&&finite(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "lgamma";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floor(x)==x&&x<=0.0) {
- /* lgamma(-integer) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
-
- } else {
- /* lgamma(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return y;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
-
-
-
diff --git a/newlib/libm/math/w_log.c b/newlib/libm/math/w_log.c
deleted file mode 100644
index dcc8b97..0000000
--- a/newlib/libm/math/w_log.c
+++ /dev/null
@@ -1,115 +0,0 @@
-
-/* @(#)w_log.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<log>>, <<logf>>---natural logarithms
-
-INDEX
- log
-INDEX
- logf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double log(double <[x]>);
- float logf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double log(<[x]>);
- double <[x]>;
-
- float logf(<[x]>);
- float <[x]>;
-
-DESCRIPTION
-Return the natural logarithm of <[x]>, that is, its logarithm base e
-(where e is the base of the natural system of logarithms, 2.71828@dots{}).
-<<log>> and <<logf>> are identical save for the return and argument types.
-
-You can use the (non-ANSI) function <<matherr>> to specify error
-handling for these functions.
-
-RETURNS
-Normally, returns the calculated value. When <[x]> is zero, the
-returned value is <<-HUGE_VAL>> and <<errno>> is set to <<ERANGE>>.
-When <[x]> is negative, the returned value is <<-HUGE_VAL>> and
-<<errno>> is set to <<EDOM>>. You can control the error behavior via
-<<matherr>>.
-
-PORTABILITY
-<<log>> is ANSI, <<logf>> is an extension.
-*/
-
-/*
- * wrapper log(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double log(double x) /* wrapper log */
-#else
- double log(x) /* wrapper log */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_log(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_log(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x) || x > 0.0) return z;
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "log";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if(x==0.0) {
- /* log(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* log(x<0) */
- exc.type = DOMAIN;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_log10.c b/newlib/libm/math/w_log10.c
deleted file mode 100644
index f427b86..0000000
--- a/newlib/libm/math/w_log10.c
+++ /dev/null
@@ -1,115 +0,0 @@
-
-/* @(#)w_log10.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<log10>>, <<log10f>>---base 10 logarithms
-
-INDEX
-log10
-INDEX
-log10f
-
-ANSI_SYNOPSIS
- #include <math.h>
- double log10(double <[x]>);
- float log10f(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double log10(<[x]>)
- double <[x]>;
-
- float log10f(<[x]>)
- float <[x]>;
-
-DESCRIPTION
-<<log10>> returns the base 10 logarithm of <[x]>.
-It is implemented as <<log(<[x]>) / log(10)>>.
-
-<<log10f>> is identical, save that it takes and returns <<float>> values.
-
-RETURNS
-<<log10>> and <<log10f>> return the calculated value.
-
-See the description of <<log>> for information on errors.
-
-PORTABILITY
-<<log10>> is ANSI C. <<log10f>> is an extension.
-
- */
-
-/*
- * wrapper log10(X)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double log10(double x) /* wrapper log10 */
-#else
- double log10(x) /* wrapper log10 */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_log10(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_log10(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(x<=0.0) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "log10";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if(x==0.0) {
- /* log10(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* log10(x<0) */
- exc.type = DOMAIN;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_pow.c b/newlib/libm/math/w_pow.c
deleted file mode 100644
index 3df099a..0000000
--- a/newlib/libm/math/w_pow.c
+++ /dev/null
@@ -1,231 +0,0 @@
-
-
-/* @(#)w_pow.c 5.2 93/10/01 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<pow>>, <<powf>>---x to the power y
-INDEX
- pow
-INDEX
- powf
-
-
-ANSI_SYNOPSIS
- #include <math.h>
- double pow(double <[x]>, double <[y]>);
- float pow(float <[x]>, float <[y]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double pow(<[x]>, <[y]>);
- double <[x]>, <[y]>;
-
- float pow(<[x]>, <[y]>);
- float <[x]>, <[y]>;
-
-DESCRIPTION
- <<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>.
- @tex
- (That is, $x^y$.)
- @end tex
-
-RETURNS
- On success, <<pow>> and <<powf>> return the value calculated.
-
- When the argument values would produce overflow, <<pow>>
- returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the
- argument <[x]> passed to <<pow>> or <<powf>> is a negative
- noninteger, and <[y]> is also not an integer, then <<errno>>
- is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then
- <<pow>> and <<powf>> return <<1>>.
-
- You can modify error handling for these functions using <<matherr>>.
-
-PORTABILITY
- <<pow>> is ANSI C. <<powf>> is an extension. */
-
-/*
- * wrapper pow(x,y) return x**y
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double pow(double x, double y) /* wrapper pow */
-#else
- double pow(x,y) /* wrapper pow */
- double x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_pow(x,y);
-#else
- double z;
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- struct exception exc;
- z=__ieee754_pow(x,y);
- if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
- if(isnan(x)) {
- if(y==0.0) {
- /* pow(NaN,0.0) */
- /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
- exc.type = DOMAIN;
- exc.name = "pow";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- exc.retval = x;
- if (_LIB_VERSION == _IEEE_ ||
- _LIB_VERSION == _POSIX_) exc.retval = 1.0;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
- }
- if(x==0.0){
- if(y==0.0) {
- /* pow(0.0,0.0) */
- /* error only if _LIB_VERSION == _SVID_ */
- exc.type = DOMAIN;
- exc.name = "pow";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- exc.retval = 0.0;
- if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- if(finite(y)&&y<0.0) {
- /* 0**neg */
- exc.type = DOMAIN;
- exc.name = "pow";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = 0.0;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- return z;
- }
- if(!finite(z)) {
- if(finite(x)&&finite(y)) {
- if(isnan(z)) {
- /* neg**non-integral */
- exc.type = DOMAIN;
- exc.name = "pow";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = 0.0;
- else
- exc.retval = 0.0/0.0; /* X/Open allow NaN */
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else {
- /* pow(x,y) overflow */
- exc.type = OVERFLOW;
- exc.name = "pow";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- if (_LIB_VERSION == _SVID_) {
- exc.retval = HUGE;
- y *= 0.5;
- if(x<0.0&&rint(y)!=y) exc.retval = -HUGE;
- } else {
- exc.retval = HUGE_VAL;
- y *= 0.5;
- if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL;
- }
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- }
- }
- if(z==0.0&&finite(x)&&finite(y)) {
- /* pow(x,y) underflow */
- exc.type = UNDERFLOW;
- exc.name = "pow";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/newlib/libm/math/w_remainder.c b/newlib/libm/math/w_remainder.c
deleted file mode 100644
index e4c1967..0000000
--- a/newlib/libm/math/w_remainder.c
+++ /dev/null
@@ -1,108 +0,0 @@
-
-/* @(#)w_remainder.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
-<<remainder>>, <<remainderf>>---round and remainder
-INDEX
- remainder
-INDEX
- remainderf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double remainder(double <[x]>, double <[y]>);
- float remainderf(float <[x]>, float <[y]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double remainder(<[x]>,<[y]>)
- double <[x]>, <[y]>;
- float remainderf(<[x]>,<[y]>)
- float <[x]>, <[y]>;
-
-DESCRIPTION
-<<remainder>> and <<remainderf>> find the remainder of
-<[x]>/<[y]>; this value is in the range -<[y]>/2 .. +<[y]>/2.
-
-RETURNS
-<<remainder>> returns the integer result as a double.
-
-PORTABILITY
-<<remainder>> is a System V release 4.
-<<remainderf>> is an extension.
-
-*/
-
-/*
- * wrapper remainder(x,p)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double remainder(double x, double y) /* wrapper remainder */
-#else
- double remainder(x,y) /* wrapper remainder */
- double x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_remainder(x,y);
-#else
- double z;
- struct exception exc;
- z = __ieee754_remainder(x,y);
- if(_LIB_VERSION == _IEEE_ || isnan(y)) return z;
- if(y==0.0) {
- /* remainder(x,0) */
- exc.type = DOMAIN;
- exc.name = "remainder";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = y;
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
diff --git a/newlib/libm/math/w_scalb.c b/newlib/libm/math/w_scalb.c
deleted file mode 100644
index c324968..0000000
--- a/newlib/libm/math/w_scalb.c
+++ /dev/null
@@ -1,94 +0,0 @@
-
-/* @(#)w_scalb.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper scalb(double x, double fn) is provide for
- * passing various standard test suite. One
- * should use scalbn() instead.
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-#ifdef _SCALB_INT
- double scalb(double x, int fn) /* wrapper scalb */
-#else
- double scalb(double x, double fn) /* wrapper scalb */
-#endif
-#else
- double scalb(x,fn) /* wrapper scalb */
-#ifdef _SCALB_INT
- double x; int fn;
-#else
- double x,fn;
-#endif
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_scalb(x,fn);
-#else
- double z;
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- struct exception exc;
- z = __ieee754_scalb(x,fn);
- if(_LIB_VERSION == _IEEE_) return z;
- if(!(finite(z)||isnan(z))&&finite(x)) {
- /* scalb overflow; SVID also returns +-HUGE_VAL */
- exc.type = OVERFLOW;
- exc.name = "scalb";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = fn;
- exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- if(z==0.0&&z!=x) {
- /* scalb underflow */
- exc.type = UNDERFLOW;
- exc.name = "scalb";
- exc.err = 0;
- exc.arg1 = x;
- exc.arg2 = fn;
- exc.retval = copysign(0.0,x);
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
-#ifndef _SCALB_INT
- if(!finite(fn)) errno = ERANGE;
-#endif
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_sinh.c b/newlib/libm/math/w_sinh.c
deleted file mode 100644
index 02a3888..0000000
--- a/newlib/libm/math/w_sinh.c
+++ /dev/null
@@ -1,120 +0,0 @@
-
-/* @(#)w_sinh.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-
-/*
-FUNCTION
- <<sinh>>, <<sinhf>>---hyperbolic sine
-
-INDEX
- sinh
-INDEX
- sinhf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double sinh(double <[x]>);
- float sinhf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double sinh(<[x]>)
- double <[x]>;
-
- float sinhf(<[x]>)
- float <[x]>;
-
-DESCRIPTION
- <<sinh>> computes the hyperbolic sine of the argument <[x]>.
- Angles are specified in radians. <<sinh>>(<[x]>) is defined as
- @ifinfo
- . (exp(<[x]>) - exp(-<[x]>))/2
- @end ifinfo
- @tex
- $${e^x - e^{-x}}\over 2$$
- @end tex
-
- <<sinhf>> is identical, save that it takes and returns <<float>> values.
-
-RETURNS
- The hyperbolic sine of <[x]> is returned.
-
- When the correct result is too large to be representable (an
- overflow), <<sinh>> returns <<HUGE_VAL>> with the
- appropriate sign, and sets the global value <<errno>> to
- <<ERANGE>>.
-
- You can modify error handling for these functions with <<matherr>>.
-
-PORTABILITY
- <<sinh>> is ANSI C.
- <<sinhf>> is an extension.
-
-QUICKREF
- sinh ansi pure
- sinhf - pure
-*/
-
-/*
- * wrapper sinh(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double sinh(double x) /* wrapper sinh */
-#else
- double sinh(x) /* wrapper sinh */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_sinh(x);
-#else
- double z;
- struct exception exc;
- z = __ieee754_sinh(x);
- if(_LIB_VERSION == _IEEE_) return z;
- if(!finite(z)&&finite(x)) {
- /* sinh(finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "sinh";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = ( (x>0.0) ? HUGE : -HUGE);
- else
- exc.retval = ( (x>0.0) ? HUGE_VAL : -HUGE_VAL);
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/w_sqrt.c b/newlib/libm/math/w_sqrt.c
deleted file mode 100644
index 23a793c..0000000
--- a/newlib/libm/math/w_sqrt.c
+++ /dev/null
@@ -1,93 +0,0 @@
-
-/* @(#)w_sqrt.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
-FUNCTION
- <<sqrt>>, <<sqrtf>>---positive square root
-
-INDEX
- sqrt
-INDEX
- sqrtf
-
-ANSI_SYNOPSIS
- #include <math.h>
- double sqrt(double <[x]>);
- float sqrtf(float <[x]>);
-
-TRAD_SYNOPSIS
- #include <math.h>
- double sqrt(<[x]>);
- float sqrtf(<[x]>);
-
-DESCRIPTION
- <<sqrt>> computes the positive square root of the argument.
- You can modify error handling for this function with
- <<matherr>>.
-
-RETURNS
- On success, the square root is returned. If <[x]> is real and
- positive, then the result is positive. If <[x]> is real and
- negative, the global value <<errno>> is set to <<EDOM>> (domain error).
-
-
-PORTABILITY
- <<sqrt>> is ANSI C. <<sqrtf>> is an extension.
-*/
-
-/*
- * wrapper sqrt(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double sqrt(double x) /* wrapper sqrt */
-#else
- double sqrt(x) /* wrapper sqrt */
- double x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_sqrt(x);
-#else
- struct exception exc;
- double z;
- z = __ieee754_sqrt(x);
- if(_LIB_VERSION == _IEEE_ || isnan(x)) return z;
- if(x<0.0) {
- exc.type = DOMAIN;
- exc.name = "sqrt";
- exc.err = 0;
- exc.arg1 = exc.arg2 = x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = 0.0;
- else
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_acos.c b/newlib/libm/math/wf_acos.c
deleted file mode 100644
index 8a10374..0000000
--- a/newlib/libm/math/wf_acos.c
+++ /dev/null
@@ -1,69 +0,0 @@
-/* wf_acos.c -- float version of w_acos.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrap_acosf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef _HAVE_STDC
- float acosf(float x) /* wrapper acosf */
-#else
- float acosf(x) /* wrapper acosf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_acosf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_acosf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(fabsf(x)>(float)1.0) {
- /* acosf(|x|>1) */
- exc.type = DOMAIN;
- exc.name = "acosf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double acos(double x)
-#else
- double acos(x)
- double x;
-#endif
-{
- return (double) acosf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_acosh.c b/newlib/libm/math/wf_acosh.c
deleted file mode 100644
index 19c2450..0000000
--- a/newlib/libm/math/wf_acosh.c
+++ /dev/null
@@ -1,70 +0,0 @@
-/* wf_acosh.c -- float version of w_acosh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
- * wrapper acoshf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float acoshf(float x) /* wrapper acoshf */
-#else
- float acoshf(x) /* wrapper acoshf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_acoshf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_acoshf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(x<(float)1.0) {
- /* acoshf(x<1) */
- exc.type = DOMAIN;
- exc.name = "acoshf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double acosh(double x)
-#else
- double acosh(x)
- double x;
-#endif
-{
- return (double) acoshf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_asin.c b/newlib/libm/math/wf_asin.c
deleted file mode 100644
index a5225f2..0000000
--- a/newlib/libm/math/wf_asin.c
+++ /dev/null
@@ -1,71 +0,0 @@
-/* wf_asin.c -- float version of w_asin.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
- * wrapper asinf(x)
- */
-
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float asinf(float x) /* wrapper asinf */
-#else
- float asinf(x) /* wrapper asinf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_asinf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_asinf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(fabsf(x)>(float)1.0) {
- /* asinf(|x|>1) */
- exc.type = DOMAIN;
- exc.name = "asinf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if(_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double asin(double x)
-#else
- double asin(x)
- double x;
-#endif
-{
- return (double) asinf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_atan2.c b/newlib/libm/math/wf_atan2.c
deleted file mode 100644
index 069a7ca..0000000
--- a/newlib/libm/math/wf_atan2.c
+++ /dev/null
@@ -1,71 +0,0 @@
-/* wf_atan2.c -- float version of w_atan2.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-/*
- * wrapper atan2f(y,x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float atan2f(float y, float x) /* wrapper atan2f */
-#else
- float atan2f(y,x) /* wrapper atan2 */
- float y,x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_atan2f(y,x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_atan2f(y,x);
- if(_LIB_VERSION == _IEEE_||isnanf(x)||isnanf(y)) return z;
- if(x==(float)0.0&&y==(float)0.0) {
- /* atan2f(+-0,+-0) */
- exc.arg1 = y;
- exc.arg2 = x;
- exc.err = 0;
- exc.type = DOMAIN;
- exc.name = "atan2f";
- exc.retval = 0.0;
- if(_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double atan2(double y, double x)
-#else
- double atan2(y,x)
- double y,x;
-#endif
-{
- return (double) atan2f((float) y, (float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_atanh.c b/newlib/libm/math/wf_atanh.c
deleted file mode 100644
index 457cdc6e..0000000
--- a/newlib/libm/math/wf_atanh.c
+++ /dev/null
@@ -1,83 +0,0 @@
-/* wf_atanh.c -- float version of w_atanh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/*
- * wrapper atanhf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float atanhf(float x) /* wrapper atanhf */
-#else
- float atanhf(x) /* wrapper atanhf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_atanhf(x);
-#else
- float z,y;
- struct exception exc;
- z = __ieee754_atanhf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- y = fabsf(x);
- if(y>=(float)1.0) {
- if(y>(float)1.0) {
- /* atanhf(|x|>1) */
- exc.type = DOMAIN;
- exc.name = "atanhf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* atanhf(|x|=1) */
- exc.type = SING;
- exc.name = "atanhf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = x/0.0; /* sign(x)*inf */
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double atanh(double x)
-#else
- double atanh(x)
- double x;
-#endif
-{
- return (double) atanhf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_cabs.c b/newlib/libm/math/wf_cabs.c
deleted file mode 100644
index c3ed0ca..0000000
--- a/newlib/libm/math/wf_cabs.c
+++ /dev/null
@@ -1,20 +0,0 @@
-/*
- * cabsf() wrapper for hypotf().
- *
- * Written by J.T. Conklin, <jtc@wimsey.com>
- * Placed into the Public Domain, 1994.
- */
-
-#include "fdlibm.h"
-
-struct complex {
- float x;
- float y;
-};
-
-float
-cabsf(z)
- struct complex z;
-{
- return hypotf(z.x, z.y);
-}
diff --git a/newlib/libm/math/wf_cosh.c b/newlib/libm/math/wf_cosh.c
deleted file mode 100644
index 82b76f3..0000000
--- a/newlib/libm/math/wf_cosh.c
+++ /dev/null
@@ -1,78 +0,0 @@
-/* wf_cosh.c -- float version of w_cosh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper coshf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float coshf(float x) /* wrapper coshf */
-#else
- float coshf(x) /* wrapper coshf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_coshf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_coshf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(fabsf(x)>(float)8.9415985107e+01) {
- /* coshf(finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "coshf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double cosh(double x)
-#else
- double cosh(x)
- double x;
-#endif
-{
- return (double) coshf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_drem.c b/newlib/libm/math/wf_drem.c
deleted file mode 100644
index 7c3f7c5..0000000
--- a/newlib/libm/math/wf_drem.c
+++ /dev/null
@@ -1,19 +0,0 @@
-/*
- * dremf() wrapper for remainderf().
- *
- * Written by J.T. Conklin, <jtc@wimsey.com>
- * Placed into the Public Domain, 1994.
- */
-
-#include "fdlibm.h"
-
-float
-#ifdef __STDC__
-dremf(float x, float y)
-#else
-dremf(x, y)
- float x, y;
-#endif
-{
- return remainderf(x, y);
-}
diff --git a/newlib/libm/math/wf_exp.c b/newlib/libm/math/wf_exp.c
deleted file mode 100644
index 70f4459..0000000
--- a/newlib/libm/math/wf_exp.c
+++ /dev/null
@@ -1,103 +0,0 @@
-/* wf_exp.c -- float version of w_exp.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper expf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
-static const float
-#else
-static float
-#endif
-o_threshold= 8.8721679688e+01, /* 0x42b17180 */
-u_threshold= -1.0397208405e+02; /* 0xc2cff1b5 */
-
-#ifdef __STDC__
- float expf(float x) /* wrapper expf */
-#else
- float expf(x) /* wrapper expf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_expf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_expf(x);
- if(_LIB_VERSION == _IEEE_) return z;
- if(finitef(x)) {
- if(x>o_threshold) {
- /* expf(finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "expf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else if(x<u_threshold) {
- /* expf(finite) underflow */
- exc.type = UNDERFLOW;
- exc.name = "expf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- }
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double exp(double x)
-#else
- double exp(x)
- double x;
-#endif
-{
- return (double) expf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_fmod.c b/newlib/libm/math/wf_fmod.c
deleted file mode 100644
index 320daab..0000000
--- a/newlib/libm/math/wf_fmod.c
+++ /dev/null
@@ -1,73 +0,0 @@
-/* wf_fmod.c -- float version of w_fmod.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper fmodf(x,y)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float fmodf(float x, float y) /* wrapper fmodf */
-#else
- float fmodf(x,y) /* wrapper fmodf */
- float x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_fmodf(x,y);
-#else
- float z;
- struct exception exc;
- z = __ieee754_fmodf(x,y);
- if(_LIB_VERSION == _IEEE_ ||isnanf(y)||isnanf(x)) return z;
- if(y==(float)0.0) {
- /* fmodf(x,0) */
- exc.type = DOMAIN;
- exc.name = "fmodf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = x;
- else
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double fmod(double x, double y)
-#else
- double fmod(x,y)
- double x,y;
-#endif
-{
- return (double) fmodf((float) x, (float) y);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_gamma.c b/newlib/libm/math/wf_gamma.c
deleted file mode 100644
index 1204f39..0000000
--- a/newlib/libm/math/wf_gamma.c
+++ /dev/null
@@ -1,93 +0,0 @@
-/* wf_gamma.c -- float version of w_gamma.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-#include <reent.h>
-#include <errno.h>
-
-#ifdef __STDC__
- float gammaf(float x)
-#else
- float gammaf(x)
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_gammaf_r(x,&(_REENT_SIGNGAM(_REENT)));
-#else
- float y;
- struct exception exc;
- y = __ieee754_gammaf_r(x,&(_REENT_SIGNGAM(_REENT)));
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finitef(y)&&finitef(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- if(floorf(x)==x&&x<=(float)0.0) {
- /* gammaf(-integer) or gammaf(0) */
- exc.type = SING;
- exc.name = "gammaf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* gammaf(finite) overflow */
- exc.type = OVERFLOW;
- exc.name = "gammaf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return y;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double gamma(double x)
-#else
- double gamma(x)
- double x;
-#endif
-{
- return (double) gammaf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_hypot.c b/newlib/libm/math/wf_hypot.c
deleted file mode 100644
index c04ace1..0000000
--- a/newlib/libm/math/wf_hypot.c
+++ /dev/null
@@ -1,79 +0,0 @@
-/* wf_hypot.c -- float version of w_hypot.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper hypotf(x,y)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float hypotf(float x, float y) /* wrapper hypotf */
-#else
- float hypotf(x,y) /* wrapper hypotf */
- float x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_hypotf(x,y);
-#else
- float z;
- struct exception exc;
- z = __ieee754_hypotf(x,y);
- if(_LIB_VERSION == _IEEE_) return z;
- if((!finitef(z))&&finitef(x)&&finitef(y)) {
- /* hypotf(finite,finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "hypotf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double hypot(double x, double y)
-#else
- double hypot(x,y)
- double x,y;
-#endif
-{
- return (double) hypotf((float) x, (float) y);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_j0.c b/newlib/libm/math/wf_j0.c
deleted file mode 100644
index 0f3a7c1..0000000
--- a/newlib/libm/math/wf_j0.c
+++ /dev/null
@@ -1,137 +0,0 @@
-/* wf_j0.c -- float version of w_j0.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper j0f(float x), y0f(float x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float j0f(float x) /* wrapper j0f */
-#else
- float j0f(x) /* wrapper j0f */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_j0f(x);
-#else
- struct exception exc;
- float z = __ieee754_j0f(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(fabsf(x)>(float)X_TLOSS) {
- /* j0f(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "j0f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef __STDC__
- float y0f(float x) /* wrapper y0f */
-#else
- float y0f(x) /* wrapper y0f */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_y0f(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_y0f(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z;
- if(x <= (float)0.0){
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- /* y0f(0) = -inf or y0f(x<0) = NaN */
- exc.type = DOMAIN; /* should be SING for IEEE y0f(0) */
- exc.name = "y0f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- if(x>(float)X_TLOSS) {
- /* y0f(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "y0f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double j0(double x)
-#else
- double j0(x)
- double x;
-#endif
-{
- return (double) j0f((float) x);
-}
-
-#ifdef __STDC__
- double y0(double x)
-#else
- double y0(x)
- double x;
-#endif
-{
- return (double) y0f((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_j1.c b/newlib/libm/math/wf_j1.c
deleted file mode 100644
index f9d3e0e..0000000
--- a/newlib/libm/math/wf_j1.c
+++ /dev/null
@@ -1,139 +0,0 @@
-/* wf_j1.c -- float version of w_j1.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper of j1f,y1f
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-
-#ifdef __STDC__
- float j1f(float x) /* wrapper j1f */
-#else
- float j1f(x) /* wrapper j1f */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_j1f(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_j1f(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z;
- if(fabsf(x)>(float)X_TLOSS) {
- /* j1f(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "j1f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef __STDC__
- float y1f(float x) /* wrapper y1f */
-#else
- float y1f(x) /* wrapper y1f */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_y1f(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_y1f(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z;
- if(x <= (float)0.0){
- /* y1f(0) = -inf or y1f(x<0) = NaN */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = "y1f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- if(x>(float)X_TLOSS) {
- /* y1f(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "y1f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double j1(double x)
-#else
- double j1(x)
- double x;
-#endif
-{
- return (double) j1f((float) x);
-}
-
-#ifdef __STDC__
- double y1(double x)
-#else
- double y1(x)
- double x;
-#endif
-{
- return (double) y1f((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_jn.c b/newlib/libm/math/wf_jn.c
deleted file mode 100644
index c3a5263..0000000
--- a/newlib/libm/math/wf_jn.c
+++ /dev/null
@@ -1,138 +0,0 @@
-/* wf_jn.c -- float version of w_jn.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-
-#ifdef __STDC__
- float jnf(int n, float x) /* wrapper jnf */
-#else
- float jnf(n,x) /* wrapper jnf */
- float x; int n;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_jnf(n,x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_jnf(n,x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z;
- if(fabsf(x)>(float)X_TLOSS) {
- /* jnf(|x|>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "jnf";
- exc.err = 0;
- exc.arg1 = (double)n;
- exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef __STDC__
- float ynf(int n, float x) /* wrapper ynf */
-#else
- float ynf(n,x) /* wrapper ynf */
- float x; int n;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_ynf(n,x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_ynf(n,x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x) ) return z;
- if(x <= (float)0.0){
- /* ynf(n,0) = -inf or ynf(x<0) = NaN */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = DOMAIN; /* should be SING for IEEE */
- exc.name = "ynf";
- exc.err = 0;
- exc.arg1 = (double)n;
- exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- if(x>(float)X_TLOSS) {
- /* ynf(x>X_TLOSS) */
- exc.type = TLOSS;
- exc.name = "ynf";
- exc.err = 0;
- exc.arg1 = (double)n;
- exc.arg2 = (double)x;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double jn(int n, double x)
-#else
- double jn(n,x)
- double x; int n;
-#endif
-{
- return (double) jnf(n, (float) x);
-}
-
-#ifdef __STDC__
- double yn(int n, double x)
-#else
- double yn(n,x)
- double x; int n;
-#endif
-{
- return (double) ynf(n, (float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_lgamma.c b/newlib/libm/math/wf_lgamma.c
deleted file mode 100644
index f1bf0c0..0000000
--- a/newlib/libm/math/wf_lgamma.c
+++ /dev/null
@@ -1,87 +0,0 @@
-/* wf_lgamma.c -- float version of w_lgamma.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- *
- */
-
-#include "fdlibm.h"
-#include <reent.h>
-#include <errno.h>
-
-#ifdef __STDC__
- float lgammaf(float x)
-#else
- float lgammaf(x)
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_lgammaf_r(x,&(_REENT_SIGNGAM(_REENT)));
-#else
- float y;
- struct exception exc;
- y = __ieee754_lgammaf_r(x,&(_REENT_SIGNGAM(_REENT)));
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finitef(y)&&finitef(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "lgammaf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floorf(x)==x&&x<=(float)0.0) {
- /* lgammaf(-integer) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
-
- } else {
- /* lgammaf(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return y;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double lgamma(double x)
-#else
- double lgamma(x)
- double x;
-#endif
-{
- return (double) lgammaf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_log.c b/newlib/libm/math/wf_log.c
deleted file mode 100644
index cd373b4..0000000
--- a/newlib/libm/math/wf_log.c
+++ /dev/null
@@ -1,85 +0,0 @@
-/* wf_log.c -- float version of w_log.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper logf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float logf(float x) /* wrapper logf */
-#else
- float logf(x) /* wrapper logf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_logf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_logf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x) || x > (float)0.0) return z;
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "logf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if(x==(float)0.0) {
- /* logf(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* logf(x<0) */
- exc.type = DOMAIN;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double log(double x)
-#else
- double log(x)
- double x;
-#endif
-{
- return (double) logf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_log10.c b/newlib/libm/math/wf_log10.c
deleted file mode 100644
index 15fa5d9..0000000
--- a/newlib/libm/math/wf_log10.c
+++ /dev/null
@@ -1,88 +0,0 @@
-/* wf_log10.c -- float version of w_log10.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper log10f(X)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float log10f(float x) /* wrapper log10f */
-#else
- float log10f(x) /* wrapper log10f */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_log10f(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_log10f(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(x<=(float)0.0) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "log10f";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = -HUGE;
- else
- exc.retval = -HUGE_VAL;
- if(x==(float)0.0) {
- /* log10f(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* log10f(x<0) */
- exc.type = DOMAIN;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double log10(double x)
-#else
- double log10(x)
- double x;
-#endif
-{
- return (double) log10f((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_pow.c b/newlib/libm/math/wf_pow.c
deleted file mode 100644
index 42655da..0000000
--- a/newlib/libm/math/wf_pow.c
+++ /dev/null
@@ -1,179 +0,0 @@
-/* wf_pow.c -- float version of w_pow.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper powf(x,y) return x**y
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float powf(float x, float y) /* wrapper powf */
-#else
- float powf(x,y) /* wrapper powf */
- float x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_powf(x,y);
-#else
- float z;
- struct exception exc;
- z=__ieee754_powf(x,y);
- if(_LIB_VERSION == _IEEE_|| isnanf(y)) return z;
- if(isnanf(x)) {
- if(y==(float)0.0) {
- /* powf(NaN,0.0) */
- /* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
- exc.type = DOMAIN;
- exc.name = "powf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- exc.retval = x;
- if (_LIB_VERSION == _IEEE_ ||
- _LIB_VERSION == _POSIX_) exc.retval = 1.0;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
- }
- if(x==(float)0.0){
- if(y==(float)0.0) {
- /* powf(0.0,0.0) */
- /* error only if _LIB_VERSION == _SVID_ */
- exc.type = DOMAIN;
- exc.name = "powf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- exc.retval = 0.0;
- if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- if(finitef(y)&&y<(float)0.0) {
- /* 0**neg */
- exc.type = DOMAIN;
- exc.name = "powf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = 0.0;
- else
- exc.retval = -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- return z;
- }
- if(!finitef(z)) {
- if(finitef(x)&&finitef(y)) {
- if(isnanf(z)) {
- /* neg**non-integral */
- exc.type = DOMAIN;
- exc.name = "powf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- if (_LIB_VERSION == _SVID_)
- exc.retval = 0.0;
- else
- exc.retval = 0.0/0.0; /* X/Open allow NaN */
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else {
- /* powf(x,y) overflow */
- exc.type = OVERFLOW;
- exc.name = "powf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- if (_LIB_VERSION == _SVID_) {
- exc.retval = HUGE;
- y *= 0.5;
- if(x<0.0&&rint(y)!=y) exc.retval = -HUGE;
- } else {
- exc.retval = HUGE_VAL;
- y *= 0.5;
- if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL;
- }
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- }
- }
- if(z==(float)0.0&&finitef(x)&&finitef(y)) {
- /* powf(x,y) underflow */
- exc.type = UNDERFLOW;
- exc.name = "powf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- exc.retval = 0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- }
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double pow(double x, double y)
-#else
- double pow(x,y)
- double x,y;
-#endif
-{
- return (double) powf((float) x, (float) y);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_remainder.c b/newlib/libm/math/wf_remainder.c
deleted file mode 100644
index 0071a97..0000000
--- a/newlib/libm/math/wf_remainder.c
+++ /dev/null
@@ -1,74 +0,0 @@
-/* wf_remainder.c -- float version of w_remainder.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper remainderf(x,p)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float remainderf(float x, float y) /* wrapper remainder */
-#else
- float remainderf(x,y) /* wrapper remainder */
- float x,y;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_remainderf(x,y);
-#else
- float z;
- struct exception exc;
- z = __ieee754_remainderf(x,y);
- if(_LIB_VERSION == _IEEE_ || isnanf(y)) return z;
- if(y==(float)0.0) {
- /* remainderf(x,0) */
- exc.type = DOMAIN;
- exc.name = "remainderf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)y;
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double remainder(double x, double y)
-#else
- double remainder(x,y)
- double x,y;
-#endif
-{
- return (double) remainderf((float) x, (float) y);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
-
-
-
-
diff --git a/newlib/libm/math/wf_scalb.c b/newlib/libm/math/wf_scalb.c
deleted file mode 100644
index bd2d9f8..0000000
--- a/newlib/libm/math/wf_scalb.c
+++ /dev/null
@@ -1,118 +0,0 @@
-/* wf_scalb.c -- float version of w_scalb.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper scalbf(float x, float fn) is provide for
- * passing various standard test suite. One
- * should use scalbn() instead.
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
-#ifdef _SCALB_INT
- float scalbf(float x, int fn) /* wrapper scalbf */
-#else
- float scalbf(float x, float fn) /* wrapper scalbf */
-#endif
-#else
- float scalbf(x,fn) /* wrapper scalbf */
-#ifdef _SCALB_INT
- float x; int fn;
-#else
- float x,fn;
-#endif
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_scalbf(x,fn);
-#else
- float z;
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- struct exception exc;
- z = __ieee754_scalbf(x,fn);
- if(_LIB_VERSION == _IEEE_) return z;
- if(!(finitef(z)||isnanf(z))&&finitef(x)) {
- /* scalbf overflow; SVID also returns +-HUGE_VAL */
- exc.type = OVERFLOW;
- exc.name = "scalbf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)fn;
- exc.retval = x > 0.0 ? HUGE_VAL : -HUGE_VAL;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
- if(z==(float)0.0&&z!=x) {
- /* scalbf underflow */
- exc.type = UNDERFLOW;
- exc.name = "scalbf";
- exc.err = 0;
- exc.arg1 = (double)x;
- exc.arg2 = (double)fn;
- exc.retval = copysign(0.0,x);
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- }
-#ifndef _SCALB_INT
- if(!finitef(fn)) errno = ERANGE;
-#endif
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
-#ifdef _SCALB_INT
- double scalb(double x, int fn)
-#else
- double scalb(double x, double fn)
-#endif
-#else
- double scalb(x, fn)
-#ifdef _SCALB_INT
- double x; int fn;
-#else
- double x,fn;
-#endif
-#endif
-{
-#ifdef _SCALB_INT
- return (double) scalbf((float) x, fn);
-#else
- return (double) scalbf((float) x, (float) fn);
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_sinh.c b/newlib/libm/math/wf_sinh.c
deleted file mode 100644
index 80c7a8e..0000000
--- a/newlib/libm/math/wf_sinh.c
+++ /dev/null
@@ -1,78 +0,0 @@
-/* wf_sinh.c -- float version of w_sinh.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper sinhf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float sinhf(float x) /* wrapper sinhf */
-#else
- float sinhf(x) /* wrapper sinhf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_sinhf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_sinhf(x);
- if(_LIB_VERSION == _IEEE_) return z;
- if(!finitef(z)&&finitef(x)) {
- /* sinhf(finite) overflow */
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.type = OVERFLOW;
- exc.name = "sinhf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = ( (x>0.0) ? HUGE : -HUGE);
- else
- exc.retval = ( (x>0.0) ? HUGE_VAL : -HUGE_VAL);
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double sinh(double x)
-#else
- double sinh(x)
- double x;
-#endif
-{
- return (double) sinhf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wf_sqrt.c b/newlib/libm/math/wf_sqrt.c
deleted file mode 100644
index 6e792c9..0000000
--- a/newlib/libm/math/wf_sqrt.c
+++ /dev/null
@@ -1,72 +0,0 @@
-/* wf_sqrt.c -- float version of w_sqrt.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper sqrtf(x)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float sqrtf(float x) /* wrapper sqrtf */
-#else
- float sqrtf(x) /* wrapper sqrtf */
- float x;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_sqrtf(x);
-#else
- float z;
- struct exception exc;
- z = __ieee754_sqrtf(x);
- if(_LIB_VERSION == _IEEE_ || isnanf(x)) return z;
- if(x<(float)0.0) {
- /* sqrtf(negative) */
- exc.type = DOMAIN;
- exc.name = "sqrtf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = 0.0;
- else
- exc.retval = 0.0/0.0;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return z;
-#endif
-}
-
-#ifdef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double sqrt(double x)
-#else
- double sqrt(x)
- double x;
-#endif
-{
- return (double) sqrtf((float) x);
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wr_gamma.c b/newlib/libm/math/wr_gamma.c
deleted file mode 100644
index 0092ed0..0000000
--- a/newlib/libm/math/wr_gamma.c
+++ /dev/null
@@ -1,76 +0,0 @@
-
-/* @(#)wr_gamma.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper double gamma_r(double x, int *signgamp)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double gamma_r(double x, int *signgamp) /* wrapper lgamma_r */
-#else
- double gamma_r(x,signgamp) /* wrapper lgamma_r */
- double x; int *signgamp;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_gamma_r(x,signgamp);
-#else
- double y;
- struct exception exc;
- y = __ieee754_gamma_r(x,signgamp);
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finite(y)&&finite(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "gamma";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floor(x)==x&&x<=0.0) {
- /* gamma(-integer) or gamma(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* gamma(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return y;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wr_lgamma.c b/newlib/libm/math/wr_lgamma.c
deleted file mode 100644
index c59c1cc..0000000
--- a/newlib/libm/math/wr_lgamma.c
+++ /dev/null
@@ -1,77 +0,0 @@
-
-/* @(#)wr_lgamma.c 5.1 93/09/24 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper double lgamma_r(double x, int *signgamp)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifndef _DOUBLE_IS_32BITS
-
-#ifdef __STDC__
- double lgamma_r(double x, int *signgamp) /* wrapper lgamma_r */
-#else
- double lgamma_r(x,signgamp) /* wrapper lgamma_r */
- double x; int *signgamp;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_lgamma_r(x,signgamp);
-#else
- double y;
- struct exception exc;
- y = __ieee754_lgamma_r(x,signgamp);
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finite(y)&&finite(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "lgamma";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floor(x)==x&&x<=0.0) {
- /* lgamma(-integer) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
-
- } else {
- /* lgamma(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return exc.retval;
- } else
- return y;
-#endif
-}
-
-#endif /* defined(_DOUBLE_IS_32BITS) */
diff --git a/newlib/libm/math/wrf_gamma.c b/newlib/libm/math/wrf_gamma.c
deleted file mode 100644
index ae285f5..0000000
--- a/newlib/libm/math/wrf_gamma.c
+++ /dev/null
@@ -1,74 +0,0 @@
-/* wrf_gamma.c -- float version of wr_gamma.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper float gammaf_r(float x, int *signgamp)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float gammaf_r(float x, int *signgamp) /* wrapper lgammaf_r */
-#else
- float gammaf_r(x,signgamp) /* wrapper lgammaf_r */
- float x; int *signgamp;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_gammaf_r(x,signgamp);
-#else
- float y;
- struct exception exc;
- y = __ieee754_gammaf_r(x,signgamp);
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finitef(y)&&finitef(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "gammaf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floorf(x)==x&&x<=(float)0.0) {
- /* gammaf(-integer) or gamma(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
- } else {
- /* gammaf(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return y;
-#endif
-}
diff --git a/newlib/libm/math/wrf_lgamma.c b/newlib/libm/math/wrf_lgamma.c
deleted file mode 100644
index 73985e2..0000000
--- a/newlib/libm/math/wrf_lgamma.c
+++ /dev/null
@@ -1,75 +0,0 @@
-/* wrf_lgamma.c -- float version of wr_lgamma.c.
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-/*
- * wrapper float lgammaf_r(float x, int *signgamp)
- */
-
-#include "fdlibm.h"
-#include <errno.h>
-
-#ifdef __STDC__
- float lgammaf_r(float x, int *signgamp) /* wrapper lgammaf_r */
-#else
- float lgammaf_r(x,signgamp) /* wrapper lgammaf_r */
- float x; int *signgamp;
-#endif
-{
-#ifdef _IEEE_LIBM
- return __ieee754_lgammaf_r(x,signgamp);
-#else
- float y;
- struct exception exc;
- y = __ieee754_lgammaf_r(x,signgamp);
- if(_LIB_VERSION == _IEEE_) return y;
- if(!finitef(y)&&finitef(x)) {
-#ifndef HUGE_VAL
-#define HUGE_VAL inf
- double inf = 0.0;
-
- SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
-#endif
- exc.name = "lgammaf";
- exc.err = 0;
- exc.arg1 = exc.arg2 = (double)x;
- if (_LIB_VERSION == _SVID_)
- exc.retval = HUGE;
- else
- exc.retval = HUGE_VAL;
- if(floorf(x)==x&&x<=(float)0.0) {
- /* lgammaf(-integer) or lgamma(0) */
- exc.type = SING;
- if (_LIB_VERSION == _POSIX_)
- errno = EDOM;
- else if (!matherr(&exc)) {
- errno = EDOM;
- }
-
- } else {
- /* lgammaf(finite) overflow */
- exc.type = OVERFLOW;
- if (_LIB_VERSION == _POSIX_)
- errno = ERANGE;
- else if (!matherr(&exc)) {
- errno = ERANGE;
- }
- }
- if (exc.err != 0)
- errno = exc.err;
- return (float)exc.retval;
- } else
- return y;
-#endif
-}