1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
// (C) Copyright Nick Thompson 2021.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_QUARTIC_ROOTS_HPP
#define BOOST_MATH_TOOLS_QUARTIC_ROOTS_HPP
#include <array>
#include <cmath>
#include <boost/math/tools/cubic_roots.hpp>
namespace boost::math::tools {
namespace detail {
// Make sure the nans are always at the back of the array:
template<typename Real>
bool comparator(Real r1, Real r2) {
using std::isnan;
if (isnan(r1)) { return false; }
if (isnan(r2)) { return true; }
return r1 < r2;
}
template<typename Real>
std::array<Real, 4> polish_and_sort(Real a, Real b, Real c, Real d, Real e, std::array<Real, 4>& roots) {
// Polish the roots with a Halley iterate.
using std::fma;
using std::abs;
for (auto &r : roots) {
Real df = fma(4*a, r, 3*b);
df = fma(df, r, 2*c);
df = fma(df, r, d);
Real d2f = fma(12*a, r, 6*b);
d2f = fma(d2f, r, 2*c);
Real f = fma(a, r, b);
f = fma(f,r,c);
f = fma(f,r,d);
f = fma(f,r,e);
Real denom = 2*df*df - f*d2f;
if (abs(denom) > (std::numeric_limits<Real>::min)())
{
r -= 2*f*df/denom;
}
}
std::sort(roots.begin(), roots.end(), detail::comparator<Real>);
return roots;
}
}
// Solves ax^4 + bx^3 + cx^2 + dx + e = 0.
// Only returns the real roots, as these are the only roots of interest in ray intersection problems.
// Follows Graphics Gems V: https://github.com/erich666/GraphicsGems/blob/master/gems/Roots3And4.c
template<typename Real>
std::array<Real, 4> quartic_roots(Real a, Real b, Real c, Real d, Real e) {
using std::abs;
using std::sqrt;
auto nan = std::numeric_limits<Real>::quiet_NaN();
std::array<Real, 4> roots{nan, nan, nan, nan};
if (abs(a) <= (std::numeric_limits<Real>::min)()) {
auto cbrts = cubic_roots(b, c, d, e);
roots[0] = cbrts[0];
roots[1] = cbrts[1];
roots[2] = cbrts[2];
if (b == 0 && c == 0 && d == 0 && e == 0) {
roots[3] = 0;
}
return detail::polish_and_sort(a, b, c, d, e, roots);
}
if (abs(e) <= (std::numeric_limits<Real>::min)()) {
auto v = cubic_roots(a, b, c, d);
roots[0] = v[0];
roots[1] = v[1];
roots[2] = v[2];
roots[3] = 0;
return detail::polish_and_sort(a, b, c, d, e, roots);
}
// Now solve x^4 + Ax^3 + Bx^2 + Cx + D = 0.
Real A = b/a;
Real B = c/a;
Real C = d/a;
Real D = e/a;
Real Asq = A*A;
// Let x = y - A/4:
// Mathematica: Expand[(y - A/4)^4 + A*(y - A/4)^3 + B*(y - A/4)^2 + C*(y - A/4) + D]
// We now solve the depressed quartic y^4 + py^2 + qy + r = 0.
Real p = B - 3*Asq/8;
Real q = C - A*B/2 + Asq*A/8;
Real r = D - A*C/4 + Asq*B/16 - 3*Asq*Asq/256;
if (abs(r) <= (std::numeric_limits<Real>::min)()) {
auto [r1, r2, r3] = cubic_roots(Real(1), Real(0), p, q);
r1 -= A/4;
r2 -= A/4;
r3 -= A/4;
roots[0] = r1;
roots[1] = r2;
roots[2] = r3;
roots[3] = -A/4;
return detail::polish_and_sort(a, b, c, d, e, roots);
}
// Biquadratic case:
if (abs(q) <= (std::numeric_limits<Real>::min)()) {
auto [r1, r2] = quadratic_roots(Real(1), p, r);
if (r1 >= 0) {
Real rtr = sqrt(r1);
roots[0] = rtr - A/4;
roots[1] = -rtr - A/4;
}
if (r2 >= 0) {
Real rtr = sqrt(r2);
roots[2] = rtr - A/4;
roots[3] = -rtr - A/4;
}
return detail::polish_and_sort(a, b, c, d, e, roots);
}
// Now split the depressed quartic into two quadratics:
// y^4 + py^2 + qy + r = (y^2 + sy + u)(y^2 - sy + v) = y^4 + (v+u-s^2)y^2 + s(v - u)y + uv
// So p = v+u-s^2, q = s(v - u), r = uv.
// Then (v+u)^2 - (v-u)^2 = 4uv = 4r = (p+s^2)^2 - q^2/s^2.
// Multiply through by s^2 to get s^2(p+s^2)^2 - q^2 - 4rs^2 = 0, which is a cubic in s^2.
// Then we let z = s^2, to get
// z^3 + 2pz^2 + (p^2 - 4r)z - q^2 = 0.
auto z_roots = cubic_roots(Real(1), 2*p, p*p - 4*r, -q*q);
// z = s^2, so s = sqrt(z).
// Hence we require a root > 0, and for the sake of sanity we should take the largest one:
Real largest_root = std::numeric_limits<Real>::lowest();
for (auto z : z_roots) {
if (z > largest_root) {
largest_root = z;
}
}
// No real roots:
if (largest_root <= 0) {
return roots;
}
Real s = sqrt(largest_root);
// s is nonzero, because we took care of the biquadratic case.
Real v = (p + largest_root + q/s)/2;
Real u = v - q/s;
// Now solve y^2 + sy + u = 0:
auto [root0, root1] = quadratic_roots(Real(1), s, u);
// Now solve y^2 - sy + v = 0:
auto [root2, root3] = quadratic_roots(Real(1), -s, v);
roots[0] = root0;
roots[1] = root1;
roots[2] = root2;
roots[3] = root3;
for (auto& r : roots) {
r -= A/4;
}
return detail::polish_and_sort(a, b, c, d, e, roots);
}
}
#endif
|