1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
// (C) Copyright John Maddock 2006.
// (C) Copyright Matt Borland 2024.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SF_TRIGAMMA_HPP
#define BOOST_MATH_SF_TRIGAMMA_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/tools/config.hpp>
#include <boost/math/tools/rational.hpp>
#include <boost/math/tools/promotion.hpp>
#include <boost/math/tools/big_constant.hpp>
#include <boost/math/tools/type_traits.hpp>
#include <boost/math/policies/policy.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/sin_pi.hpp>
#include <boost/math/special_functions/pow.hpp>
#ifndef BOOST_MATH_HAS_NVRTC
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/polygamma.hpp>
#include <boost/math/tools/series.hpp>
#endif
#if defined(__GNUC__) && defined(BOOST_MATH_USE_FLOAT128)
//
// This is the only way we can avoid
// warning: non-standard suffix on floating constant [-Wpedantic]
// when building with -Wall -pedantic. Neither __extension__
// nor #pragma diagnostic ignored work :(
//
#pragma GCC system_header
#endif
namespace boost{
namespace math{
namespace detail{
// TODO(mborland): Temporary for NVRTC
#ifndef BOOST_MATH_HAS_NVRTC
template<class T, class Policy>
T polygamma_imp(const int n, T x, const Policy &pol);
template <class T, class Policy>
T trigamma_prec(T x, const Policy& pol, const boost::math::integral_constant<int, 0>&)
{
return polygamma_imp(1, x, pol);
}
#endif
template <class T, class Policy>
BOOST_MATH_GPU_ENABLED T trigamma_prec(T x, const Policy&, const boost::math::integral_constant<int, 53>&)
{
// Max error in interpolated form: 3.736e-017
BOOST_MATH_STATIC const T offset = BOOST_MATH_BIG_CONSTANT(T, 53, 2.1093254089355469);
BOOST_MATH_STATIC const T P_1_2[] = {
BOOST_MATH_BIG_CONSTANT(T, 53, -1.1093280605946045),
BOOST_MATH_BIG_CONSTANT(T, 53, -3.8310674472619321),
BOOST_MATH_BIG_CONSTANT(T, 53, -3.3703848401898283),
BOOST_MATH_BIG_CONSTANT(T, 53, 0.28080574467981213),
BOOST_MATH_BIG_CONSTANT(T, 53, 1.6638069578676164),
BOOST_MATH_BIG_CONSTANT(T, 53, 0.64468386819102836),
};
BOOST_MATH_STATIC const T Q_1_2[] = {
BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 53, 3.4535389668541151),
BOOST_MATH_BIG_CONSTANT(T, 53, 4.5208926987851437),
BOOST_MATH_BIG_CONSTANT(T, 53, 2.7012734178351534),
BOOST_MATH_BIG_CONSTANT(T, 53, 0.64468798399785611),
BOOST_MATH_BIG_CONSTANT(T, 53, -0.20314516859987728e-6),
};
// Max error in interpolated form: 1.159e-017
BOOST_MATH_STATIC const T P_2_4[] = {
BOOST_MATH_BIG_CONSTANT(T, 53, -0.13803835004508849e-7),
BOOST_MATH_BIG_CONSTANT(T, 53, 0.50000049158540261),
BOOST_MATH_BIG_CONSTANT(T, 53, 1.6077979838469348),
BOOST_MATH_BIG_CONSTANT(T, 53, 2.5645435828098254),
BOOST_MATH_BIG_CONSTANT(T, 53, 2.0534873203680393),
BOOST_MATH_BIG_CONSTANT(T, 53, 0.74566981111565923),
};
BOOST_MATH_STATIC const T Q_2_4[] = {
BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 53, 2.8822787662376169),
BOOST_MATH_BIG_CONSTANT(T, 53, 4.1681660554090917),
BOOST_MATH_BIG_CONSTANT(T, 53, 2.7853527819234466),
BOOST_MATH_BIG_CONSTANT(T, 53, 0.74967671848044792),
BOOST_MATH_BIG_CONSTANT(T, 53, -0.00057069112416246805),
};
// Maximum Deviation Found: 6.896e-018
// Expected Error Term : -6.895e-018
// Maximum Relative Change in Control Points : 8.497e-004
BOOST_MATH_STATIC const T P_4_inf[] = {
static_cast<T>(0.68947581948701249e-17L),
static_cast<T>(0.49999999999998975L),
static_cast<T>(1.0177274392923795L),
static_cast<T>(2.498208511343429L),
static_cast<T>(2.1921221359427595L),
static_cast<T>(1.5897035272532764L),
static_cast<T>(0.40154388356961734L),
};
BOOST_MATH_STATIC const T Q_4_inf[] = {
static_cast<T>(1.0L),
static_cast<T>(1.7021215452463932L),
static_cast<T>(4.4290431747556469L),
static_cast<T>(2.9745631894384922L),
static_cast<T>(2.3013614809773616L),
static_cast<T>(0.28360399799075752L),
static_cast<T>(0.022892987908906897L),
};
if(x <= 2)
{
return (offset + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x);
}
else if(x <= 4)
{
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_2_4, y) / tools::evaluate_polynomial(Q_2_4, y)) / x;
}
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_4_inf, y) / tools::evaluate_polynomial(Q_4_inf, y)) / x;
}
template <class T, class Policy>
BOOST_MATH_GPU_ENABLED T trigamma_prec(T x, const Policy&, const boost::math::integral_constant<int, 64>&)
{
// Max error in interpolated form: 1.178e-020
BOOST_MATH_STATIC const T offset_1_2 = BOOST_MATH_BIG_CONSTANT(T, 64, 2.109325408935546875);
BOOST_MATH_STATIC const T P_1_2[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -1.10932535608960258341),
BOOST_MATH_BIG_CONSTANT(T, 64, -4.18793841543017129052),
BOOST_MATH_BIG_CONSTANT(T, 64, -4.63865531898487734531),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.919832884430500908047),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.68074038333180423012),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.21172611429185622377),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.259635673503366427284),
};
BOOST_MATH_STATIC const T Q_1_2[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.77521119359546982995),
BOOST_MATH_BIG_CONSTANT(T, 64, 5.664338024578956321),
BOOST_MATH_BIG_CONSTANT(T, 64, 4.25995134879278028361),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.62956638448940402182),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.259635512844691089868),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.629642219810618032207e-8),
};
// Max error in interpolated form: 3.912e-020
BOOST_MATH_STATIC const T P_2_8[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.387540035162952880976e-11),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.500000000276430504),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.21926880986360957306),
BOOST_MATH_BIG_CONSTANT(T, 64, 10.2550347708483445775),
BOOST_MATH_BIG_CONSTANT(T, 64, 18.9002075150709144043),
BOOST_MATH_BIG_CONSTANT(T, 64, 21.0357215832399705625),
BOOST_MATH_BIG_CONSTANT(T, 64, 13.4346512182925923978),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.98656291026448279118),
};
BOOST_MATH_STATIC const T Q_2_8[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, 6.10520430478613667724),
BOOST_MATH_BIG_CONSTANT(T, 64, 18.475001060603645512),
BOOST_MATH_BIG_CONSTANT(T, 64, 31.7087534567758405638),
BOOST_MATH_BIG_CONSTANT(T, 64, 31.908814523890465398),
BOOST_MATH_BIG_CONSTANT(T, 64, 17.4175479039227084798),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.98749106958394941276),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.000115917322224411128566),
};
// Maximum Deviation Found: 2.635e-020
// Expected Error Term : 2.635e-020
// Maximum Relative Change in Control Points : 1.791e-003
BOOST_MATH_STATIC const T P_8_inf[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, -0.263527875092466899848e-19),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.500000000000000058145),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0730121433777364138677),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.94505878379957149534),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.0517092358874932620529),
BOOST_MATH_BIG_CONSTANT(T, 64, 1.07995383547483921121),
};
BOOST_MATH_STATIC const T Q_8_inf[] = {
BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.187309046577818095504),
BOOST_MATH_BIG_CONSTANT(T, 64, 3.95255391645238842975),
BOOST_MATH_BIG_CONSTANT(T, 64, -1.14743283327078949087),
BOOST_MATH_BIG_CONSTANT(T, 64, 2.52989799376344914499),
BOOST_MATH_BIG_CONSTANT(T, 64, -0.627414303172402506396),
BOOST_MATH_BIG_CONSTANT(T, 64, 0.141554248216425512536),
};
if(x <= 2)
{
return (offset_1_2 + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x);
}
else if(x <= 8)
{
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_2_8, y) / tools::evaluate_polynomial(Q_2_8, y)) / x;
}
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_8_inf, y) / tools::evaluate_polynomial(Q_8_inf, y)) / x;
}
template <class T, class Policy>
BOOST_MATH_GPU_ENABLED T trigamma_prec(T x, const Policy&, const boost::math::integral_constant<int, 113>&)
{
// Max error in interpolated form: 1.916e-035
static const T P_1_2[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999082554457936871832533),
BOOST_MATH_BIG_CONSTANT(T, 113, -4.71237311120865266379041700054847734),
BOOST_MATH_BIG_CONSTANT(T, 113, -7.94125711970499027763789342500817316),
BOOST_MATH_BIG_CONSTANT(T, 113, -5.74657746697664735258222071695644535),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.404213349456398905981223965160595687),
BOOST_MATH_BIG_CONSTANT(T, 113, 2.47877781178642876561595890095758896),
BOOST_MATH_BIG_CONSTANT(T, 113, 2.07714151702455125992166949812126433),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.858877899162360138844032265418028567),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.20499222604410032375789018837922397),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.0272103140348194747360175268778415049),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.0015764849020876949848954081173520686),
};
static const T Q_1_2[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 113, 4.71237311120863419878375031457715223),
BOOST_MATH_BIG_CONSTANT(T, 113, 9.58619118655339853449127952145877467),
BOOST_MATH_BIG_CONSTANT(T, 113, 11.0940067269829372437561421279054968),
BOOST_MATH_BIG_CONSTANT(T, 113, 8.09075424749327792073276309969037885),
BOOST_MATH_BIG_CONSTANT(T, 113, 3.87705890159891405185343806884451286),
BOOST_MATH_BIG_CONSTANT(T, 113, 1.22758678701914477836330837816976782),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.249092040606385004109672077814668716),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.0295750413900655597027079600025569048),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.00157648490200498142247694709728858139),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.161264050344059471721062360645432809e-14),
};
// Max error in interpolated form: 8.958e-035
static const T P_2_4[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, -2.55843734739907925764326773972215085),
BOOST_MATH_BIG_CONSTANT(T, 113, -12.2830208240542011967952466273455887),
BOOST_MATH_BIG_CONSTANT(T, 113, -23.9195022162767993526575786066414403),
BOOST_MATH_BIG_CONSTANT(T, 113, -24.9256431504823483094158828285470862),
BOOST_MATH_BIG_CONSTANT(T, 113, -14.7979122765478779075108064826412285),
BOOST_MATH_BIG_CONSTANT(T, 113, -4.46654453928610666393276765059122272),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.0191439033405649675717082465687845002),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.515412052554351265708917209749037352),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.195378348786064304378247325360320038),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.0334761282624174313035014426794245393),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.002373665205942206348500250056602687),
};
static const T Q_2_4[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 113, 4.80098558454419907830670928248659245),
BOOST_MATH_BIG_CONSTANT(T, 113, 9.99220727843170133895059300223445265),
BOOST_MATH_BIG_CONSTANT(T, 113, 11.8896146167631330735386697123464976),
BOOST_MATH_BIG_CONSTANT(T, 113, 8.96613256683809091593793565879092581),
BOOST_MATH_BIG_CONSTANT(T, 113, 4.47254136149624110878909334574485751),
BOOST_MATH_BIG_CONSTANT(T, 113, 1.48600982028196527372434773913633152),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.319570735766764237068541501137990078),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.0407358345787680953107374215319322066),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.00237366520593271641375755486420859837),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.239554887903526152679337256236302116e-15),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.294749244740618656265237072002026314e-17),
};
static const T y_offset_2_4 = BOOST_MATH_BIG_CONSTANT(T, 113, 3.558437347412109375);
// Max error in interpolated form: 4.319e-035
static const T P_4_8[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 0.166626112697021464248967707021688845e-16),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.499999999999997739552090249208808197),
BOOST_MATH_BIG_CONSTANT(T, 113, 6.40270945019053817915772473771553187),
BOOST_MATH_BIG_CONSTANT(T, 113, 41.3833374155000608013677627389343329),
BOOST_MATH_BIG_CONSTANT(T, 113, 166.803341854562809335667241074035245),
BOOST_MATH_BIG_CONSTANT(T, 113, 453.39964786925369319960722793414521),
BOOST_MATH_BIG_CONSTANT(T, 113, 851.153712317697055375935433362983944),
BOOST_MATH_BIG_CONSTANT(T, 113, 1097.70657567285059133109286478004458),
BOOST_MATH_BIG_CONSTANT(T, 113, 938.431232478455316020076349367632922),
BOOST_MATH_BIG_CONSTANT(T, 113, 487.268001604651932322080970189930074),
BOOST_MATH_BIG_CONSTANT(T, 113, 119.953445242335730062471193124820659),
};
static const T Q_4_8[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 113, 12.4720855670474488978638945855932398),
BOOST_MATH_BIG_CONSTANT(T, 113, 78.6093129753298570701376952709727391),
BOOST_MATH_BIG_CONSTANT(T, 113, 307.470246050318322489781182863190127),
BOOST_MATH_BIG_CONSTANT(T, 113, 805.140686101151538537565264188630079),
BOOST_MATH_BIG_CONSTANT(T, 113, 1439.12019760292146454787601409644413),
BOOST_MATH_BIG_CONSTANT(T, 113, 1735.6105285756048831268586001383127),
BOOST_MATH_BIG_CONSTANT(T, 113, 1348.32500712856328019355198611280536),
BOOST_MATH_BIG_CONSTANT(T, 113, 607.225985860570846699704222144650563),
BOOST_MATH_BIG_CONSTANT(T, 113, 119.952317857277045332558673164517227),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.000140165918355036060868680809129436084),
};
// Maximum Deviation Found: 2.867e-035
// Expected Error Term : 2.866e-035
// Maximum Relative Change in Control Points : 2.662e-004
static const T P_8_16[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, -0.184828315274146610610872315609837439e-19),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.500000000000000004122475157735807738),
BOOST_MATH_BIG_CONSTANT(T, 113, 3.02533865247313349284875558880415875),
BOOST_MATH_BIG_CONSTANT(T, 113, 13.5995927517457371243039532492642734),
BOOST_MATH_BIG_CONSTANT(T, 113, 35.3132224283087906757037999452941588),
BOOST_MATH_BIG_CONSTANT(T, 113, 67.1639424550714159157603179911505619),
BOOST_MATH_BIG_CONSTANT(T, 113, 83.5767733658513967581959839367419891),
BOOST_MATH_BIG_CONSTANT(T, 113, 71.073491212235705900866411319363501),
BOOST_MATH_BIG_CONSTANT(T, 113, 35.8621515614725564575893663483998663),
BOOST_MATH_BIG_CONSTANT(T, 113, 8.72152231639983491987779743154333318),
};
static const T Q_8_16[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 113, 5.71734397161293452310624822415866372),
BOOST_MATH_BIG_CONSTANT(T, 113, 25.293404179620438179337103263274815),
BOOST_MATH_BIG_CONSTANT(T, 113, 62.2619767967468199111077640625328469),
BOOST_MATH_BIG_CONSTANT(T, 113, 113.955048909238993473389714972250235),
BOOST_MATH_BIG_CONSTANT(T, 113, 130.807138328938966981862203944329408),
BOOST_MATH_BIG_CONSTANT(T, 113, 102.423146902337654110717764213057753),
BOOST_MATH_BIG_CONSTANT(T, 113, 44.0424772805245202514468199602123565),
BOOST_MATH_BIG_CONSTANT(T, 113, 8.89898032477904072082994913461386099),
BOOST_MATH_BIG_CONSTANT(T, 113, -0.0296627336872039988632793863671456398),
};
// Maximum Deviation Found: 1.079e-035
// Expected Error Term : -1.079e-035
// Maximum Relative Change in Control Points : 7.884e-003
static const T P_16_inf[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 0.0),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.500000000000000000000000000000087317),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.345625669885456215194494735902663968),
BOOST_MATH_BIG_CONSTANT(T, 113, 9.62895499360842232127552650044647769),
BOOST_MATH_BIG_CONSTANT(T, 113, 3.5936085382439026269301003761320812),
BOOST_MATH_BIG_CONSTANT(T, 113, 49.459599118438883265036646019410669),
BOOST_MATH_BIG_CONSTANT(T, 113, 7.77519237321893917784735690560496607),
BOOST_MATH_BIG_CONSTANT(T, 113, 74.4536074488178075948642351179304121),
BOOST_MATH_BIG_CONSTANT(T, 113, 2.75209340397069050436806159297952699),
BOOST_MATH_BIG_CONSTANT(T, 113, 23.9292359711471667884504840186561598),
};
static const T Q_16_inf[] = {
BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.357918006437579097055656138920742037),
BOOST_MATH_BIG_CONSTANT(T, 113, 19.1386039850709849435325005484512944),
BOOST_MATH_BIG_CONSTANT(T, 113, 0.874349081464143606016221431763364517),
BOOST_MATH_BIG_CONSTANT(T, 113, 98.6516097434855572678195488061432509),
BOOST_MATH_BIG_CONSTANT(T, 113, -16.1051972833382893468655223662534306),
BOOST_MATH_BIG_CONSTANT(T, 113, 154.316860216253720989145047141653727),
BOOST_MATH_BIG_CONSTANT(T, 113, -40.2026880424378986053105969312264534),
BOOST_MATH_BIG_CONSTANT(T, 113, 60.1679136674264778074736441126810223),
BOOST_MATH_BIG_CONSTANT(T, 113, -13.3414844622256422644504472438320114),
BOOST_MATH_BIG_CONSTANT(T, 113, 2.53795636200649908779512969030363442),
};
if(x <= 2)
{
return (2 + boost::math::tools::evaluate_polynomial(P_1_2, x) / tools::evaluate_polynomial(Q_1_2, x)) / (x * x);
}
else if(x <= 4)
{
return (y_offset_2_4 + boost::math::tools::evaluate_polynomial(P_2_4, x) / tools::evaluate_polynomial(Q_2_4, x)) / (x * x);
}
else if(x <= 8)
{
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_4_8, y) / tools::evaluate_polynomial(Q_4_8, y)) / x;
}
else if(x <= 16)
{
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_8_16, y) / tools::evaluate_polynomial(Q_8_16, y)) / x;
}
T y = 1 / x;
return (1 + tools::evaluate_polynomial(P_16_inf, y) / tools::evaluate_polynomial(Q_16_inf, y)) / x;
}
template <class T, class Policy, class Tag>
BOOST_MATH_GPU_ENABLED T trigamma_dispatch(T x, const Policy& pol, const Tag& tag)
{
//
// This handles reflection of negative arguments, and all our
// error handling, then forwards to the T-specific approximation.
//
BOOST_MATH_STD_USING // ADL of std functions.
T result = 0;
//
// Check for negative arguments and use reflection:
//
if(x <= 0)
{
// Reflect:
T z = 1 - x;
BOOST_MATH_ASSERT(z >= 1);
// Argument reduction for tan:
if(floor(x) == x)
{
return policies::raise_pole_error<T>("boost::math::trigamma<%1%>(%1%)", nullptr, (1-x), pol);
}
T s = fabs(x) < fabs(z) ? boost::math::sin_pi(x, pol) : boost::math::sin_pi(z, pol);
return result - trigamma_prec(T(z), pol, tag) + boost::math::pow<2>(constants::pi<T>()) / (s * s);
}
if(x < 1)
{
result = 1 / (x * x);
x += 1;
}
return result + trigamma_prec(x, pol, tag);
}
} // namespace detail
template <class T, class Policy>
BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
trigamma(T x, const Policy&)
{
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename policies::precision<T, Policy>::type precision_type;
typedef boost::math::integral_constant<int,
precision_type::value <= 0 ? 0 :
precision_type::value <= 53 ? 53 :
precision_type::value <= 64 ? 64 :
precision_type::value <= 113 ? 113 : 0
> tag_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
return policies::checked_narrowing_cast<result_type, Policy>(detail::trigamma_dispatch(static_cast<value_type>(x), forwarding_policy(), tag_type()), "boost::math::trigamma<%1%>(%1%)");
}
template <class T>
BOOST_MATH_GPU_ENABLED inline typename tools::promote_args<T>::type
trigamma(T x)
{
return trigamma(x, policies::policy<>());
}
} // namespace math
} // namespace boost
#endif
|