1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
/*
* Copyright Nick Thompson, 2024
* Use, modification and distribution are subject to the
* Boost Software License, Version 1.0. (See accompanying file
* LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_MATH_OPTIMIZATION_RANDOM_SEARCH_HPP
#define BOOST_MATH_OPTIMIZATION_RANDOM_SEARCH_HPP
#include <atomic>
#include <cmath>
#include <limits>
#include <mutex>
#include <random>
#include <sstream>
#include <stdexcept>
#include <thread>
#include <utility>
#include <vector>
#include <boost/math/optimization/detail/common.hpp>
namespace boost::math::optimization {
template <typename ArgumentContainer> struct random_search_parameters {
using Real = typename ArgumentContainer::value_type;
ArgumentContainer lower_bounds;
ArgumentContainer upper_bounds;
size_t max_function_calls = 10000*std::thread::hardware_concurrency();
ArgumentContainer const *initial_guess = nullptr;
unsigned threads = std::thread::hardware_concurrency();
};
template <typename ArgumentContainer>
void validate_random_search_parameters(random_search_parameters<ArgumentContainer> const ¶ms) {
using std::isfinite;
using std::isnan;
std::ostringstream oss;
detail::validate_bounds(params.lower_bounds, params.upper_bounds);
if (params.initial_guess) {
detail::validate_initial_guess(*params.initial_guess, params.lower_bounds, params.upper_bounds);
}
if (params.threads == 0) {
oss << __FILE__ << ":" << __LINE__ << ":" << __func__;
oss << ": There must be at least one thread.";
throw std::invalid_argument(oss.str());
}
}
template <typename ArgumentContainer, class Func, class URBG>
ArgumentContainer random_search(
const Func cost_function,
random_search_parameters<ArgumentContainer> const ¶ms,
URBG &gen,
std::invoke_result_t<Func, ArgumentContainer> target_value = std::numeric_limits<std::invoke_result_t<Func, ArgumentContainer>>::quiet_NaN(),
std::atomic<bool> *cancellation = nullptr,
std::atomic<std::invoke_result_t<Func, ArgumentContainer>> *current_minimum_cost = nullptr,
std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> *queries = nullptr)
{
using Real = typename ArgumentContainer::value_type;
using DimensionlessReal = decltype(Real()/Real());
using ResultType = std::invoke_result_t<Func, ArgumentContainer>;
using std::isnan;
using std::uniform_real_distribution;
validate_random_search_parameters(params);
const size_t dimension = params.lower_bounds.size();
std::atomic<bool> target_attained = false;
// Unfortunately, the "minimum_cost" variable can either be passed
// (for observability) or not (if the user doesn't care).
// That makes this a bit awkward . . .
std::atomic<ResultType> lowest_cost = std::numeric_limits<ResultType>::infinity();
ArgumentContainer best_vector;
if constexpr (detail::has_resize_v<ArgumentContainer>) {
best_vector.resize(dimension, std::numeric_limits<Real>::quiet_NaN());
}
if (params.initial_guess) {
auto initial_cost = cost_function(*params.initial_guess);
if (!isnan(initial_cost)) {
lowest_cost = initial_cost;
best_vector = *params.initial_guess;
if (current_minimum_cost) {
*current_minimum_cost = initial_cost;
}
}
}
std::mutex mt;
std::vector<std::thread> thread_pool;
std::atomic<size_t> function_calls = 0;
for (unsigned j = 0; j < params.threads; ++j) {
auto seed = gen();
thread_pool.emplace_back([&, seed]() {
URBG g(seed);
ArgumentContainer trial_vector;
// This vector is empty unless the user requests the queries be stored:
std::vector<std::pair<ArgumentContainer, std::invoke_result_t<Func, ArgumentContainer>>> local_queries;
if constexpr (detail::has_resize_v<ArgumentContainer>) {
trial_vector.resize(dimension, std::numeric_limits<Real>::quiet_NaN());
}
while (function_calls < params.max_function_calls) {
if (cancellation && *cancellation) {
break;
}
if (target_attained) {
break;
}
// Fill trial vector:
uniform_real_distribution<DimensionlessReal> unif01(DimensionlessReal(0), DimensionlessReal(1));
for (size_t i = 0; i < dimension; ++i) {
trial_vector[i] = params.lower_bounds[i] + (params.upper_bounds[i] - params.lower_bounds[i])*unif01(g);
}
ResultType trial_cost = cost_function(trial_vector);
++function_calls;
if (isnan(trial_cost)) {
continue;
}
if (trial_cost < lowest_cost) {
lowest_cost = trial_cost;
if (current_minimum_cost) {
*current_minimum_cost = trial_cost;
}
// We expect to need to acquire this lock with decreasing frequency
// as the computation proceeds:
std::scoped_lock lock(mt);
best_vector = trial_vector;
}
if (queries) {
local_queries.push_back(std::make_pair(trial_vector, trial_cost));
}
if (!isnan(target_value) && trial_cost <= target_value) {
target_attained = true;
}
}
if (queries) {
std::scoped_lock lock(mt);
queries->insert(queries->begin(), local_queries.begin(), local_queries.end());
}
});
}
for (auto &thread : thread_pool) {
thread.join();
}
return best_vector;
}
} // namespace boost::math::optimization
#endif
|