aboutsummaryrefslogtreecommitdiff
path: root/offload/libomptarget/omptarget.cpp
blob: 69725e77bae007d58520d97d23e333683127a2b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
//===------ omptarget.cpp - Target independent OpenMP target RTL -- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Implementation of the interface to be used by Clang during the codegen of a
// target region.
//
//===----------------------------------------------------------------------===//

#include "omptarget.h"
#include "OffloadPolicy.h"
#include "OpenMP/OMPT/Callback.h"
#include "OpenMP/OMPT/Interface.h"
#include "PluginManager.h"
#include "Shared/Debug.h"
#include "Shared/EnvironmentVar.h"
#include "Shared/Utils.h"
#include "device.h"
#include "private.h"
#include "rtl.h"

#include "Shared/Profile.h"

#include "OpenMP/Mapping.h"
#include "OpenMP/omp.h"

#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/bit.h"
#include "llvm/Frontend/OpenMP/OMPConstants.h"
#include "llvm/Object/ObjectFile.h"

#include <cassert>
#include <cstdint>
#include <vector>

using llvm::SmallVector;
#ifdef OMPT_SUPPORT
using namespace llvm::omp::target::ompt;
#endif

int AsyncInfoTy::synchronize() {
  int Result = OFFLOAD_SUCCESS;
  if (!isQueueEmpty()) {
    switch (SyncType) {
    case SyncTy::BLOCKING:
      // If we have a queue we need to synchronize it now.
      Result = Device.synchronize(*this);
      assert(AsyncInfo.Queue == nullptr &&
             "The device plugin should have nulled the queue to indicate there "
             "are no outstanding actions!");
      break;
    case SyncTy::NON_BLOCKING:
      Result = Device.queryAsync(*this);
      break;
    }
  }

  // Run any pending post-processing function registered on this async object.
  if (Result == OFFLOAD_SUCCESS && isQueueEmpty())
    Result = runPostProcessing();

  return Result;
}

void *&AsyncInfoTy::getVoidPtrLocation() {
  BufferLocations.push_back(nullptr);
  return BufferLocations.back();
}

bool AsyncInfoTy::isDone() const { return isQueueEmpty(); }

int32_t AsyncInfoTy::runPostProcessing() {
  size_t Size = PostProcessingFunctions.size();
  for (size_t I = 0; I < Size; ++I) {
    const int Result = PostProcessingFunctions[I]();
    if (Result != OFFLOAD_SUCCESS)
      return Result;
  }

  // Clear the vector up until the last known function, since post-processing
  // procedures might add new procedures themselves.
  const auto *PrevBegin = PostProcessingFunctions.begin();
  PostProcessingFunctions.erase(PrevBegin, PrevBegin + Size);

  return OFFLOAD_SUCCESS;
}

bool AsyncInfoTy::isQueueEmpty() const { return AsyncInfo.Queue == nullptr; }

/* All begin addresses for partially mapped structs must be aligned, up to 16,
 * in order to ensure proper alignment of members. E.g.
 *
 * struct S {
 *   int a;   // 4-aligned
 *   int b;   // 4-aligned
 *   int *p;  // 8-aligned
 * } s1;
 * ...
 * #pragma omp target map(tofrom: s1.b, s1.p[0:N])
 * {
 *   s1.b = 5;
 *   for (int i...) s1.p[i] = ...;
 * }
 *
 * Here we are mapping s1 starting from member b, so BaseAddress=&s1=&s1.a and
 * BeginAddress=&s1.b. Let's assume that the struct begins at address 0x100,
 * then &s1.a=0x100, &s1.b=0x104, &s1.p=0x108. Each member obeys the alignment
 * requirements for its type. Now, when we allocate memory on the device, in
 * CUDA's case cuMemAlloc() returns an address which is at least 256-aligned.
 * This means that the chunk of the struct on the device will start at a
 * 256-aligned address, let's say 0x200. Then the address of b will be 0x200 and
 * address of p will be a misaligned 0x204 (on the host there was no need to add
 * padding between b and p, so p comes exactly 4 bytes after b). If the device
 * kernel tries to access s1.p, a misaligned address error occurs (as reported
 * by the CUDA plugin). By padding the begin address down to a multiple of 8 and
 * extending the size of the allocated chuck accordingly, the chuck on the
 * device will start at 0x200 with the padding (4 bytes), then &s1.b=0x204 and
 * &s1.p=0x208, as they should be to satisfy the alignment requirements.
 */
static const int64_t MaxAlignment = 16;

/// Return the alignment requirement of partially mapped structs, see
/// MaxAlignment above.
static uint64_t getPartialStructRequiredAlignment(void *HstPtrBase) {
  int LowestOneBit = __builtin_ffsl(reinterpret_cast<uintptr_t>(HstPtrBase));
  uint64_t BaseAlignment = 1 << (LowestOneBit - 1);
  return MaxAlignment < BaseAlignment ? MaxAlignment : BaseAlignment;
}

void handleTargetOutcome(bool Success, ident_t *Loc) {
  switch (OffloadPolicy::get(*PM).Kind) {
  case OffloadPolicy::DISABLED:
    if (Success) {
      FATAL_MESSAGE0(1, "expected no offloading while offloading is disabled");
    }
    break;
  case OffloadPolicy::MANDATORY:
    if (!Success) {
      if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) {
        auto ExclusiveDevicesAccessor = PM->getExclusiveDevicesAccessor();
        for (auto &Device : PM->devices(ExclusiveDevicesAccessor))
          dumpTargetPointerMappings(Loc, Device);
      } else
        FAILURE_MESSAGE("Consult https://openmp.llvm.org/design/Runtimes.html "
                        "for debugging options.\n");

      if (!PM->getNumActivePlugins()) {
        FAILURE_MESSAGE(
            "No images found compatible with the installed hardware. ");

        llvm::SmallVector<llvm::StringRef> Archs;
        for (auto &Image : PM->deviceImages()) {
          const char *Start = reinterpret_cast<const char *>(
              Image.getExecutableImage().ImageStart);
          uint64_t Length =
              utils::getPtrDiff(Start, Image.getExecutableImage().ImageEnd);
          llvm::MemoryBufferRef Buffer(llvm::StringRef(Start, Length),
                                       /*Identifier=*/"");

          auto ObjectOrErr = llvm::object::ObjectFile::createObjectFile(Buffer);
          if (auto Err = ObjectOrErr.takeError()) {
            llvm::consumeError(std::move(Err));
            continue;
          }

          if (auto CPU = (*ObjectOrErr)->tryGetCPUName())
            Archs.push_back(*CPU);
        }
        fprintf(stderr, "Found %zu image(s): (%s)\n", Archs.size(),
                llvm::join(Archs, ",").c_str());
      }

      SourceInfo Info(Loc);
      if (Info.isAvailible())
        fprintf(stderr, "%s:%d:%d: ", Info.getFilename(), Info.getLine(),
                Info.getColumn());
      else
        FAILURE_MESSAGE("Source location information not present. Compile with "
                        "-g or -gline-tables-only.\n");
      FATAL_MESSAGE0(
          1, "failure of target construct while offloading is mandatory");
    } else {
      if (getInfoLevel() & OMP_INFOTYPE_DUMP_TABLE) {
        auto ExclusiveDevicesAccessor = PM->getExclusiveDevicesAccessor();
        for (auto &Device : PM->devices(ExclusiveDevicesAccessor))
          dumpTargetPointerMappings(Loc, Device);
      }
    }
    break;
  }
}

static int32_t getParentIndex(int64_t Type) {
  return ((Type & OMP_TGT_MAPTYPE_MEMBER_OF) >> 48) - 1;
}

void *targetAllocExplicit(size_t Size, int DeviceNum, int Kind,
                          const char *Name) {
  DP("Call to %s for device %d requesting %zu bytes\n", Name, DeviceNum, Size);

  if (Size <= 0) {
    DP("Call to %s with non-positive length\n", Name);
    return NULL;
  }

  void *Rc = NULL;

  if (DeviceNum == omp_get_initial_device()) {
    Rc = malloc(Size);
    DP("%s returns host ptr " DPxMOD "\n", Name, DPxPTR(Rc));
    return Rc;
  }

  auto DeviceOrErr = PM->getDevice(DeviceNum);
  if (!DeviceOrErr)
    FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());

  Rc = DeviceOrErr->allocData(Size, nullptr, Kind);
  DP("%s returns device ptr " DPxMOD "\n", Name, DPxPTR(Rc));
  return Rc;
}

void targetFreeExplicit(void *DevicePtr, int DeviceNum, int Kind,
                        const char *Name) {
  DP("Call to %s for device %d and address " DPxMOD "\n", Name, DeviceNum,
     DPxPTR(DevicePtr));

  if (!DevicePtr) {
    DP("Call to %s with NULL ptr\n", Name);
    return;
  }

  if (DeviceNum == omp_get_initial_device()) {
    free(DevicePtr);
    DP("%s deallocated host ptr\n", Name);
    return;
  }

  auto DeviceOrErr = PM->getDevice(DeviceNum);
  if (!DeviceOrErr)
    FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());

  if (DeviceOrErr->deleteData(DevicePtr, Kind) == OFFLOAD_FAIL)
    FATAL_MESSAGE(DeviceNum, "%s",
                  "Failed to deallocate device ptr. Set "
                  "OFFLOAD_TRACK_ALLOCATION_TRACES=1 to track allocations.");

  DP("omp_target_free deallocated device ptr\n");
}

void *targetLockExplicit(void *HostPtr, size_t Size, int DeviceNum,
                         const char *Name) {
  DP("Call to %s for device %d locking %zu bytes\n", Name, DeviceNum, Size);

  if (Size <= 0) {
    DP("Call to %s with non-positive length\n", Name);
    return NULL;
  }

  void *RC = NULL;

  auto DeviceOrErr = PM->getDevice(DeviceNum);
  if (!DeviceOrErr)
    FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());

  int32_t Err = 0;
  Err = DeviceOrErr->RTL->data_lock(DeviceNum, HostPtr, Size, &RC);
  if (Err) {
    DP("Could not lock ptr %p\n", HostPtr);
    return nullptr;
  }
  DP("%s returns device ptr " DPxMOD "\n", Name, DPxPTR(RC));
  return RC;
}

void targetUnlockExplicit(void *HostPtr, int DeviceNum, const char *Name) {
  DP("Call to %s for device %d unlocking\n", Name, DeviceNum);

  auto DeviceOrErr = PM->getDevice(DeviceNum);
  if (!DeviceOrErr)
    FATAL_MESSAGE(DeviceNum, "%s", toString(DeviceOrErr.takeError()).c_str());

  DeviceOrErr->RTL->data_unlock(DeviceNum, HostPtr);
  DP("%s returns\n", Name);
}

/// Call the user-defined mapper function followed by the appropriate
// targetData* function (targetData{Begin,End,Update}).
int targetDataMapper(ident_t *Loc, DeviceTy &Device, void *ArgBase, void *Arg,
                     int64_t ArgSize, int64_t ArgType, map_var_info_t ArgNames,
                     void *ArgMapper, AsyncInfoTy &AsyncInfo,
                     TargetDataFuncPtrTy TargetDataFunction,
                     AttachInfoTy *AttachInfo = nullptr) {
  DP("Calling the mapper function " DPxMOD "\n", DPxPTR(ArgMapper));

  // The mapper function fills up Components.
  MapperComponentsTy MapperComponents;
  MapperFuncPtrTy MapperFuncPtr = (MapperFuncPtrTy)(ArgMapper);
  (*MapperFuncPtr)((void *)&MapperComponents, ArgBase, Arg, ArgSize, ArgType,
                   ArgNames);

  // Construct new arrays for args_base, args, arg_sizes and arg_types
  // using the information in MapperComponents and call the corresponding
  // targetData* function using these new arrays.
  SmallVector<void *> MapperArgsBase(MapperComponents.Components.size());
  SmallVector<void *> MapperArgs(MapperComponents.Components.size());
  SmallVector<int64_t> MapperArgSizes(MapperComponents.Components.size());
  SmallVector<int64_t> MapperArgTypes(MapperComponents.Components.size());
  SmallVector<void *> MapperArgNames(MapperComponents.Components.size());

  for (unsigned I = 0, E = MapperComponents.Components.size(); I < E; ++I) {
    auto &C = MapperComponents.Components[I];
    MapperArgsBase[I] = C.Base;
    MapperArgs[I] = C.Begin;
    MapperArgSizes[I] = C.Size;
    MapperArgTypes[I] = C.Type;
    MapperArgNames[I] = C.Name;
  }

  int Rc = TargetDataFunction(Loc, Device, MapperComponents.Components.size(),
                              MapperArgsBase.data(), MapperArgs.data(),
                              MapperArgSizes.data(), MapperArgTypes.data(),
                              MapperArgNames.data(), /*arg_mappers*/ nullptr,
                              AsyncInfo, AttachInfo, /*FromMapper=*/true);

  return Rc;
}

/// Returns a buffer of the requested \p Size, to be used as the source for
/// `submitData`.
///
/// For small buffers (`Size <= sizeof(void*)`), uses \p AsyncInfo's
/// getVoidPtrLocation().
/// For larger buffers, creates a dynamic buffer which will be eventually
/// deleted by \p AsyncInfo's post-processing callback.
static char *getOrCreateSourceBufferForSubmitData(AsyncInfoTy &AsyncInfo,
                                                  int64_t Size) {
  constexpr int64_t VoidPtrSize = sizeof(void *);

  if (Size <= VoidPtrSize) {
    void *&BufferElement = AsyncInfo.getVoidPtrLocation();
    return reinterpret_cast<char *>(&BufferElement);
  }

  // Create a dynamic buffer for larger data and schedule its deletion.
  char *DataBuffer = new char[Size];
  AsyncInfo.addPostProcessingFunction([DataBuffer]() {
    delete[] DataBuffer;
    return OFFLOAD_SUCCESS;
  });
  return DataBuffer;
}

/// Calculates the target pointee base by applying the host
/// pointee begin/base delta to the target pointee begin.
///
/// ```
/// TgtPteeBase = TgtPteeBegin - (HstPteeBegin - HstPteeBase)
/// ```
static void *calculateTargetPointeeBase(void *HstPteeBase, void *HstPteeBegin,
                                        void *TgtPteeBegin) {
  uint64_t Delta = reinterpret_cast<uint64_t>(HstPteeBegin) -
                   reinterpret_cast<uint64_t>(HstPteeBase);
  void *TgtPteeBase = reinterpret_cast<void *>(
      reinterpret_cast<uint64_t>(TgtPteeBegin) - Delta);

  DP("HstPteeBase: " DPxMOD ", HstPteeBegin: " DPxMOD
     ", Delta (HstPteeBegin - HstPteeBase): %" PRIu64 ".\n",
     DPxPTR(HstPteeBase), DPxPTR(HstPteeBegin), Delta);
  DP("TgtPteeBase (TgtPteeBegin - Delta): " DPxMOD ", TgtPteeBegin : " DPxMOD
     "\n",
     DPxPTR(TgtPteeBase), DPxPTR(TgtPteeBegin));

  return TgtPteeBase;
}

/// Utility function to perform a pointer attachment operation.
///
/// For something like:
/// ```cpp
///  int *p;
///  ...
///  #pragma omp target enter data map(to:p[10:10])
/// ```
///
/// for which the attachment operation gets represented using:
/// ```
///   &p, &p[10], sizeof(p), ATTACH
/// ```
///
/// (Hst|Tgt)PtrAddr   represents &p
/// (Hst|Tgt)PteeBase  represents &p[0]
/// (Hst|Tgt)PteeBegin represents &p[10]
///
/// This function first computes the expected TgtPteeBase using:
///   `<Select>TgtPteeBase = TgtPteeBegin - (HstPteeBegin - HstPteeBase)`
///
/// and then attaches TgtPteeBase to TgtPtrAddr.
///
/// \p HstPtrSize represents the size of the pointer p. For C/C++, this
/// should be same as "sizeof(void*)" (say 8).
///
/// However, for Fortran, pointers/allocatables, which are also eligible for
/// "pointer-attachment", may be implemented using descriptors that contain the
/// address of the pointee in the first 8 bytes, but also contain other
/// information such as lower-bound/upper-bound etc in their subsequent fields.
///
/// For example, for the following:
/// ```fortran
///   integer, allocatable :: x(:)
///   integer, pointer :: p(:)
///   ...
///   p => x(10: 19)
///   ...
///   !$omp target enter data map(to:p(:))
/// ```
///
/// The map should trigger a pointer-attachment (assuming the pointer-attachment
/// conditions as noted on processAttachEntries are met) between the descriptor
/// for p, and its pointee data.
///
/// Since only the first 8 bytes of the descriptor contain the address of the
/// pointee, an attachment operation on device descriptors involves:
/// * Setting the first 8 bytes of the device descriptor to point the device
/// address of the pointee.
/// * Copying the remaining information about bounds/offset etc. from the host
/// descriptor to the device descriptor.
///
/// The function also handles pointer-attachment portion of PTR_AND_OBJ maps,
/// like:
/// ```
///   &p, &p[10], 10 * sizeof(p[10]), PTR_AND_OBJ
/// ```
/// by using `sizeof(void*)` as \p HstPtrSize.
static int performPointerAttachment(DeviceTy &Device, AsyncInfoTy &AsyncInfo,
                                    void **HstPtrAddr, void *HstPteeBase,
                                    void *HstPteeBegin, void **TgtPtrAddr,
                                    void *TgtPteeBegin, int64_t HstPtrSize,
                                    TargetPointerResultTy &PtrTPR) {
  assert(PtrTPR.getEntry() &&
         "Need a valid pointer entry to perform pointer-attachment");

  constexpr int64_t VoidPtrSize = sizeof(void *);
  assert(HstPtrSize >= VoidPtrSize && "PointerSize is too small");

  void *TgtPteeBase =
      calculateTargetPointeeBase(HstPteeBase, HstPteeBegin, TgtPteeBegin);

  // Add shadow pointer tracking
  if (!PtrTPR.getEntry()->addShadowPointer(
          ShadowPtrInfoTy{HstPtrAddr, TgtPtrAddr, TgtPteeBase, HstPtrSize})) {
    DP("Pointer " DPxMOD " is already attached to " DPxMOD "\n",
       DPxPTR(TgtPtrAddr), DPxPTR(TgtPteeBase));
    return OFFLOAD_SUCCESS;
  }

  DP("Update pointer (" DPxMOD ") -> [" DPxMOD "]\n", DPxPTR(TgtPtrAddr),
     DPxPTR(TgtPteeBase));

  // Lambda to handle submitData result and perform final steps.
  auto HandleSubmitResult = [&](int SubmitResult) -> int {
    if (SubmitResult != OFFLOAD_SUCCESS) {
      REPORT("Failed to update pointer on device.\n");
      return OFFLOAD_FAIL;
    }

    if (PtrTPR.getEntry()->addEventIfNecessary(Device, AsyncInfo) !=
        OFFLOAD_SUCCESS)
      return OFFLOAD_FAIL;

    return OFFLOAD_SUCCESS;
  };

  // Get a buffer to be used as the source for data submission.
  char *SrcBuffer = getOrCreateSourceBufferForSubmitData(AsyncInfo, HstPtrSize);

  // The pointee's address should occupy the first VoidPtrSize bytes
  // irrespective of HstPtrSize.
  std::memcpy(SrcBuffer, &TgtPteeBase, VoidPtrSize);

  // For larger "pointers" (e.g., Fortran descriptors), copy remaining
  // descriptor fields from the host descriptor into the buffer.
  if (HstPtrSize > VoidPtrSize) {
    uint64_t HstDescriptorFieldsSize = HstPtrSize - VoidPtrSize;
    void *HstDescriptorFieldsAddr =
        reinterpret_cast<char *>(HstPtrAddr) + VoidPtrSize;
    std::memcpy(SrcBuffer + VoidPtrSize, HstDescriptorFieldsAddr,
                HstDescriptorFieldsSize);

    DP("Updating %" PRId64 " bytes of descriptor (" DPxMOD
       ") (pointer + %" PRId64 " additional bytes from host descriptor " DPxMOD
       ")\n",
       HstPtrSize, DPxPTR(TgtPtrAddr), HstDescriptorFieldsSize,
       DPxPTR(HstDescriptorFieldsAddr));
  }

  // Submit the populated source buffer to device.
  int SubmitResult = Device.submitData(TgtPtrAddr, SrcBuffer, HstPtrSize,
                                       AsyncInfo, PtrTPR.getEntry());
  return HandleSubmitResult(SubmitResult);
}

/// Internal function to do the mapping and transfer the data to the device
int targetDataBegin(ident_t *Loc, DeviceTy &Device, int32_t ArgNum,
                    void **ArgsBase, void **Args, int64_t *ArgSizes,
                    int64_t *ArgTypes, map_var_info_t *ArgNames,
                    void **ArgMappers, AsyncInfoTy &AsyncInfo,
                    AttachInfoTy *AttachInfo, bool FromMapper) {
  assert(AttachInfo && "AttachInfo must be available for targetDataBegin for "
                       "handling ATTACH map-types.");
  // process each input.
  for (int32_t I = 0; I < ArgNum; ++I) {
    // Ignore private variables and arrays - there is no mapping for them.
    if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) ||
        (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE))
      continue;
    TIMESCOPE_WITH_DETAILS_AND_IDENT(
        "HostToDev", "Size=" + std::to_string(ArgSizes[I]) + "B", Loc);
    if (ArgMappers && ArgMappers[I]) {
      // Instead of executing the regular path of targetDataBegin, call the
      // targetDataMapper variant which will call targetDataBegin again
      // with new arguments.
      DP("Calling targetDataMapper for the %dth argument\n", I);

      map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I];
      int Rc = targetDataMapper(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I],
                                ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo,
                                targetDataBegin, AttachInfo);

      if (Rc != OFFLOAD_SUCCESS) {
        REPORT("Call to targetDataBegin via targetDataMapper for custom mapper"
               " failed.\n");
        return OFFLOAD_FAIL;
      }

      // Skip the rest of this function, continue to the next argument.
      continue;
    }

    void *HstPtrBegin = Args[I];
    void *HstPtrBase = ArgsBase[I];
    int64_t DataSize = ArgSizes[I];
    map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I];

    // ATTACH map-types are supposed to be handled after all mapping for the
    // construct is done. Defer their processing.
    if (ArgTypes[I] & OMP_TGT_MAPTYPE_ATTACH) {
      const bool IsCorrespondingPointerInit =
          (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE);
      // We don't need to keep track of PRIVATE | ATTACH entries. They
      // represent corresponding-pointer-initialization, and are handled
      // similar to firstprivate (PRIVATE | TO) entries by
      // PrivateArgumentManager.
      if (!IsCorrespondingPointerInit)
        AttachInfo->AttachEntries.emplace_back(
            /*PointerBase=*/HstPtrBase, /*PointeeBegin=*/HstPtrBegin,
            /*PointerSize=*/DataSize, /*MapType=*/ArgTypes[I],
            /*PointeeName=*/HstPtrName);

      DP("Deferring ATTACH map-type processing for argument %d\n", I);
      continue;
    }

    // Adjust for proper alignment if this is a combined entry (for structs).
    // Look at the next argument - if that is MEMBER_OF this one, then this one
    // is a combined entry.
    int64_t TgtPadding = 0;
    const int NextI = I + 1;
    if (getParentIndex(ArgTypes[I]) < 0 && NextI < ArgNum &&
        getParentIndex(ArgTypes[NextI]) == I) {
      int64_t Alignment = getPartialStructRequiredAlignment(HstPtrBase);
      TgtPadding = (int64_t)HstPtrBegin % Alignment;
      if (TgtPadding) {
        DP("Using a padding of %" PRId64 " bytes for begin address " DPxMOD
           "\n",
           TgtPadding, DPxPTR(HstPtrBegin));
      }
    }

    // Address of pointer on the host and device, respectively.
    void *PointerHstPtrBegin, *PointerTgtPtrBegin;
    TargetPointerResultTy PointerTpr;
    bool IsHostPtr = false;
    bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT;
    // Force the creation of a device side copy of the data when:
    // a close map modifier was associated with a map that contained a to.
    bool HasCloseModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_CLOSE;
    bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT;
    bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD;
    // UpdateRef is based on MEMBER_OF instead of TARGET_PARAM because if we
    // have reached this point via __tgt_target_data_begin and not __tgt_target
    // then no argument is marked as TARGET_PARAM ("omp target data map" is not
    // associated with a target region, so there are no target parameters). This
    // may be considered a hack, we could revise the scheme in the future.
    bool UpdateRef =
        !(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) && !(FromMapper && I == 0);

    MappingInfoTy::HDTTMapAccessorTy HDTTMap =
        Device.getMappingInfo().HostDataToTargetMap.getExclusiveAccessor();
    if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ) {
      DP("Has a pointer entry: \n");
      // Base is address of pointer.
      //
      // Usually, the pointer is already allocated by this time.  For example:
      //
      //   #pragma omp target map(s.p[0:N])
      //
      // The map entry for s comes first, and the PTR_AND_OBJ entry comes
      // afterward, so the pointer is already allocated by the time the
      // PTR_AND_OBJ entry is handled below, and PointerTgtPtrBegin is thus
      // non-null.  However, "declare target link" can produce a PTR_AND_OBJ
      // entry for a global that might not already be allocated by the time the
      // PTR_AND_OBJ entry is handled below, and so the allocation might fail
      // when HasPresentModifier.
      PointerTpr = Device.getMappingInfo().getTargetPointer(
          HDTTMap, HstPtrBase, HstPtrBase, /*TgtPadding=*/0, sizeof(void *),
          /*HstPtrName=*/nullptr,
          /*HasFlagTo=*/false, /*HasFlagAlways=*/false, IsImplicit, UpdateRef,
          HasCloseModifier, HasPresentModifier, HasHoldModifier, AsyncInfo,
          /*OwnedTPR=*/nullptr, /*ReleaseHDTTMap=*/false);
      PointerTgtPtrBegin = PointerTpr.TargetPointer;
      IsHostPtr = PointerTpr.Flags.IsHostPointer;
      if (!PointerTgtPtrBegin) {
        REPORT("Call to getTargetPointer returned null pointer (%s).\n",
               HasPresentModifier ? "'present' map type modifier"
                                  : "device failure or illegal mapping");
        return OFFLOAD_FAIL;
      }

      // Track new allocation, for eventual use in attachment decision-making.
      if (PointerTpr.Flags.IsNewEntry && !IsHostPtr)
        AttachInfo->NewAllocations[HstPtrBase] = sizeof(void *);

      DP("There are %zu bytes allocated at target address " DPxMOD " - is%s new"
         "\n",
         sizeof(void *), DPxPTR(PointerTgtPtrBegin),
         (PointerTpr.Flags.IsNewEntry ? "" : " not"));
      PointerHstPtrBegin = HstPtrBase;
      // modify current entry.
      HstPtrBase = *reinterpret_cast<void **>(HstPtrBase);
      // No need to update pointee ref count for the first element of the
      // subelement that comes from mapper.
      UpdateRef =
          (!FromMapper || I != 0); // subsequently update ref count of pointee
    }

    const bool HasFlagTo = ArgTypes[I] & OMP_TGT_MAPTYPE_TO;
    const bool HasFlagAlways = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS;
    // Note that HDTTMap will be released in getTargetPointer.
    auto TPR = Device.getMappingInfo().getTargetPointer(
        HDTTMap, HstPtrBegin, HstPtrBase, TgtPadding, DataSize, HstPtrName,
        HasFlagTo, HasFlagAlways, IsImplicit, UpdateRef, HasCloseModifier,
        HasPresentModifier, HasHoldModifier, AsyncInfo, PointerTpr.getEntry());
    void *TgtPtrBegin = TPR.TargetPointer;
    IsHostPtr = TPR.Flags.IsHostPointer;
    // If data_size==0, then the argument could be a zero-length pointer to
    // NULL, so getOrAlloc() returning NULL is not an error.
    if (!TgtPtrBegin && (DataSize || HasPresentModifier)) {
      REPORT("Call to getTargetPointer returned null pointer (%s).\n",
             HasPresentModifier ? "'present' map type modifier"
                                : "device failure or illegal mapping");
      return OFFLOAD_FAIL;
    }

    // Track new allocation, for eventual use in attachment decision-making.
    if (TPR.Flags.IsNewEntry && !IsHostPtr && TgtPtrBegin)
      AttachInfo->NewAllocations[HstPtrBegin] = DataSize;

    DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
       " - is%s new\n",
       DataSize, DPxPTR(TgtPtrBegin), (TPR.Flags.IsNewEntry ? "" : " not"));

    if (ArgTypes[I] & OMP_TGT_MAPTYPE_RETURN_PARAM) {
      uintptr_t Delta = (uintptr_t)HstPtrBegin - (uintptr_t)HstPtrBase;
      void *TgtPtrBase = (void *)((uintptr_t)TgtPtrBegin - Delta);
      DP("Returning device pointer " DPxMOD "\n", DPxPTR(TgtPtrBase));
      ArgsBase[I] = TgtPtrBase;
    }

    if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ && !IsHostPtr) {
      int Ret = performPointerAttachment(
          Device, AsyncInfo, reinterpret_cast<void **>(PointerHstPtrBegin),
          HstPtrBase, HstPtrBegin,
          reinterpret_cast<void **>(PointerTgtPtrBegin), TgtPtrBegin,
          sizeof(void *), PointerTpr);
      if (Ret != OFFLOAD_SUCCESS)
        return OFFLOAD_FAIL;
    }

    // Check if variable can be used on the device:
    bool IsStructMember = ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF;
    if (getInfoLevel() & OMP_INFOTYPE_EMPTY_MAPPING && ArgTypes[I] != 0 &&
        !IsStructMember && !IsImplicit && !TPR.isPresent() &&
        !TPR.isContained() && !TPR.isHostPointer())
      INFO(OMP_INFOTYPE_EMPTY_MAPPING, Device.DeviceID,
           "variable %s does not have a valid device counterpart\n",
           (HstPtrName) ? getNameFromMapping(HstPtrName).c_str() : "unknown");
  }

  return OFFLOAD_SUCCESS;
}

/// Process deferred ATTACH map entries collected during targetDataBegin.
///
/// From OpenMP's perspective, when mapping something that has a base pointer,
/// such as:
/// ```cpp
///   int *p;
///   #pragma omp enter target data map(to: p[10:20])
/// ```
///
/// a pointer-attachment between p and &p[10] should occur if both p and
/// p[10] are present on the device after doing all allocations for all maps
/// on the construct, and one of the following is true:
///
/// * The pointer p was newly allocated while handling the construct
/// * The pointee p[10:20] was newly allocated while handling the construct
/// * attach(always) map-type modifier was specified (OpenMP 6.1)
///
/// That's why we collect all attach entries and new memory allocations during
/// targetDataBegin, and use that information to make the decision of whether
/// to perform a pointer-attachment or not here, after maps have been handled.
///
/// Additionally, once we decide that a pointer-attachment should be performed,
/// we need to make sure that it happens after any previously submitted data
/// transfers have completed, to avoid the possibility of the pending transfers
/// clobbering the attachment. For example:
///
/// ```cpp
///   int *p = ...;
///   int **pp = &p;
///   map(to: pp[0], p[0])
/// ```
///
/// Which would be represented by:
/// ```
/// &pp[0], &pp[0], sizeof(pp[0]), TO (1)
/// &p[0], &p[0], sizeof(p[0]), TO    (2)
///
/// &pp, &pp[0], sizeof(pp), ATTACH   (3)
/// &p, &p[0], sizeof(p), ATTACH      (4)
/// ```
///
/// (4) and (1) are both trying to modify the device memory corresponding to
/// `&p`. So, if we decide that (4) should do an attachment, we also need to
/// ensure that (4) happens after (1) is complete.
///
/// For this purpose, we insert a data_fence before the first
/// pointer-attachment, (3), to ensure that all pending transfers finish first.
int processAttachEntries(DeviceTy &Device, AttachInfoTy &AttachInfo,
                         AsyncInfoTy &AsyncInfo) {
  // Report all tracked allocations from both main loop and ATTACH processing
  if (!AttachInfo.NewAllocations.empty()) {
    DP("Tracked %u total new allocations:\n",
       (unsigned)AttachInfo.NewAllocations.size());
    for ([[maybe_unused]] const auto &Alloc : AttachInfo.NewAllocations) {
      DP("  Host ptr: " DPxMOD ", Size: %" PRId64 " bytes\n",
         DPxPTR(Alloc.first), Alloc.second);
    }
  }

  if (AttachInfo.AttachEntries.empty())
    return OFFLOAD_SUCCESS;

  DP("Processing %zu deferred ATTACH map entries\n",
     AttachInfo.AttachEntries.size());

  int Ret = OFFLOAD_SUCCESS;
  bool IsFirstPointerAttachment = true;
  for (size_t EntryIdx = 0; EntryIdx < AttachInfo.AttachEntries.size();
       ++EntryIdx) {
    const auto &AttachEntry = AttachInfo.AttachEntries[EntryIdx];

    void **HstPtr = reinterpret_cast<void **>(AttachEntry.PointerBase);

    void *HstPteeBase = *HstPtr;
    void *HstPteeBegin = AttachEntry.PointeeBegin;

    int64_t PtrSize = AttachEntry.PointerSize;
    int64_t MapType = AttachEntry.MapType;

    DP("Processing ATTACH entry %zu: HstPtr=" DPxMOD ", HstPteeBegin=" DPxMOD
       ", Size=%" PRId64 ", Type=0x%" PRIx64 "\n",
       EntryIdx, DPxPTR(HstPtr), DPxPTR(HstPteeBegin), PtrSize, MapType);

    const bool IsAttachAlways = MapType & OMP_TGT_MAPTYPE_ALWAYS;

    // Lambda to check if a pointer was newly allocated
    auto WasNewlyAllocated = [&](void *Ptr, const char *PtrName) {
      bool IsNewlyAllocated =
          llvm::any_of(AttachInfo.NewAllocations, [&](const auto &Alloc) {
            void *AllocPtr = Alloc.first;
            int64_t AllocSize = Alloc.second;
            return Ptr >= AllocPtr &&
                   Ptr < reinterpret_cast<void *>(
                             reinterpret_cast<char *>(AllocPtr) + AllocSize);
          });
      DP("Attach %s " DPxMOD " was newly allocated: %s\n", PtrName, DPxPTR(Ptr),
         IsNewlyAllocated ? "yes" : "no");
      return IsNewlyAllocated;
    };

    // Only process ATTACH if either the pointee or the pointer was newly
    // allocated, or the ALWAYS flag is set.
    if (!IsAttachAlways && !WasNewlyAllocated(HstPteeBegin, "pointee") &&
        !WasNewlyAllocated(HstPtr, "pointer")) {
      DP("Skipping ATTACH entry %zu: neither pointer nor pointee was newly "
         "allocated and no ALWAYS flag\n",
         EntryIdx);
      continue;
    }

    // Lambda to perform target pointer lookup and validation
    auto LookupTargetPointer =
        [&](void *Ptr, int64_t Size,
            const char *PtrType) -> std::optional<TargetPointerResultTy> {
      // ATTACH map-type does not change ref-count, or do any allocation
      // We just need to do a lookup for the pointer/pointee.
      TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin(
          Ptr, Size, /*UpdateRefCount=*/false,
          /*UseHoldRefCount=*/false, /*MustContain=*/true);

      DP("Attach %s lookup - IsPresent=%s, IsHostPtr=%s\n", PtrType,
         TPR.isPresent() ? "yes" : "no",
         TPR.Flags.IsHostPointer ? "yes" : "no");

      if (!TPR.isPresent()) {
        DP("Skipping ATTACH entry %zu: %s not present on device\n", EntryIdx,
           PtrType);
        return std::nullopt;
      }
      if (TPR.Flags.IsHostPointer) {
        DP("Skipping ATTACH entry %zu: device version of the %s is a host "
           "pointer.\n",
           EntryIdx, PtrType);
        return std::nullopt;
      }

      return TPR;
    };

    // Get device version of the pointee (e.g., &p[10]) first, as we can
    // release its TPR after extracting the pointer value.
    void *TgtPteeBegin = [&]() -> void * {
      if (auto PteeTPROpt = LookupTargetPointer(HstPteeBegin, 0, "pointee"))
        return PteeTPROpt->TargetPointer;
      return nullptr;
    }();

    if (!TgtPteeBegin)
      continue;

    // Get device version of the pointer (e.g., &p) next. We need to keep its
    // TPR for use in shadow-pointer handling during pointer-attachment.
    auto PtrTPROpt = LookupTargetPointer(HstPtr, PtrSize, "pointer");
    if (!PtrTPROpt)
      continue;
    TargetPointerResultTy &PtrTPR = *PtrTPROpt;
    void **TgtPtrBase = reinterpret_cast<void **>(PtrTPR.TargetPointer);

    // Insert a data-fence before the first pointer-attachment.
    if (IsFirstPointerAttachment) {
      IsFirstPointerAttachment = false;
      DP("Inserting a data fence before the first pointer attachment.\n");
      Ret = Device.dataFence(AsyncInfo);
      if (Ret != OFFLOAD_SUCCESS) {
        REPORT("Failed to insert data fence.\n");
        return OFFLOAD_FAIL;
      }
    }

    // Do the pointer-attachment, i.e. update the device pointer to point to
    // device pointee.
    Ret = performPointerAttachment(Device, AsyncInfo, HstPtr, HstPteeBase,
                                   HstPteeBegin, TgtPtrBase, TgtPteeBegin,
                                   PtrSize, PtrTPR);
    if (Ret != OFFLOAD_SUCCESS)
      return OFFLOAD_FAIL;

    DP("ATTACH entry %zu processed successfully\n", EntryIdx);
  }

  return OFFLOAD_SUCCESS;
}

namespace {
/// This structure contains information to deallocate a target pointer, aka.
/// used to fix up the shadow map and potentially delete the entry from the
/// mapping table via \p DeviceTy::deallocTgtPtr.
struct PostProcessingInfo {
  /// Host pointer used to look up into the map table
  void *HstPtrBegin;

  /// Size of the data
  int64_t DataSize;

  /// The mapping type (bitfield).
  int64_t ArgType;

  /// The target pointer information.
  TargetPointerResultTy TPR;

  PostProcessingInfo(void *HstPtr, int64_t Size, int64_t ArgType,
                     TargetPointerResultTy &&TPR)
      : HstPtrBegin(HstPtr), DataSize(Size), ArgType(ArgType),
        TPR(std::move(TPR)) {}
};

} // namespace

/// Applies the necessary post-processing procedures to entries listed in \p
/// EntriesInfo after the execution of all device side operations from a target
/// data end. This includes the update of pointers at the host and removal of
/// device buffer when needed. It returns OFFLOAD_FAIL or OFFLOAD_SUCCESS
/// according to the successfulness of the operations.
[[nodiscard]] static int
postProcessingTargetDataEnd(DeviceTy *Device,
                            SmallVector<PostProcessingInfo> &EntriesInfo) {
  int Ret = OFFLOAD_SUCCESS;

  for (auto &[HstPtrBegin, DataSize, ArgType, TPR] : EntriesInfo) {
    bool DelEntry = !TPR.isHostPointer();

    // If the last element from the mapper (for end transfer args comes in
    // reverse order), do not remove the partial entry, the parent struct still
    // exists.
    if ((ArgType & OMP_TGT_MAPTYPE_MEMBER_OF) &&
        !(ArgType & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) {
      DelEntry = false; // protect parent struct from being deallocated
    }

    // If we marked the entry to be deleted we need to verify no other
    // thread reused it by now. If deletion is still supposed to happen by
    // this thread LR will be set and exclusive access to the HDTT map
    // will avoid another thread reusing the entry now. Note that we do
    // not request (exclusive) access to the HDTT map if DelEntry is
    // not set.
    MappingInfoTy::HDTTMapAccessorTy HDTTMap =
        Device->getMappingInfo().HostDataToTargetMap.getExclusiveAccessor();

    // We cannot use a lock guard because we may end up delete the mutex.
    // We also explicitly unlocked the entry after it was put in the EntriesInfo
    // so it can be reused.
    TPR.getEntry()->lock();
    auto *Entry = TPR.getEntry();

    const bool IsNotLastUser = Entry->decDataEndThreadCount() != 0;
    if (DelEntry && (Entry->getTotalRefCount() != 0 || IsNotLastUser)) {
      // The thread is not in charge of deletion anymore. Give up access
      // to the HDTT map and unset the deletion flag.
      HDTTMap.destroy();
      DelEntry = false;
    }

    // If we copied back to the host a struct/array containing pointers, or
    // Fortran descriptors (which are larger than a "void *"), we need to
    // restore the original host pointer/descriptor values from their shadow
    // copies. If the struct is going to be deallocated, remove any remaining
    // shadow pointer entries for this struct.
    const bool HasFrom = ArgType & OMP_TGT_MAPTYPE_FROM;
    if (HasFrom) {
      Entry->foreachShadowPointerInfo([&](const ShadowPtrInfoTy &ShadowPtr) {
        constexpr int64_t VoidPtrSize = sizeof(void *);
        if (ShadowPtr.PtrSize > VoidPtrSize) {
          DP("Restoring host descriptor " DPxMOD
             " to its original content (%" PRId64
             " bytes), containing pointee address " DPxMOD "\n",
             DPxPTR(ShadowPtr.HstPtrAddr), ShadowPtr.PtrSize,
             DPxPTR(ShadowPtr.HstPtrContent.data()));
        } else {
          DP("Restoring host pointer " DPxMOD " to its original value " DPxMOD
             "\n",
             DPxPTR(ShadowPtr.HstPtrAddr),
             DPxPTR(ShadowPtr.HstPtrContent.data()));
        }
        std::memcpy(ShadowPtr.HstPtrAddr, ShadowPtr.HstPtrContent.data(),
                    ShadowPtr.PtrSize);
        return OFFLOAD_SUCCESS;
      });
    }

    // Give up the lock as we either don't need it anymore (e.g., done with
    // TPR), or erase TPR.
    TPR.setEntry(nullptr);

    if (!DelEntry)
      continue;

    Ret = Device->getMappingInfo().eraseMapEntry(HDTTMap, Entry, DataSize);
    // Entry is already remove from the map, we can unlock it now.
    HDTTMap.destroy();
    Ret |= Device->getMappingInfo().deallocTgtPtrAndEntry(Entry, DataSize);
    if (Ret != OFFLOAD_SUCCESS) {
      REPORT("Deallocating data from device failed.\n");
      break;
    }
  }

  delete &EntriesInfo;
  return Ret;
}

/// Internal function to undo the mapping and retrieve the data from the device.
int targetDataEnd(ident_t *Loc, DeviceTy &Device, int32_t ArgNum,
                  void **ArgBases, void **Args, int64_t *ArgSizes,
                  int64_t *ArgTypes, map_var_info_t *ArgNames,
                  void **ArgMappers, AsyncInfoTy &AsyncInfo,
                  AttachInfoTy *AttachInfo, bool FromMapper) {
  int Ret = OFFLOAD_SUCCESS;
  auto *PostProcessingPtrs = new SmallVector<PostProcessingInfo>();
  // process each input.
  for (int32_t I = ArgNum - 1; I >= 0; --I) {
    // Ignore private variables and arrays - there is no mapping for them.
    // Also, ignore the use_device_ptr directive, it has no effect here.
    if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) ||
        (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE))
      continue;

    // Ignore ATTACH entries - they should only be honored on map-entering
    // directives. They may be encountered here while handling the "end" part of
    // "#pragma omp target".
    if (ArgTypes[I] & OMP_TGT_MAPTYPE_ATTACH) {
      DP("Ignoring ATTACH entry %d in targetDataEnd\n", I);
      continue;
    }

    if (ArgMappers && ArgMappers[I]) {
      // Instead of executing the regular path of targetDataEnd, call the
      // targetDataMapper variant which will call targetDataEnd again
      // with new arguments.
      DP("Calling targetDataMapper for the %dth argument\n", I);

      map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I];
      Ret = targetDataMapper(Loc, Device, ArgBases[I], Args[I], ArgSizes[I],
                             ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo,
                             targetDataEnd);

      if (Ret != OFFLOAD_SUCCESS) {
        REPORT("Call to targetDataEnd via targetDataMapper for custom mapper"
               " failed.\n");
        return OFFLOAD_FAIL;
      }

      // Skip the rest of this function, continue to the next argument.
      continue;
    }

    void *HstPtrBegin = Args[I];
    int64_t DataSize = ArgSizes[I];
    bool IsImplicit = ArgTypes[I] & OMP_TGT_MAPTYPE_IMPLICIT;
    bool UpdateRef = (!(ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) ||
                      (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)) &&
                     !(FromMapper && I == 0);
    bool ForceDelete = ArgTypes[I] & OMP_TGT_MAPTYPE_DELETE;
    bool HasPresentModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_PRESENT;
    bool HasHoldModifier = ArgTypes[I] & OMP_TGT_MAPTYPE_OMPX_HOLD;

    // If PTR_AND_OBJ, HstPtrBegin is address of pointee
    TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin(
        HstPtrBegin, DataSize, UpdateRef, HasHoldModifier, !IsImplicit,
        ForceDelete, /*FromDataEnd=*/true);
    void *TgtPtrBegin = TPR.TargetPointer;
    if (!TPR.isPresent() && !TPR.isHostPointer() &&
        (DataSize || HasPresentModifier)) {
      DP("Mapping does not exist (%s)\n",
         (HasPresentModifier ? "'present' map type modifier" : "ignored"));
      if (HasPresentModifier) {
        // OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 350 L10-13:
        // "If a map clause appears on a target, target data, target enter data
        // or target exit data construct with a present map-type-modifier then
        // on entry to the region if the corresponding list item does not appear
        // in the device data environment then an error occurs and the program
        // terminates."
        //
        // This should be an error upon entering an "omp target exit data".  It
        // should not be an error upon exiting an "omp target data" or "omp
        // target".  For "omp target data", Clang thus doesn't include present
        // modifiers for end calls.  For "omp target", we have not found a valid
        // OpenMP program for which the error matters: it appears that, if a
        // program can guarantee that data is present at the beginning of an
        // "omp target" region so that there's no error there, that data is also
        // guaranteed to be present at the end.
        MESSAGE("device mapping required by 'present' map type modifier does "
                "not exist for host address " DPxMOD " (%" PRId64 " bytes)",
                DPxPTR(HstPtrBegin), DataSize);
        return OFFLOAD_FAIL;
      }
    } else {
      DP("There are %" PRId64 " bytes allocated at target address " DPxMOD
         " - is%s last\n",
         DataSize, DPxPTR(TgtPtrBegin), (TPR.Flags.IsLast ? "" : " not"));
    }

    // OpenMP 5.1, sec. 2.21.7.1 "map Clause", p. 351 L14-16:
    // "If the map clause appears on a target, target data, or target exit data
    // construct and a corresponding list item of the original list item is not
    // present in the device data environment on exit from the region then the
    // list item is ignored."
    if (!TPR.isPresent())
      continue;

    // Move data back to the host
    const bool HasAlways = ArgTypes[I] & OMP_TGT_MAPTYPE_ALWAYS;
    const bool HasFrom = ArgTypes[I] & OMP_TGT_MAPTYPE_FROM;
    if (HasFrom && (HasAlways || TPR.Flags.IsLast) &&
        !TPR.Flags.IsHostPointer && DataSize != 0) {
      DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
         DataSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
      TIMESCOPE_WITH_DETAILS_AND_IDENT(
          "DevToHost", "Size=" + std::to_string(DataSize) + "B", Loc);
      // Wait for any previous transfer if an event is present.
      if (void *Event = TPR.getEntry()->getEvent()) {
        if (Device.waitEvent(Event, AsyncInfo) != OFFLOAD_SUCCESS) {
          REPORT("Failed to wait for event " DPxMOD ".\n", DPxPTR(Event));
          return OFFLOAD_FAIL;
        }
      }

      Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, DataSize, AsyncInfo,
                                TPR.getEntry());
      if (Ret != OFFLOAD_SUCCESS) {
        REPORT("Copying data from device failed.\n");
        return OFFLOAD_FAIL;
      }

      // As we are expecting to delete the entry the d2h copy might race
      // with another one that also tries to delete the entry. This happens
      // as the entry can be reused and the reuse might happen after the
      // copy-back was issued but before it completed. Since the reuse might
      // also copy-back a value we would race.
      if (TPR.Flags.IsLast) {
        if (TPR.getEntry()->addEventIfNecessary(Device, AsyncInfo) !=
            OFFLOAD_SUCCESS)
          return OFFLOAD_FAIL;
      }
    }

    // Add pointer to the buffer for post-synchronize processing.
    PostProcessingPtrs->emplace_back(HstPtrBegin, DataSize, ArgTypes[I],
                                     std::move(TPR));
    PostProcessingPtrs->back().TPR.getEntry()->unlock();
  }

  // Add post-processing functions
  // TODO: We might want to remove `mutable` in the future by not changing the
  // captured variables somehow.
  AsyncInfo.addPostProcessingFunction([=, Device = &Device]() mutable -> int {
    return postProcessingTargetDataEnd(Device, *PostProcessingPtrs);
  });

  return Ret;
}

static int targetDataContiguous(ident_t *Loc, DeviceTy &Device, void *ArgsBase,
                                void *HstPtrBegin, int64_t ArgSize,
                                int64_t ArgType, AsyncInfoTy &AsyncInfo) {
  TargetPointerResultTy TPR = Device.getMappingInfo().getTgtPtrBegin(
      HstPtrBegin, ArgSize, /*UpdateRefCount=*/false,
      /*UseHoldRefCount=*/false, /*MustContain=*/true);
  void *TgtPtrBegin = TPR.TargetPointer;
  if (!TPR.isPresent()) {
    DP("hst data:" DPxMOD " not found, becomes a noop\n", DPxPTR(HstPtrBegin));
    if (ArgType & OMP_TGT_MAPTYPE_PRESENT) {
      MESSAGE("device mapping required by 'present' motion modifier does not "
              "exist for host address " DPxMOD " (%" PRId64 " bytes)",
              DPxPTR(HstPtrBegin), ArgSize);
      return OFFLOAD_FAIL;
    }
    return OFFLOAD_SUCCESS;
  }

  if (TPR.Flags.IsHostPointer) {
    DP("hst data:" DPxMOD " unified and shared, becomes a noop\n",
       DPxPTR(HstPtrBegin));
    return OFFLOAD_SUCCESS;
  }

  if (ArgType & OMP_TGT_MAPTYPE_TO) {
    DP("Moving %" PRId64 " bytes (hst:" DPxMOD ") -> (tgt:" DPxMOD ")\n",
       ArgSize, DPxPTR(HstPtrBegin), DPxPTR(TgtPtrBegin));
    int Ret = Device.submitData(TgtPtrBegin, HstPtrBegin, ArgSize, AsyncInfo,
                                TPR.getEntry());
    if (Ret != OFFLOAD_SUCCESS) {
      REPORT("Copying data to device failed.\n");
      return OFFLOAD_FAIL;
    }
    if (TPR.getEntry()) {
      int Ret = TPR.getEntry()->foreachShadowPointerInfo(
          [&](ShadowPtrInfoTy &ShadowPtr) {
            constexpr int64_t VoidPtrSize = sizeof(void *);
            if (ShadowPtr.PtrSize > VoidPtrSize) {
              DP("Restoring target descriptor " DPxMOD
                 " to its original content (%" PRId64
                 " bytes), containing pointee address " DPxMOD "\n",
                 DPxPTR(ShadowPtr.TgtPtrAddr), ShadowPtr.PtrSize,
                 DPxPTR(ShadowPtr.TgtPtrContent.data()));
            } else {
              DP("Restoring target pointer " DPxMOD
                 " to its original value " DPxMOD "\n",
                 DPxPTR(ShadowPtr.TgtPtrAddr),
                 DPxPTR(ShadowPtr.TgtPtrContent.data()));
            }
            Ret = Device.submitData(ShadowPtr.TgtPtrAddr,
                                    ShadowPtr.TgtPtrContent.data(),
                                    ShadowPtr.PtrSize, AsyncInfo);
            if (Ret != OFFLOAD_SUCCESS) {
              REPORT("Copying data to device failed.\n");
              return OFFLOAD_FAIL;
            }
            return OFFLOAD_SUCCESS;
          });
      if (Ret != OFFLOAD_SUCCESS) {
        DP("Updating shadow map failed\n");
        return Ret;
      }
    }
  }

  if (ArgType & OMP_TGT_MAPTYPE_FROM) {
    DP("Moving %" PRId64 " bytes (tgt:" DPxMOD ") -> (hst:" DPxMOD ")\n",
       ArgSize, DPxPTR(TgtPtrBegin), DPxPTR(HstPtrBegin));
    int Ret = Device.retrieveData(HstPtrBegin, TgtPtrBegin, ArgSize, AsyncInfo,
                                  TPR.getEntry());
    if (Ret != OFFLOAD_SUCCESS) {
      REPORT("Copying data from device failed.\n");
      return OFFLOAD_FAIL;
    }

    // Wait for device-to-host memcopies for whole struct to complete,
    // before restoring the correct host pointer/descriptor.
    if (auto *Entry = TPR.getEntry()) {
      AsyncInfo.addPostProcessingFunction([=]() -> int {
        int Ret = Entry->foreachShadowPointerInfo(
            [&](const ShadowPtrInfoTy &ShadowPtr) {
              constexpr int64_t VoidPtrSize = sizeof(void *);
              if (ShadowPtr.PtrSize > VoidPtrSize) {
                DP("Restoring host descriptor " DPxMOD
                   " to its original content (%" PRId64
                   " bytes), containing pointee address " DPxMOD "\n",
                   DPxPTR(ShadowPtr.HstPtrAddr), ShadowPtr.PtrSize,
                   DPxPTR(ShadowPtr.HstPtrContent.data()));
              } else {
                DP("Restoring host pointer " DPxMOD
                   " to its original value " DPxMOD "\n",
                   DPxPTR(ShadowPtr.HstPtrAddr),
                   DPxPTR(ShadowPtr.HstPtrContent.data()));
              }
              std::memcpy(ShadowPtr.HstPtrAddr, ShadowPtr.HstPtrContent.data(),
                          ShadowPtr.PtrSize);
              return OFFLOAD_SUCCESS;
            });
        Entry->unlock();
        if (Ret != OFFLOAD_SUCCESS) {
          DP("Updating shadow map failed\n");
          return Ret;
        }
        return OFFLOAD_SUCCESS;
      });
    }
  }

  return OFFLOAD_SUCCESS;
}

static int targetDataNonContiguous(ident_t *Loc, DeviceTy &Device,
                                   void *ArgsBase,
                                   __tgt_target_non_contig *NonContig,
                                   uint64_t Size, int64_t ArgType,
                                   int CurrentDim, int DimSize, uint64_t Offset,
                                   AsyncInfoTy &AsyncInfo) {
  int Ret = OFFLOAD_SUCCESS;
  if (CurrentDim < DimSize) {
    for (unsigned int I = 0; I < NonContig[CurrentDim].Count; ++I) {
      uint64_t CurOffset =
          (NonContig[CurrentDim].Offset + I) * NonContig[CurrentDim].Stride;
      // we only need to transfer the first element for the last dimension
      // since we've already got a contiguous piece.
      if (CurrentDim != DimSize - 1 || I == 0) {
        Ret = targetDataNonContiguous(Loc, Device, ArgsBase, NonContig, Size,
                                      ArgType, CurrentDim + 1, DimSize,
                                      Offset + CurOffset, AsyncInfo);
        // Stop the whole process if any contiguous piece returns anything
        // other than OFFLOAD_SUCCESS.
        if (Ret != OFFLOAD_SUCCESS)
          return Ret;
      }
    }
  } else {
    char *Ptr = (char *)ArgsBase + Offset;
    DP("Transfer of non-contiguous : host ptr " DPxMOD " offset %" PRIu64
       " len %" PRIu64 "\n",
       DPxPTR(Ptr), Offset, Size);
    Ret = targetDataContiguous(Loc, Device, ArgsBase, Ptr, Size, ArgType,
                               AsyncInfo);
  }
  return Ret;
}

static int getNonContigMergedDimension(__tgt_target_non_contig *NonContig,
                                       int32_t DimSize) {
  int RemovedDim = 0;
  for (int I = DimSize - 1; I > 0; --I) {
    if (NonContig[I].Count * NonContig[I].Stride == NonContig[I - 1].Stride)
      RemovedDim++;
  }
  return RemovedDim;
}

/// Internal function to pass data to/from the target.
int targetDataUpdate(ident_t *Loc, DeviceTy &Device, int32_t ArgNum,
                     void **ArgsBase, void **Args, int64_t *ArgSizes,
                     int64_t *ArgTypes, map_var_info_t *ArgNames,
                     void **ArgMappers, AsyncInfoTy &AsyncInfo,
                     AttachInfoTy *AttachInfo, bool FromMapper) {
  // process each input.
  for (int32_t I = 0; I < ArgNum; ++I) {
    if ((ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) ||
        (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE))
      continue;

    if (ArgMappers && ArgMappers[I]) {
      // Instead of executing the regular path of targetDataUpdate, call the
      // targetDataMapper variant which will call targetDataUpdate again
      // with new arguments.
      DP("Calling targetDataMapper for the %dth argument\n", I);

      map_var_info_t ArgName = (!ArgNames) ? nullptr : ArgNames[I];
      int Ret = targetDataMapper(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I],
                                 ArgTypes[I], ArgName, ArgMappers[I], AsyncInfo,
                                 targetDataUpdate);

      if (Ret != OFFLOAD_SUCCESS) {
        REPORT("Call to targetDataUpdate via targetDataMapper for custom mapper"
               " failed.\n");
        return OFFLOAD_FAIL;
      }

      // Skip the rest of this function, continue to the next argument.
      continue;
    }

    int Ret = OFFLOAD_SUCCESS;

    if (ArgTypes[I] & OMP_TGT_MAPTYPE_NON_CONTIG) {
      __tgt_target_non_contig *NonContig = (__tgt_target_non_contig *)Args[I];
      int32_t DimSize = ArgSizes[I];
      uint64_t Size =
          NonContig[DimSize - 1].Count * NonContig[DimSize - 1].Stride;
      int32_t MergedDim = getNonContigMergedDimension(NonContig, DimSize);
      Ret = targetDataNonContiguous(
          Loc, Device, ArgsBase[I], NonContig, Size, ArgTypes[I],
          /*current_dim=*/0, DimSize - MergedDim, /*offset=*/0, AsyncInfo);
    } else {
      Ret = targetDataContiguous(Loc, Device, ArgsBase[I], Args[I], ArgSizes[I],
                                 ArgTypes[I], AsyncInfo);
    }
    if (Ret == OFFLOAD_FAIL)
      return OFFLOAD_FAIL;
  }
  return OFFLOAD_SUCCESS;
}

static const unsigned LambdaMapping = OMP_TGT_MAPTYPE_PTR_AND_OBJ |
                                      OMP_TGT_MAPTYPE_LITERAL |
                                      OMP_TGT_MAPTYPE_IMPLICIT;
static bool isLambdaMapping(int64_t Mapping) {
  return (Mapping & LambdaMapping) == LambdaMapping;
}

namespace {
/// Find the table information in the map or look it up in the translation
/// tables.
TableMap *getTableMap(void *HostPtr) {
  std::lock_guard<std::mutex> TblMapLock(PM->TblMapMtx);
  HostPtrToTableMapTy::iterator TableMapIt =
      PM->HostPtrToTableMap.find(HostPtr);

  if (TableMapIt != PM->HostPtrToTableMap.end())
    return &TableMapIt->second;

  // We don't have a map. So search all the registered libraries.
  TableMap *TM = nullptr;
  std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx);
  for (HostEntriesBeginToTransTableTy::iterator Itr =
           PM->HostEntriesBeginToTransTable.begin();
       Itr != PM->HostEntriesBeginToTransTable.end(); ++Itr) {
    // get the translation table (which contains all the good info).
    TranslationTable *TransTable = &Itr->second;
    // iterate over all the host table entries to see if we can locate the
    // host_ptr.
    llvm::offloading::EntryTy *Cur = TransTable->HostTable.EntriesBegin;
    for (uint32_t I = 0; Cur < TransTable->HostTable.EntriesEnd; ++Cur, ++I) {
      if (Cur->Address != HostPtr)
        continue;
      // we got a match, now fill the HostPtrToTableMap so that we
      // may avoid this search next time.
      TM = &(PM->HostPtrToTableMap)[HostPtr];
      TM->Table = TransTable;
      TM->Index = I;
      return TM;
    }
  }

  return nullptr;
}

/// A class manages private arguments in a target region.
class PrivateArgumentManagerTy {
  /// A data structure for the information of first-private arguments. We can
  /// use this information to optimize data transfer by packing all
  /// first-private arguments and transfer them all at once.
  struct FirstPrivateArgInfoTy {
    /// Host pointer begin
    char *HstPtrBegin;
    /// Host pointer end
    char *HstPtrEnd;
    /// The index of the element in \p TgtArgs corresponding to the argument
    int Index;
    /// Alignment of the entry (base of the entry, not after the entry).
    uint32_t Alignment;
    /// Size (without alignment, see padding)
    uint32_t Size;
    /// Padding used to align this argument entry, if necessary.
    uint32_t Padding;
    /// Host pointer name
    map_var_info_t HstPtrName = nullptr;
    /// For corresponding-pointer-initialization: host pointee base address.
    void *HstPteeBase = nullptr;
    /// For corresponding-pointer-initialization: host pointee begin address.
    void *HstPteeBegin = nullptr;
    /// Whether this argument needs corresponding-pointer-initialization.
    bool IsCorrespondingPointerInit = false;

    FirstPrivateArgInfoTy(int Index, void *HstPtr, uint32_t Size,
                          uint32_t Alignment, uint32_t Padding,
                          map_var_info_t HstPtrName = nullptr,
                          void *HstPteeBase = nullptr,
                          void *HstPteeBegin = nullptr,
                          bool IsCorrespondingPointerInit = false)
        : HstPtrBegin(reinterpret_cast<char *>(HstPtr)),
          HstPtrEnd(HstPtrBegin + Size), Index(Index), Alignment(Alignment),
          Size(Size), Padding(Padding), HstPtrName(HstPtrName),
          HstPteeBase(HstPteeBase), HstPteeBegin(HstPteeBegin),
          IsCorrespondingPointerInit(IsCorrespondingPointerInit) {}
  };

  /// A vector of target pointers for all private arguments
  SmallVector<void *> TgtPtrs;

  /// A vector of information of all first-private arguments to be packed
  SmallVector<FirstPrivateArgInfoTy> FirstPrivateArgInfo;
  /// Host buffer for all arguments to be packed
  SmallVector<char> FirstPrivateArgBuffer;
  /// The total size of all arguments to be packed
  int64_t FirstPrivateArgSize = 0;

  /// A reference to the \p DeviceTy object
  DeviceTy &Device;
  /// A pointer to a \p AsyncInfoTy object
  AsyncInfoTy &AsyncInfo;

  /// \returns the value of the target pointee's base to be used for
  /// corresponding-pointer-initialization.
  void *getTargetPointeeBaseForCorrespondingPointerInitialization(
      void *HstPteeBase, void *HstPteeBegin) {
    // See if the pointee's begin address has corresponding storage on device.
    void *TgtPteeBegin = [&]() -> void * {
      if (!HstPteeBegin) {
        DP("Corresponding-pointer-initialization: pointee begin address is "
           "null\n");
        return nullptr;
      }

      return Device.getMappingInfo()
          .getTgtPtrBegin(HstPteeBegin, /*Size=*/0, /*UpdateRefCount=*/false,
                          /*UseHoldRefCount=*/false)
          .TargetPointer;
    }();

    // If it does, we calculate target pointee base using it, and return it.
    // Otherwise, we retain the host pointee's base as the target pointee base
    // of the initialized pointer. It's the user's responsibility to ensure
    // that if a lookup fails, the host pointee is accessible on the device.
    return TgtPteeBegin ? calculateTargetPointeeBase(HstPteeBase, HstPteeBegin,
                                                     TgtPteeBegin)
                        : HstPteeBase;
  }

  /// Initialize the source buffer for corresponding-pointer-initialization.
  ///
  /// It computes and stores the target pointee base address (or the host
  /// pointee's base address, if lookup of target pointee fails) to the first
  /// `sizeof(void*)` bytes of \p Buffer, and for larger pointers
  /// (Fortran descriptors), the remaining fields of the host descriptor
  /// \p HstPtr after those `sizeof(void*)` bytes.
  ///
  /// Corresponding-pointer-initialization represents the initialization of the
  /// private version of a base-pointer/referring-pointer on a target construct.
  ///
  /// For example, for the following test:
  /// ```cpp
  ///   int x[10];
  ///   int *px = &x[0];
  ///   ...
  ///   #pragma omp target data map(tofrom:px)
  ///   {
  ///     int **ppx = omp_get_mapped_ptr(&px, omp_get_default_device());
  ///     #pragma omp target map(tofrom:px[1]) is_device_ptr(ppx)
  ///     {
  ///        foo(px, ppx);
  ///     }
  ///   }
  /// ```
  /// The following shows a possible way to implement the mapping of `px`,
  /// which is pre-determined firstprivate and should get initialized
  /// via corresponding-pointer-initialization:
  ///
  /// (A) Possible way to implement the above with PRIVATE | ATTACH:
  /// ```llvm
  ///  ; maps for px:
  ///  ; &px[0], &px[1], sizeof(px[1]), TO | FROM                // (1)
  ///  ; &px,    &px[1], sizeof(px),    ATTACH                   // (2)
  ///  ; &px,    &px[1], sizeof(px),    PRIVATE | ATTACH | PARAM // (3)
  ///  call... @__omp_outlined...(ptr %px, ptr %ppx)
  ///  define ... @__omp_outlined(ptr %px, ptr %ppx) {...
  ///    foo(%px, %ppx)
  ///  ...}
  /// ```
  /// `(1)` maps the pointee `px[1].
  /// `(2)` attaches it to the mapped version of `px`. It can be controlled by
  /// the user based on the `attach(auto/always/never)` map-type modifier.
  /// `(3)` privatizes and initializes the private pointer `px`, and passes it
  /// into the kernel as the argument `%px`. Can be skipped if `px` is not
  /// referenced in the target construct.
  ///
  /// While this method is not too beneficial compared to just doing the
  /// initialization in the body of the kernel, like:
  /// (B) Possible way to implement the above without PRIVATE | ATTACH:
  /// ```llvm
  ///  ; maps for px:
  ///  ; &px[0], &px[1], sizeof(px[1]), TO | FROM | PARAM        // (4)
  ///  ; &px,    &px[1], sizeof(px),    ATTACH                   // (5)
  ///  call... @__omp_outlined...(ptr %px0, ptr %ppx)
  ///  define ... __omp_outlined...(ptr %px0, ptr %ppx) {
  ///    %px = alloca ptr;
  ///    store ptr %px0, ptr %px
  ///    foo(%px, %ppx)
  ///  }
  /// ```
  ///
  /// (B) is not so convenient for Fortran descriptors, because in
  /// addition to the lookup, the remaining fields of the descriptor have
  /// to be passed into the kernel to initialize the private copy, which
  /// makes (A) a cleaner option for them. e.g.
  /// ```f90
  /// integer, pointer :: p(:)
  /// !$omp target map(p(1))
  /// ```
  ///
  /// (C) Possible mapping for the above Fortran test using PRIVATE | ATTACH:
  /// ```llvm
  ///  ; maps for p:
  ///  ; &p(1),       &p(1), sizeof(p(1)),       TO | FROM
  ///  ; &ref_ptr(p), &p(1), sizeof(ref_ptr(p)), ATTACH
  ///  ; &ref_ptr(p), &p(1), sizeof(ref_ptr(p)), PRIVATE | ATTACH | PARAM
  ///  call... @__omp_outlined...(ptr %ref_ptr_of_p)
  void initBufferForCorrespondingPointerInitialization(char *Buffer,
                                                       void *HstPtr,
                                                       int64_t HstPtrSize,
                                                       void *HstPteeBase,
                                                       void *HstPteeBegin) {
    constexpr int64_t VoidPtrSize = sizeof(void *);
    assert(HstPtrSize >= VoidPtrSize &&
           "corresponding-pointer-initialization: pointer size is too small");

    void *TgtPteeBase =
        getTargetPointeeBaseForCorrespondingPointerInitialization(HstPteeBase,
                                                                  HstPteeBegin);

    // Store the target pointee base address to the first VoidPtrSize bytes
    DP("Initializing corresponding-pointer-initialization source buffer "
       "for " DPxMOD ", with pointee base " DPxMOD "\n",
       DPxPTR(HstPtr), DPxPTR(TgtPteeBase));
    std::memcpy(Buffer, &TgtPteeBase, VoidPtrSize);
    if (HstPtrSize <= VoidPtrSize)
      return;

    // For Fortran descriptors, copy the remaining descriptor fields from host
    uint64_t HstDescriptorFieldsSize = HstPtrSize - VoidPtrSize;
    void *HstDescriptorFieldsAddr = static_cast<char *>(HstPtr) + VoidPtrSize;
    DP("Copying %" PRId64
       " bytes of descriptor fields into corresponding-pointer-initialization "
       "buffer at offset %" PRId64 ", from " DPxMOD "\n",
       HstDescriptorFieldsSize, VoidPtrSize, DPxPTR(HstDescriptorFieldsAddr));
    std::memcpy(Buffer + VoidPtrSize, HstDescriptorFieldsAddr,
                HstDescriptorFieldsSize);
  }

  /// Helper function to create and initialize a buffer to be used as the source
  /// for corresponding-pointer-initialization.
  void *createAndInitSourceBufferForCorrespondingPointerInitialization(
      void *HstPtr, int64_t HstPtrSize, void *HstPteeBase, void *HstPteeBegin) {
    char *Buffer = getOrCreateSourceBufferForSubmitData(AsyncInfo, HstPtrSize);
    initBufferForCorrespondingPointerInitialization(Buffer, HstPtr, HstPtrSize,
                                                    HstPteeBase, HstPteeBegin);
    return Buffer;
  }

  // TODO: What would be the best value here? Should we make it configurable?
  // If the size is larger than this threshold, we will allocate and transfer it
  // immediately instead of packing it.
  static constexpr const int64_t FirstPrivateArgSizeThreshold = 1024;

public:
  /// Constructor
  PrivateArgumentManagerTy(DeviceTy &Dev, AsyncInfoTy &AsyncInfo)
      : Device(Dev), AsyncInfo(AsyncInfo) {}

  /// Add a private argument
  int addArg(void *HstPtr, int64_t ArgSize, int64_t ArgOffset,
             bool IsFirstPrivate, void *&TgtPtr, int TgtArgsIndex,
             map_var_info_t HstPtrName = nullptr,
             const bool AllocImmediately = false, void *HstPteeBase = nullptr,
             void *HstPteeBegin = nullptr,
             bool IsCorrespondingPointerInit = false) {
    // If the argument is not first-private, or its size is greater than a
    // predefined threshold, we will allocate memory and issue the transfer
    // immediately.
    if (ArgSize > FirstPrivateArgSizeThreshold || !IsFirstPrivate ||
        AllocImmediately) {
      TgtPtr = Device.allocData(ArgSize, HstPtr);
      if (!TgtPtr) {
        DP("Data allocation for %sprivate array " DPxMOD " failed.\n",
           (IsFirstPrivate ? "first-" : ""), DPxPTR(HstPtr));
        return OFFLOAD_FAIL;
      }
#ifdef OMPTARGET_DEBUG
      void *TgtPtrBase = (void *)((intptr_t)TgtPtr + ArgOffset);
      DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD
         " for %sprivate array " DPxMOD " - pushing target argument " DPxMOD
         "\n",
         ArgSize, DPxPTR(TgtPtr), (IsFirstPrivate ? "first-" : ""),
         DPxPTR(HstPtr), DPxPTR(TgtPtrBase));
#endif
      // If first-private, copy data from host
      if (IsFirstPrivate) {
        DP("Submitting firstprivate data to the device.\n");

        // The source value used for corresponding-pointer-initialization
        // is different vs regular firstprivates.
        void *DataSource =
            IsCorrespondingPointerInit
                ? createAndInitSourceBufferForCorrespondingPointerInitialization(
                      HstPtr, ArgSize, HstPteeBase, HstPteeBegin)
                : HstPtr;
        int Ret = Device.submitData(TgtPtr, DataSource, ArgSize, AsyncInfo);
        if (Ret != OFFLOAD_SUCCESS) {
          DP("Copying %s data to device failed.\n",
             IsCorrespondingPointerInit ? "corresponding-pointer-initialization"
                                        : "firstprivate");
          return OFFLOAD_FAIL;
        }
      }
      TgtPtrs.push_back(TgtPtr);
    } else {
      DP("Firstprivate array " DPxMOD " of size %" PRId64 " will be packed\n",
         DPxPTR(HstPtr), ArgSize);
      // When reach this point, the argument must meet all following
      // requirements:
      // 1. Its size does not exceed the threshold (see the comment for
      // FirstPrivateArgSizeThreshold);
      // 2. It must be first-private (needs to be mapped to target device).
      // We will pack all this kind of arguments to transfer them all at once
      // to reduce the number of data transfer. We will not take
      // non-first-private arguments, aka. private arguments that doesn't need
      // to be mapped to target device, into account because data allocation
      // can be very efficient with memory manager.

      // Placeholder value
      TgtPtr = nullptr;
      auto *LastFPArgInfo =
          FirstPrivateArgInfo.empty() ? nullptr : &FirstPrivateArgInfo.back();

      // Compute the start alignment of this entry, add padding if necessary.
      // TODO: Consider sorting instead.
      uint32_t Padding = 0;
      uint32_t StartAlignment =
          LastFPArgInfo ? LastFPArgInfo->Alignment : MaxAlignment;
      if (LastFPArgInfo) {
        // Check if we keep the start alignment or if it is shrunk due to the
        // size of the last element.
        uint32_t Offset = LastFPArgInfo->Size % StartAlignment;
        if (Offset)
          StartAlignment = Offset;
        // We only need as much alignment as the host pointer had (since we
        // don't know the alignment information from the source we might end up
        // overaligning accesses but not too much).
        uint32_t RequiredAlignment =
            llvm::bit_floor(getPartialStructRequiredAlignment(HstPtr));
        if (RequiredAlignment > StartAlignment) {
          Padding = RequiredAlignment - StartAlignment;
          StartAlignment = RequiredAlignment;
        }
      }

      FirstPrivateArgInfo.emplace_back(
          TgtArgsIndex, HstPtr, ArgSize, StartAlignment, Padding, HstPtrName,
          HstPteeBase, HstPteeBegin, IsCorrespondingPointerInit);

      FirstPrivateArgSize += Padding + ArgSize;
    }

    return OFFLOAD_SUCCESS;
  }

  /// Pack first-private arguments, replace place holder pointers in \p TgtArgs,
  /// and start the transfer.
  int packAndTransfer(SmallVector<void *> &TgtArgs) {
    if (!FirstPrivateArgInfo.empty()) {
      assert(FirstPrivateArgSize != 0 &&
             "FirstPrivateArgSize is 0 but FirstPrivateArgInfo is empty");
      FirstPrivateArgBuffer.resize(FirstPrivateArgSize, 0);
      auto *Itr = FirstPrivateArgBuffer.begin();
      // Copy all host data to this buffer
      for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) {
        // First pad the pointer as we (have to) pad it on the device too.
        Itr = std::next(Itr, Info.Padding);

        if (Info.IsCorrespondingPointerInit)
          initBufferForCorrespondingPointerInitialization(
              &*Itr, Info.HstPtrBegin, Info.Size, Info.HstPteeBase,
              Info.HstPteeBegin);
        else
          std::copy(Info.HstPtrBegin, Info.HstPtrEnd, Itr);
        Itr = std::next(Itr, Info.Size);
      }
      // Allocate target memory
      void *TgtPtr =
          Device.allocData(FirstPrivateArgSize, FirstPrivateArgBuffer.data());
      if (TgtPtr == nullptr) {
        DP("Failed to allocate target memory for private arguments.\n");
        return OFFLOAD_FAIL;
      }
      TgtPtrs.push_back(TgtPtr);
      DP("Allocated %" PRId64 " bytes of target memory at " DPxMOD "\n",
         FirstPrivateArgSize, DPxPTR(TgtPtr));
      // Transfer data to target device
      int Ret = Device.submitData(TgtPtr, FirstPrivateArgBuffer.data(),
                                  FirstPrivateArgSize, AsyncInfo);
      if (Ret != OFFLOAD_SUCCESS) {
        DP("Failed to submit data of private arguments.\n");
        return OFFLOAD_FAIL;
      }
      // Fill in all placeholder pointers
      auto TP = reinterpret_cast<uintptr_t>(TgtPtr);
      for (FirstPrivateArgInfoTy &Info : FirstPrivateArgInfo) {
        void *&Ptr = TgtArgs[Info.Index];
        assert(Ptr == nullptr && "Target pointer is already set by mistaken");
        // Pad the device pointer to get the right alignment.
        TP += Info.Padding;
        Ptr = reinterpret_cast<void *>(TP);
        TP += Info.Size;
        DP("Firstprivate array " DPxMOD " of size %" PRId64 " mapped to " DPxMOD
           "\n",
           DPxPTR(Info.HstPtrBegin), Info.HstPtrEnd - Info.HstPtrBegin,
           DPxPTR(Ptr));
      }
    }

    return OFFLOAD_SUCCESS;
  }

  /// Free all target memory allocated for private arguments
  int free() {
    for (void *P : TgtPtrs) {
      int Ret = Device.deleteData(P);
      if (Ret != OFFLOAD_SUCCESS) {
        DP("Deallocation of (first-)private arrays failed.\n");
        return OFFLOAD_FAIL;
      }
    }

    TgtPtrs.clear();

    return OFFLOAD_SUCCESS;
  }
};

/// Process data before launching the kernel, including calling targetDataBegin
/// to map and transfer data to target device, transferring (first-)private
/// variables.
static int processDataBefore(ident_t *Loc, int64_t DeviceId, void *HostPtr,
                             int32_t ArgNum, void **ArgBases, void **Args,
                             int64_t *ArgSizes, int64_t *ArgTypes,
                             map_var_info_t *ArgNames, void **ArgMappers,
                             SmallVector<void *> &TgtArgs,
                             SmallVector<ptrdiff_t> &TgtOffsets,
                             PrivateArgumentManagerTy &PrivateArgumentManager,
                             AsyncInfoTy &AsyncInfo) {

  auto DeviceOrErr = PM->getDevice(DeviceId);
  if (!DeviceOrErr)
    FATAL_MESSAGE(DeviceId, "%s", toString(DeviceOrErr.takeError()).c_str());

  // Create AttachInfo for tracking any ATTACH entries, or new-allocations
  // when handling the "begin" mapping for a target constructs.
  AttachInfoTy AttachInfo;

  int Ret = targetDataBegin(Loc, *DeviceOrErr, ArgNum, ArgBases, Args, ArgSizes,
                            ArgTypes, ArgNames, ArgMappers, AsyncInfo,
                            &AttachInfo, false /*FromMapper=*/);
  if (Ret != OFFLOAD_SUCCESS) {
    REPORT("Call to targetDataBegin failed, abort target.\n");
    return OFFLOAD_FAIL;
  }

  // Process collected ATTACH entries
  if (!AttachInfo.AttachEntries.empty()) {
    Ret = processAttachEntries(*DeviceOrErr, AttachInfo, AsyncInfo);
    if (Ret != OFFLOAD_SUCCESS) {
      REPORT("Failed to process ATTACH entries.\n");
      return OFFLOAD_FAIL;
    }
  }

  // List of (first-)private arrays allocated for this target region
  SmallVector<int> TgtArgsPositions(ArgNum, -1);

  for (int32_t I = 0; I < ArgNum; ++I) {
    if (!(ArgTypes[I] & OMP_TGT_MAPTYPE_TARGET_PARAM)) {
      // This is not a target parameter, do not push it into TgtArgs.
      // Check for lambda mapping.
      if (isLambdaMapping(ArgTypes[I])) {
        assert((ArgTypes[I] & OMP_TGT_MAPTYPE_MEMBER_OF) &&
               "PTR_AND_OBJ must be also MEMBER_OF.");
        unsigned Idx = getParentIndex(ArgTypes[I]);
        int TgtIdx = TgtArgsPositions[Idx];
        assert(TgtIdx != -1 && "Base address must be translated already.");
        // The parent lambda must be processed already and it must be the last
        // in TgtArgs and TgtOffsets arrays.
        void *HstPtrVal = Args[I];
        void *HstPtrBegin = ArgBases[I];
        void *HstPtrBase = Args[Idx];
        void *TgtPtrBase =
            (void *)((intptr_t)TgtArgs[TgtIdx] + TgtOffsets[TgtIdx]);
        DP("Parent lambda base " DPxMOD "\n", DPxPTR(TgtPtrBase));
        uint64_t Delta = (uint64_t)HstPtrBegin - (uint64_t)HstPtrBase;
        void *TgtPtrBegin = (void *)((uintptr_t)TgtPtrBase + Delta);
        void *&PointerTgtPtrBegin = AsyncInfo.getVoidPtrLocation();
        TargetPointerResultTy TPR =
            DeviceOrErr->getMappingInfo().getTgtPtrBegin(
                HstPtrVal, ArgSizes[I], /*UpdateRefCount=*/false,
                /*UseHoldRefCount=*/false);
        PointerTgtPtrBegin = TPR.TargetPointer;
        if (!TPR.isPresent()) {
          DP("No lambda captured variable mapped (" DPxMOD ") - ignored\n",
             DPxPTR(HstPtrVal));
          continue;
        }
        if (TPR.Flags.IsHostPointer) {
          DP("Unified memory is active, no need to map lambda captured"
             "variable (" DPxMOD ")\n",
             DPxPTR(HstPtrVal));
          continue;
        }
        DP("Update lambda reference (" DPxMOD ") -> [" DPxMOD "]\n",
           DPxPTR(PointerTgtPtrBegin), DPxPTR(TgtPtrBegin));
        Ret =
            DeviceOrErr->submitData(TgtPtrBegin, &PointerTgtPtrBegin,
                                    sizeof(void *), AsyncInfo, TPR.getEntry());
        if (Ret != OFFLOAD_SUCCESS) {
          REPORT("Copying data to device failed.\n");
          return OFFLOAD_FAIL;
        }
      }
      continue;
    }
    void *HstPtrBegin = Args[I];
    void *HstPtrBase = ArgBases[I];
    void *TgtPtrBegin;
    map_var_info_t HstPtrName = (!ArgNames) ? nullptr : ArgNames[I];
    ptrdiff_t TgtBaseOffset;
    TargetPointerResultTy TPR;
    if (ArgTypes[I] & OMP_TGT_MAPTYPE_LITERAL) {
      DP("Forwarding first-private value " DPxMOD " to the target construct\n",
         DPxPTR(HstPtrBase));
      TgtPtrBegin = HstPtrBase;
      TgtBaseOffset = 0;
    } else if (ArgTypes[I] & OMP_TGT_MAPTYPE_PRIVATE) {
      // For cases like:
      // ```
      // int *p = ...;
      // #pragma omp target map(p[0:10])
      // ```
      // `p` is predetermined firstprivate on the target construct, and the
      // method to determine the initial value of the private copy on the
      // device is called "corresponding-pointer-initialization".
      //
      // Such firstprivate pointers that need
      // corresponding-pointer-initialization are represented using the
      // `PRIVATE | ATTACH` map-types, in contrast to regular firstprivate
      // entries, which use `PRIVATE | TO`. The structure of these
      // `PRIVATE | ATTACH` entries is the same as the non-private
      // `ATTACH` entries used to represent pointer-attachments, i.e.:
      // ```
      //  &hst_ptr_base/begin, &hst_ptee_begin, sizeof(hst_ptr)
      // ```
      const bool IsAttach = (ArgTypes[I] & OMP_TGT_MAPTYPE_ATTACH);
      void *HstPteeBase = nullptr;
      void *HstPteeBegin = nullptr;
      if (IsAttach) {
        // For corresponding-pointer-initialization, Args[I] is HstPteeBegin,
        // and ArgBases[I] is both HstPtrBase/HstPtrBegin.
        HstPteeBase = *reinterpret_cast<void **>(HstPtrBase);
        HstPteeBegin = Args[I];
        HstPtrBegin = ArgBases[I];
      }
      TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
      // Corresponding-pointer-initialization is a special case of firstprivate,
      // since it also involves initializing the private pointer.
      const bool IsFirstPrivate =
          (ArgTypes[I] & OMP_TGT_MAPTYPE_TO) || IsAttach;

      // If there is a next argument and it depends on the current one, we need
      // to allocate the private memory immediately. If this is not the case,
      // then the argument can be marked for optimization and packed with the
      // other privates.
      const bool AllocImmediately =
          (I < ArgNum - 1 && (ArgTypes[I + 1] & OMP_TGT_MAPTYPE_MEMBER_OF));
      Ret = PrivateArgumentManager.addArg(
          HstPtrBegin, ArgSizes[I], TgtBaseOffset, IsFirstPrivate, TgtPtrBegin,
          /*TgtArgsIndex=*/TgtArgs.size(), HstPtrName, AllocImmediately,
          HstPteeBase, HstPteeBegin, /*IsCorrespondingPointerInit=*/IsAttach);
      if (Ret != OFFLOAD_SUCCESS) {
        REPORT("Failed to process %s%sprivate argument " DPxMOD "\n",
               IsAttach ? "corresponding-pointer-initialization " : "",
               (IsFirstPrivate ? "first-" : ""), DPxPTR(HstPtrBegin));
        return OFFLOAD_FAIL;
      }
    } else {
      if (ArgTypes[I] & OMP_TGT_MAPTYPE_PTR_AND_OBJ)
        HstPtrBase = *reinterpret_cast<void **>(HstPtrBase);
      TPR = DeviceOrErr->getMappingInfo().getTgtPtrBegin(
          HstPtrBegin, ArgSizes[I],
          /*UpdateRefCount=*/false,
          /*UseHoldRefCount=*/false);
      TgtPtrBegin = TPR.TargetPointer;
      TgtBaseOffset = (intptr_t)HstPtrBase - (intptr_t)HstPtrBegin;
#ifdef OMPTARGET_DEBUG
      void *TgtPtrBase = (void *)((intptr_t)TgtPtrBegin + TgtBaseOffset);
      DP("Obtained target argument " DPxMOD " from host pointer " DPxMOD "\n",
         DPxPTR(TgtPtrBase), DPxPTR(HstPtrBegin));
#endif
    }
    TgtArgsPositions[I] = TgtArgs.size();
    TgtArgs.push_back(TgtPtrBegin);
    TgtOffsets.push_back(TgtBaseOffset);
  }

  assert(TgtArgs.size() == TgtOffsets.size() &&
         "Size mismatch in arguments and offsets");

  // Pack and transfer first-private arguments
  Ret = PrivateArgumentManager.packAndTransfer(TgtArgs);
  if (Ret != OFFLOAD_SUCCESS) {
    DP("Failed to pack and transfer first private arguments\n");
    return OFFLOAD_FAIL;
  }

  return OFFLOAD_SUCCESS;
}

/// Process data after launching the kernel, including transferring data back to
/// host if needed and deallocating target memory of (first-)private variables.
static int processDataAfter(ident_t *Loc, int64_t DeviceId, void *HostPtr,
                            int32_t ArgNum, void **ArgBases, void **Args,
                            int64_t *ArgSizes, int64_t *ArgTypes,
                            map_var_info_t *ArgNames, void **ArgMappers,
                            PrivateArgumentManagerTy &PrivateArgumentManager,
                            AsyncInfoTy &AsyncInfo) {

  auto DeviceOrErr = PM->getDevice(DeviceId);
  if (!DeviceOrErr)
    FATAL_MESSAGE(DeviceId, "%s", toString(DeviceOrErr.takeError()).c_str());

  // Move data from device.
  int Ret = targetDataEnd(Loc, *DeviceOrErr, ArgNum, ArgBases, Args, ArgSizes,
                          ArgTypes, ArgNames, ArgMappers, AsyncInfo);
  if (Ret != OFFLOAD_SUCCESS) {
    REPORT("Call to targetDataEnd failed, abort target.\n");
    return OFFLOAD_FAIL;
  }

  // Free target memory for private arguments after synchronization.
  // TODO: We might want to remove `mutable` in the future by not changing the
  // captured variables somehow.
  AsyncInfo.addPostProcessingFunction(
      [PrivateArgumentManager =
           std::move(PrivateArgumentManager)]() mutable -> int {
        int Ret = PrivateArgumentManager.free();
        if (Ret != OFFLOAD_SUCCESS) {
          REPORT("Failed to deallocate target memory for private args\n");
          return OFFLOAD_FAIL;
        }
        return Ret;
      });

  return OFFLOAD_SUCCESS;
}
} // namespace

/// performs the same actions as data_begin in case arg_num is
/// non-zero and initiates run of the offloaded region on the target platform;
/// if arg_num is non-zero after the region execution is done it also
/// performs the same action as data_update and data_end above. This function
/// returns 0 if it was able to transfer the execution to a target and an
/// integer different from zero otherwise.
int target(ident_t *Loc, DeviceTy &Device, void *HostPtr,
           KernelArgsTy &KernelArgs, AsyncInfoTy &AsyncInfo) {
  int32_t DeviceId = Device.DeviceID;
  TableMap *TM = getTableMap(HostPtr);
  // No map for this host pointer found!
  if (!TM) {
    REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n",
           DPxPTR(HostPtr));
    return OFFLOAD_FAIL;
  }

  // get target table.
  __tgt_target_table *TargetTable = nullptr;
  {
    std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx);
    assert(TM->Table->TargetsTable.size() > (size_t)DeviceId &&
           "Not expecting a device ID outside the table's bounds!");
    TargetTable = TM->Table->TargetsTable[DeviceId];
  }
  assert(TargetTable && "Global data has not been mapped\n");

  DP("loop trip count is %" PRIu64 ".\n", KernelArgs.Tripcount);

  // We need to keep bases and offsets separate. Sometimes (e.g. in OpenCL) we
  // need to manifest base pointers prior to launching a kernel. Even if we have
  // mapped an object only partially, e.g. A[N:M], although the kernel is
  // expected to access elements starting at address &A[N] and beyond, we still
  // need to manifest the base of the array &A[0]. In other cases, e.g. the COI
  // API, we need the begin address itself, i.e. &A[N], as the API operates on
  // begin addresses, not bases. That's why we pass args and offsets as two
  // separate entities so that each plugin can do what it needs. This behavior
  // was introduced via https://reviews.llvm.org/D33028 and commit 1546d319244c.
  SmallVector<void *> TgtArgs;
  SmallVector<ptrdiff_t> TgtOffsets;

  PrivateArgumentManagerTy PrivateArgumentManager(Device, AsyncInfo);

  int NumClangLaunchArgs = KernelArgs.NumArgs;
  int Ret = OFFLOAD_SUCCESS;
  if (NumClangLaunchArgs) {
    // Process data, such as data mapping, before launching the kernel
    Ret = processDataBefore(Loc, DeviceId, HostPtr, NumClangLaunchArgs,
                            KernelArgs.ArgBasePtrs, KernelArgs.ArgPtrs,
                            KernelArgs.ArgSizes, KernelArgs.ArgTypes,
                            KernelArgs.ArgNames, KernelArgs.ArgMappers, TgtArgs,
                            TgtOffsets, PrivateArgumentManager, AsyncInfo);
    if (Ret != OFFLOAD_SUCCESS) {
      REPORT("Failed to process data before launching the kernel.\n");
      return OFFLOAD_FAIL;
    }

    // Clang might pass more values via the ArgPtrs to the runtime that we pass
    // on to the kernel.
    // TODO: Next time we adjust the KernelArgsTy we should introduce a new
    // NumKernelArgs field.
    KernelArgs.NumArgs = TgtArgs.size();
  }

  // Launch device execution.
  void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].Address;
  DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n",
     TargetTable->EntriesBegin[TM->Index].SymbolName, DPxPTR(TgtEntryPtr),
     TM->Index);

  {
    assert(KernelArgs.NumArgs == TgtArgs.size() && "Argument count mismatch!");
    TIMESCOPE_WITH_DETAILS_AND_IDENT(
        "Kernel Target",
        "NumArguments=" + std::to_string(KernelArgs.NumArgs) +
            ";NumTeams=" + std::to_string(KernelArgs.NumTeams[0]) +
            ";TripCount=" + std::to_string(KernelArgs.Tripcount),
        Loc);

#ifdef OMPT_SUPPORT
    /// RAII to establish tool anchors before and after kernel launch
    int32_t NumTeams = KernelArgs.NumTeams[0];
    // No need to guard this with OMPT_IF_BUILT
    InterfaceRAII TargetSubmitRAII(
        RegionInterface.getCallbacks<ompt_callback_target_submit>(), NumTeams);
#endif

    Ret = Device.launchKernel(TgtEntryPtr, TgtArgs.data(), TgtOffsets.data(),
                              KernelArgs, AsyncInfo);
  }

  if (Ret != OFFLOAD_SUCCESS) {
    REPORT("Executing target region abort target.\n");
    return OFFLOAD_FAIL;
  }

  if (NumClangLaunchArgs) {
    // Transfer data back and deallocate target memory for (first-)private
    // variables
    Ret = processDataAfter(Loc, DeviceId, HostPtr, NumClangLaunchArgs,
                           KernelArgs.ArgBasePtrs, KernelArgs.ArgPtrs,
                           KernelArgs.ArgSizes, KernelArgs.ArgTypes,
                           KernelArgs.ArgNames, KernelArgs.ArgMappers,
                           PrivateArgumentManager, AsyncInfo);
    if (Ret != OFFLOAD_SUCCESS) {
      REPORT("Failed to process data after launching the kernel.\n");
      return OFFLOAD_FAIL;
    }
  }

  return OFFLOAD_SUCCESS;
}

/// Enables the record replay mechanism by pre-allocating MemorySize
/// and informing the record-replayer of whether to store the output
/// in some file.
int target_activate_rr(DeviceTy &Device, uint64_t MemorySize, void *VAddr,
                       bool IsRecord, bool SaveOutput,
                       uint64_t &ReqPtrArgOffset) {
  return Device.RTL->initialize_record_replay(Device.DeviceID, MemorySize,
                                              VAddr, IsRecord, SaveOutput,
                                              ReqPtrArgOffset);
}

/// Executes a kernel using pre-recorded information for loading to
/// device memory to launch the target kernel with the pre-recorded
/// configuration.
int target_replay(ident_t *Loc, DeviceTy &Device, void *HostPtr,
                  void *DeviceMemory, int64_t DeviceMemorySize, void **TgtArgs,
                  ptrdiff_t *TgtOffsets, int32_t NumArgs, int32_t NumTeams,
                  int32_t ThreadLimit, uint64_t LoopTripCount,
                  AsyncInfoTy &AsyncInfo) {
  int32_t DeviceId = Device.DeviceID;
  TableMap *TM = getTableMap(HostPtr);
  // Fail if the table map fails to find the target kernel pointer for the
  // provided host pointer.
  if (!TM) {
    REPORT("Host ptr " DPxMOD " does not have a matching target pointer.\n",
           DPxPTR(HostPtr));
    return OFFLOAD_FAIL;
  }

  // Retrieve the target table of offloading entries.
  __tgt_target_table *TargetTable = nullptr;
  {
    std::lock_guard<std::mutex> TrlTblLock(PM->TrlTblMtx);
    assert(TM->Table->TargetsTable.size() > (size_t)DeviceId &&
           "Not expecting a device ID outside the table's bounds!");
    TargetTable = TM->Table->TargetsTable[DeviceId];
  }
  assert(TargetTable && "Global data has not been mapped\n");

  // Retrieve the target kernel pointer, allocate and store the recorded device
  // memory data, and launch device execution.
  void *TgtEntryPtr = TargetTable->EntriesBegin[TM->Index].Address;
  DP("Launching target execution %s with pointer " DPxMOD " (index=%d).\n",
     TargetTable->EntriesBegin[TM->Index].SymbolName, DPxPTR(TgtEntryPtr),
     TM->Index);

  void *TgtPtr = Device.allocData(DeviceMemorySize, /*HstPtr=*/nullptr,
                                  TARGET_ALLOC_DEFAULT);
  Device.submitData(TgtPtr, DeviceMemory, DeviceMemorySize, AsyncInfo);

  KernelArgsTy KernelArgs{};
  KernelArgs.Version = OMP_KERNEL_ARG_VERSION;
  KernelArgs.NumArgs = NumArgs;
  KernelArgs.Tripcount = LoopTripCount;
  KernelArgs.NumTeams[0] = NumTeams;
  KernelArgs.ThreadLimit[0] = ThreadLimit;

  int Ret = Device.launchKernel(TgtEntryPtr, TgtArgs, TgtOffsets, KernelArgs,
                                AsyncInfo);

  if (Ret != OFFLOAD_SUCCESS) {
    REPORT("Executing target region abort target.\n");
    return OFFLOAD_FAIL;
  }

  return OFFLOAD_SUCCESS;
}