1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
// (C) Copyright Nick Thompson 2021.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_TOOLS_CUBIC_ROOTS_HPP
#define BOOST_MATH_TOOLS_CUBIC_ROOTS_HPP
#include <algorithm>
#include <array>
#include <boost/math/special_functions/sign.hpp>
#include <boost/math/tools/roots.hpp>
namespace boost::math::tools {
// Solves ax^3 + bx^2 + cx + d = 0.
// Only returns the real roots, as types get weird for real coefficients and
// complex roots. Follows Numerical Recipes, Chapter 5, section 6. NB: A better
// algorithm apparently exists: Algorithm 954: An Accurate and Efficient Cubic
// and Quartic Equation Solver for Physical Applications However, I don't have
// access to that paper!
template <typename Real>
std::array<Real, 3> cubic_roots(Real a, Real b, Real c, Real d) {
using std::abs;
using std::acos;
using std::cbrt;
using std::cos;
using std::fma;
using std::sqrt;
std::array<Real, 3> roots = {std::numeric_limits<Real>::quiet_NaN(),
std::numeric_limits<Real>::quiet_NaN(),
std::numeric_limits<Real>::quiet_NaN()};
if (a == 0) {
// bx^2 + cx + d = 0:
if (b == 0) {
// cx + d = 0:
if (c == 0) {
if (d != 0) {
// No solutions:
return roots;
}
roots[0] = 0;
roots[1] = 0;
roots[2] = 0;
return roots;
}
roots[0] = -d / c;
return roots;
}
auto [x0, x1] = quadratic_roots(b, c, d);
roots[0] = x0;
roots[1] = x1;
return roots;
}
if (d == 0) {
auto [x0, x1] = quadratic_roots(a, b, c);
roots[0] = x0;
roots[1] = x1;
roots[2] = 0;
std::sort(roots.begin(), roots.end());
return roots;
}
Real p = b / a;
Real q = c / a;
Real r = d / a;
Real Q = (p * p - 3 * q) / 9;
Real R = (2 * p * p * p - 9 * p * q + 27 * r) / 54;
if (R * R < Q * Q * Q) {
Real rtQ = sqrt(Q);
Real theta = acos(R / (Q * rtQ)) / 3;
Real st = sin(theta);
Real ct = cos(theta);
roots[0] = -2 * rtQ * ct - p / 3;
roots[1] = -rtQ * (-ct + sqrt(Real(3)) * st) - p / 3;
roots[2] = rtQ * (ct + sqrt(Real(3)) * st) - p / 3;
} else {
// In Numerical Recipes, Chapter 5, Section 6, it is claimed that we
// only have one real root if R^2 >= Q^3. But this isn't true; we can
// even see this from equation 5.6.18. The condition for having three
// real roots is that A = B. It *is* the case that if we're in this
// branch, and we have 3 real roots, two are a double root. Take
// (x+1)^2(x-2) = x^3 - 3x -2 as an example. This clearly has a double
// root at x = -1, and it gets sent into this branch.
Real arg = R * R - Q * Q * Q;
Real A = (R >= 0 ? -1 : 1) * cbrt(abs(R) + sqrt(arg));
Real B = 0;
if (A != 0) {
B = Q / A;
}
roots[0] = A + B - p / 3;
// Yes, we're comparing floats for equality:
// Any perturbation pushes the roots into the complex plane; out of the
// bailiwick of this routine.
if (A == B || arg == 0) {
roots[1] = -A - p / 3;
roots[2] = -A - p / 3;
}
}
// Root polishing:
for (auto &r : roots) {
// Horner's method.
// Here I'll take John Gustaffson's opinion that the fma is a *distinct*
// operation from a*x +b: Make sure to compile these fmas into a single
// instruction and not a function call! (I'm looking at you Windows.)
Real f = fma(a, r, b);
f = fma(f, r, c);
f = fma(f, r, d);
Real df = fma(3 * a, r, 2 * b);
df = fma(df, r, c);
if (df != 0) {
Real d2f = fma(6 * a, r, 2 * b);
Real denom = 2 * df * df - f * d2f;
if (denom != 0) {
r -= 2 * f * df / denom;
} else {
r -= f / df;
}
}
}
std::sort(roots.begin(), roots.end());
return roots;
}
// Computes the empirical residual p(r) (first element) and expected residual
// eps*|rp'(r)| (second element) for a root. Recall that for a numerically
// computed root r satisfying r = r_0(1+eps) of a function p, |p(r)| <=
// eps|rp'(r)|.
template <typename Real>
std::array<Real, 2> cubic_root_residual(Real a, Real b, Real c, Real d,
Real root) {
using std::abs;
using std::fma;
std::array<Real, 2> out;
Real residual = fma(a, root, b);
residual = fma(residual, root, c);
residual = fma(residual, root, d);
out[0] = residual;
// The expected residual is:
// eps*[4|ar^3| + 3|br^2| + 2|cr| + |d|]
// This can be demonstrated by assuming the coefficients and the root are
// perturbed according to the rounding model of floating point arithmetic,
// and then working through the inequalities.
root = abs(root);
Real expected_residual = fma(4 * abs(a), root, 3 * abs(b));
expected_residual = fma(expected_residual, root, 2 * abs(c));
expected_residual = fma(expected_residual, root, abs(d));
out[1] = expected_residual * std::numeric_limits<Real>::epsilon();
return out;
}
// Computes the condition number of rootfinding. This is defined in Corless, A
// Graduate Introduction to Numerical Methods, Section 3.2.1.
template <typename Real>
Real cubic_root_condition_number(Real a, Real b, Real c, Real d, Real root) {
using std::abs;
using std::fma;
// There are *absolute* condition numbers that can be defined when r = 0;
// but they basically reduce to the residual computed above.
if (root == static_cast<Real>(0)) {
return std::numeric_limits<Real>::infinity();
}
Real numerator = fma(abs(a), abs(root), abs(b));
numerator = fma(numerator, abs(root), abs(c));
numerator = fma(numerator, abs(root), abs(d));
Real denominator = fma(3 * a, root, 2 * b);
denominator = fma(denominator, root, c);
if (denominator == static_cast<Real>(0)) {
return std::numeric_limits<Real>::infinity();
}
denominator *= root;
return numerator / abs(denominator);
}
} // namespace boost::math::tools
#endif
|