aboutsummaryrefslogtreecommitdiff
path: root/newlib/libm/math/ef_j1.c
diff options
context:
space:
mode:
authorChristopher Faylor <me@cgf.cx>2000-02-17 19:39:52 +0000
committerChristopher Faylor <me@cgf.cx>2000-02-17 19:39:52 +0000
commit8a0efa53e44919bcf5ccb1d3353618a82afdf8bc (patch)
tree68c3dbf3f2c6fd5d49777def9914d77b5cd4589d /newlib/libm/math/ef_j1.c
parent1fd5e000ace55b323124c7e556a7a864b972a5c4 (diff)
downloadnewlib-8a0efa53e44919bcf5ccb1d3353618a82afdf8bc.zip
newlib-8a0efa53e44919bcf5ccb1d3353618a82afdf8bc.tar.gz
newlib-8a0efa53e44919bcf5ccb1d3353618a82afdf8bc.tar.bz2
import newlib-2000-02-17 snapshot
Diffstat (limited to 'newlib/libm/math/ef_j1.c')
-rw-r--r--newlib/libm/math/ef_j1.c439
1 files changed, 439 insertions, 0 deletions
diff --git a/newlib/libm/math/ef_j1.c b/newlib/libm/math/ef_j1.c
new file mode 100644
index 0000000..a3e75f6
--- /dev/null
+++ b/newlib/libm/math/ef_j1.c
@@ -0,0 +1,439 @@
+/* ef_j1.c -- float version of e_j1.c.
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "fdlibm.h"
+
+#ifdef __STDC__
+static float ponef(float), qonef(float);
+#else
+static float ponef(), qonef();
+#endif
+
+#ifdef __STDC__
+static const float
+#else
+static float
+#endif
+huge = 1e30,
+one = 1.0,
+invsqrtpi= 5.6418961287e-01, /* 0x3f106ebb */
+tpi = 6.3661974669e-01, /* 0x3f22f983 */
+ /* R0/S0 on [0,2] */
+r00 = -6.2500000000e-02, /* 0xbd800000 */
+r01 = 1.4070566976e-03, /* 0x3ab86cfd */
+r02 = -1.5995563444e-05, /* 0xb7862e36 */
+r03 = 4.9672799207e-08, /* 0x335557d2 */
+s01 = 1.9153760746e-02, /* 0x3c9ce859 */
+s02 = 1.8594678841e-04, /* 0x3942fab6 */
+s03 = 1.1771846857e-06, /* 0x359dffc2 */
+s04 = 5.0463624390e-09, /* 0x31ad6446 */
+s05 = 1.2354227016e-11; /* 0x2d59567e */
+
+#ifdef __STDC__
+static const float zero = 0.0;
+#else
+static float zero = 0.0;
+#endif
+
+#ifdef __STDC__
+ float __ieee754_j1f(float x)
+#else
+ float __ieee754_j1f(x)
+ float x;
+#endif
+{
+ float z, s,c,ss,cc,r,u,v,y;
+ __int32_t hx,ix;
+
+ GET_FLOAT_WORD(hx,x);
+ ix = hx&0x7fffffff;
+ if(ix>=0x7f800000) return one/x;
+ y = fabsf(x);
+ if(ix >= 0x40000000) { /* |x| >= 2.0 */
+ s = sinf(y);
+ c = cosf(y);
+ ss = -s-c;
+ cc = s-c;
+ if(ix<0x7f000000) { /* make sure y+y not overflow */
+ z = cosf(y+y);
+ if ((s*c)>zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /*
+ * j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
+ * y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
+ */
+ if(ix>0x80000000) z = (invsqrtpi*cc)/__ieee754_sqrtf(y);
+ else {
+ u = ponef(y); v = qonef(y);
+ z = invsqrtpi*(u*cc-v*ss)/__ieee754_sqrtf(y);
+ }
+ if(hx<0) return -z;
+ else return z;
+ }
+ if(ix<0x32000000) { /* |x|<2**-27 */
+ if(huge+x>one) return (float)0.5*x;/* inexact if x!=0 necessary */
+ }
+ z = x*x;
+ r = z*(r00+z*(r01+z*(r02+z*r03)));
+ s = one+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
+ r *= x;
+ return(x*(float)0.5+r/s);
+}
+
+#ifdef __STDC__
+static const float U0[5] = {
+#else
+static float U0[5] = {
+#endif
+ -1.9605709612e-01, /* 0xbe48c331 */
+ 5.0443872809e-02, /* 0x3d4e9e3c */
+ -1.9125689287e-03, /* 0xbafaaf2a */
+ 2.3525259166e-05, /* 0x37c5581c */
+ -9.1909917899e-08, /* 0xb3c56003 */
+};
+#ifdef __STDC__
+static const float V0[5] = {
+#else
+static float V0[5] = {
+#endif
+ 1.9916731864e-02, /* 0x3ca3286a */
+ 2.0255257550e-04, /* 0x3954644b */
+ 1.3560879779e-06, /* 0x35b602d4 */
+ 6.2274145840e-09, /* 0x31d5f8eb */
+ 1.6655924903e-11, /* 0x2d9281cf */
+};
+
+#ifdef __STDC__
+ float __ieee754_y1f(float x)
+#else
+ float __ieee754_y1f(x)
+ float x;
+#endif
+{
+ float z, s,c,ss,cc,u,v;
+ __int32_t hx,ix;
+
+ GET_FLOAT_WORD(hx,x);
+ ix = 0x7fffffff&hx;
+ /* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
+ if(ix>=0x7f800000) return one/(x+x*x);
+ if(ix==0) return -one/zero;
+ if(hx<0) return zero/zero;
+ if(ix >= 0x40000000) { /* |x| >= 2.0 */
+ s = sinf(x);
+ c = cosf(x);
+ ss = -s-c;
+ cc = s-c;
+ if(ix<0x7f000000) { /* make sure x+x not overflow */
+ z = cosf(x+x);
+ if ((s*c)>zero) cc = z/ss;
+ else ss = z/cc;
+ }
+ /* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
+ * where x0 = x-3pi/4
+ * Better formula:
+ * cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
+ * = 1/sqrt(2) * (sin(x) - cos(x))
+ * sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
+ * = -1/sqrt(2) * (cos(x) + sin(x))
+ * To avoid cancellation, use
+ * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+ * to compute the worse one.
+ */
+ if(ix>0x48000000) z = (invsqrtpi*ss)/__ieee754_sqrtf(x);
+ else {
+ u = ponef(x); v = qonef(x);
+ z = invsqrtpi*(u*ss+v*cc)/__ieee754_sqrtf(x);
+ }
+ return z;
+ }
+ if(ix<=0x24800000) { /* x < 2**-54 */
+ return(-tpi/x);
+ }
+ z = x*x;
+ u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
+ v = one+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
+ return(x*(u/v) + tpi*(__ieee754_j1f(x)*__ieee754_logf(x)-one/x));
+}
+
+/* For x >= 8, the asymptotic expansions of pone is
+ * 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
+ * We approximate pone by
+ * pone(x) = 1 + (R/S)
+ * where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
+ * S = 1 + ps0*s^2 + ... + ps4*s^10
+ * and
+ * | pone(x)-1-R/S | <= 2 ** ( -60.06)
+ */
+
+#ifdef __STDC__
+static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+ 0.0000000000e+00, /* 0x00000000 */
+ 1.1718750000e-01, /* 0x3df00000 */
+ 1.3239480972e+01, /* 0x4153d4ea */
+ 4.1205184937e+02, /* 0x43ce06a3 */
+ 3.8747453613e+03, /* 0x45722bed */
+ 7.9144794922e+03, /* 0x45f753d6 */
+};
+#ifdef __STDC__
+static const float ps8[5] = {
+#else
+static float ps8[5] = {
+#endif
+ 1.1420736694e+02, /* 0x42e46a2c */
+ 3.6509309082e+03, /* 0x45642ee5 */
+ 3.6956207031e+04, /* 0x47105c35 */
+ 9.7602796875e+04, /* 0x47bea166 */
+ 3.0804271484e+04, /* 0x46f0a88b */
+};
+
+#ifdef __STDC__
+static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ 1.3199052094e-11, /* 0x2d68333f */
+ 1.1718749255e-01, /* 0x3defffff */
+ 6.8027510643e+00, /* 0x40d9b023 */
+ 1.0830818176e+02, /* 0x42d89dca */
+ 5.1763616943e+02, /* 0x440168b7 */
+ 5.2871520996e+02, /* 0x44042dc6 */
+};
+#ifdef __STDC__
+static const float ps5[5] = {
+#else
+static float ps5[5] = {
+#endif
+ 5.9280597687e+01, /* 0x426d1f55 */
+ 9.9140142822e+02, /* 0x4477d9b1 */
+ 5.3532670898e+03, /* 0x45a74a23 */
+ 7.8446904297e+03, /* 0x45f52586 */
+ 1.5040468750e+03, /* 0x44bc0180 */
+};
+
+#ifdef __STDC__
+static const float pr3[6] = {
+#else
+static float pr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ 3.0250391081e-09, /* 0x314fe10d */
+ 1.1718686670e-01, /* 0x3defffab */
+ 3.9329774380e+00, /* 0x407bb5e7 */
+ 3.5119403839e+01, /* 0x420c7a45 */
+ 9.1055007935e+01, /* 0x42b61c2a */
+ 4.8559066772e+01, /* 0x42423c7c */
+};
+#ifdef __STDC__
+static const float ps3[5] = {
+#else
+static float ps3[5] = {
+#endif
+ 3.4791309357e+01, /* 0x420b2a4d */
+ 3.3676245117e+02, /* 0x43a86198 */
+ 1.0468714600e+03, /* 0x4482dbe3 */
+ 8.9081134033e+02, /* 0x445eb3ed */
+ 1.0378793335e+02, /* 0x42cf936c */
+};
+
+#ifdef __STDC__
+static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ 1.0771083225e-07, /* 0x33e74ea8 */
+ 1.1717621982e-01, /* 0x3deffa16 */
+ 2.3685150146e+00, /* 0x401795c0 */
+ 1.2242610931e+01, /* 0x4143e1bc */
+ 1.7693971634e+01, /* 0x418d8d41 */
+ 5.0735230446e+00, /* 0x40a25a4d */
+};
+#ifdef __STDC__
+static const float ps2[5] = {
+#else
+static float ps2[5] = {
+#endif
+ 2.1436485291e+01, /* 0x41ab7dec */
+ 1.2529022980e+02, /* 0x42fa9499 */
+ 2.3227647400e+02, /* 0x436846c7 */
+ 1.1767937469e+02, /* 0x42eb5bd7 */
+ 8.3646392822e+00, /* 0x4105d590 */
+};
+
+#ifdef __STDC__
+ static float ponef(float x)
+#else
+ static float ponef(x)
+ float x;
+#endif
+{
+#ifdef __STDC__
+ const float *p,*q;
+#else
+ float *p,*q;
+#endif
+ float z,r,s;
+ __int32_t ix;
+ GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff;
+ if(ix>=0x41000000) {p = pr8; q= ps8;}
+ else if(ix>=0x40f71c58){p = pr5; q= ps5;}
+ else if(ix>=0x4036db68){p = pr3; q= ps3;}
+ else if(ix>=0x40000000){p = pr2; q= ps2;}
+ z = one/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
+ return one+ r/s;
+}
+
+
+/* For x >= 8, the asymptotic expansions of qone is
+ * 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
+ * We approximate pone by
+ * qone(x) = s*(0.375 + (R/S))
+ * where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
+ * S = 1 + qs1*s^2 + ... + qs6*s^12
+ * and
+ * | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
+ */
+
+#ifdef __STDC__
+static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#else
+static float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
+#endif
+ 0.0000000000e+00, /* 0x00000000 */
+ -1.0253906250e-01, /* 0xbdd20000 */
+ -1.6271753311e+01, /* 0xc1822c8d */
+ -7.5960174561e+02, /* 0xc43de683 */
+ -1.1849806641e+04, /* 0xc639273a */
+ -4.8438511719e+04, /* 0xc73d3683 */
+};
+#ifdef __STDC__
+static const float qs8[6] = {
+#else
+static float qs8[6] = {
+#endif
+ 1.6139537048e+02, /* 0x43216537 */
+ 7.8253862305e+03, /* 0x45f48b17 */
+ 1.3387534375e+05, /* 0x4802bcd6 */
+ 7.1965775000e+05, /* 0x492fb29c */
+ 6.6660125000e+05, /* 0x4922be94 */
+ -2.9449025000e+05, /* 0xc88fcb48 */
+};
+
+#ifdef __STDC__
+static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#else
+static float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
+#endif
+ -2.0897993405e-11, /* 0xadb7d219 */
+ -1.0253904760e-01, /* 0xbdd1fffe */
+ -8.0564479828e+00, /* 0xc100e736 */
+ -1.8366960144e+02, /* 0xc337ab6b */
+ -1.3731937256e+03, /* 0xc4aba633 */
+ -2.6124443359e+03, /* 0xc523471c */
+};
+#ifdef __STDC__
+static const float qs5[6] = {
+#else
+static float qs5[6] = {
+#endif
+ 8.1276550293e+01, /* 0x42a28d98 */
+ 1.9917987061e+03, /* 0x44f8f98f */
+ 1.7468484375e+04, /* 0x468878f8 */
+ 4.9851425781e+04, /* 0x4742bb6d */
+ 2.7948074219e+04, /* 0x46da5826 */
+ -4.7191835938e+03, /* 0xc5937978 */
+};
+
+#ifdef __STDC__
+static const float qr3[6] = {
+#else
+static float qr3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+#endif
+ -5.0783124372e-09, /* 0xb1ae7d4f */
+ -1.0253783315e-01, /* 0xbdd1ff5b */
+ -4.6101160049e+00, /* 0xc0938612 */
+ -5.7847221375e+01, /* 0xc267638e */
+ -2.2824453735e+02, /* 0xc3643e9a */
+ -2.1921012878e+02, /* 0xc35b35cb */
+};
+#ifdef __STDC__
+static const float qs3[6] = {
+#else
+static float qs3[6] = {
+#endif
+ 4.7665153503e+01, /* 0x423ea91e */
+ 6.7386511230e+02, /* 0x4428775e */
+ 3.3801528320e+03, /* 0x45534272 */
+ 5.5477290039e+03, /* 0x45ad5dd5 */
+ 1.9031191406e+03, /* 0x44ede3d0 */
+ -1.3520118713e+02, /* 0xc3073381 */
+};
+
+#ifdef __STDC__
+static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#else
+static float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
+#endif
+ -1.7838172539e-07, /* 0xb43f8932 */
+ -1.0251704603e-01, /* 0xbdd1f475 */
+ -2.7522056103e+00, /* 0xc0302423 */
+ -1.9663616180e+01, /* 0xc19d4f16 */
+ -4.2325313568e+01, /* 0xc2294d1f */
+ -2.1371921539e+01, /* 0xc1aaf9b2 */
+};
+#ifdef __STDC__
+static const float qs2[6] = {
+#else
+static float qs2[6] = {
+#endif
+ 2.9533363342e+01, /* 0x41ec4454 */
+ 2.5298155212e+02, /* 0x437cfb47 */
+ 7.5750280762e+02, /* 0x443d602e */
+ 7.3939318848e+02, /* 0x4438d92a */
+ 1.5594900513e+02, /* 0x431bf2f2 */
+ -4.9594988823e+00, /* 0xc09eb437 */
+};
+
+#ifdef __STDC__
+ static float qonef(float x)
+#else
+ static float qonef(x)
+ float x;
+#endif
+{
+#ifdef __STDC__
+ const float *p,*q;
+#else
+ float *p,*q;
+#endif
+ float s,r,z;
+ __int32_t ix;
+ GET_FLOAT_WORD(ix,x);
+ ix &= 0x7fffffff;
+ if(ix>=0x40200000) {p = qr8; q= qs8;}
+ else if(ix>=0x40f71c58){p = qr5; q= qs5;}
+ else if(ix>=0x4036db68){p = qr3; q= qs3;}
+ else if(ix>=0x40000000){p = qr2; q= qs2;}
+ z = one/(x*x);
+ r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
+ s = one+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
+ return ((float).375 + r/s)/x;
+}