1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
//===- Invoke.cpp ------------------------------------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/ReconcileUnrealizedCasts/ReconcileUnrealizedCasts.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/VectorToSCF/VectorToSCF.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/ExecutionEngine/CRunnerUtils.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/MemRefUtils.h"
#include "mlir/ExecutionEngine/RunnerUtils.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/InitAllDialects.h"
#include "mlir/Parser/Parser.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Target/LLVMIR/Dialect/Builtin/BuiltinToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Export.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "gmock/gmock.h"
// SPARC currently lacks JIT support.
#ifdef __sparc__
#define SKIP_WITHOUT_JIT(x) DISABLED_##x
#else
#define SKIP_WITHOUT_JIT(x) x
#endif
using namespace mlir;
// The JIT isn't supported on Windows at that time
#ifndef _WIN32
static struct LLVMInitializer {
LLVMInitializer() {
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
}
} initializer;
/// Simple conversion pipeline for the purpose of testing sources written in
/// dialects lowering to LLVM Dialect.
static LogicalResult lowerToLLVMDialect(ModuleOp module) {
PassManager pm(module->getName());
pm.addPass(mlir::createFinalizeMemRefToLLVMConversionPass());
pm.addNestedPass<func::FuncOp>(mlir::createArithToLLVMConversionPass());
pm.addPass(mlir::createConvertFuncToLLVMPass());
pm.addPass(mlir::createReconcileUnrealizedCastsPass());
return pm.run(module);
}
TEST(MLIRExecutionEngine, SKIP_WITHOUT_JIT(AddInteger)) {
#ifdef __s390__
std::string moduleStr = R"mlir(
func.func @foo(%arg0 : i32 {llvm.signext}) -> (i32 {llvm.signext}) attributes { llvm.emit_c_interface } {
%res = arith.addi %arg0, %arg0 : i32
return %res : i32
}
)mlir";
#else
std::string moduleStr = R"mlir(
func.func @foo(%arg0 : i32) -> i32 attributes { llvm.emit_c_interface } {
%res = arith.addi %arg0, %arg0 : i32
return %res : i32
}
)mlir";
#endif
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
auto jitOrError = ExecutionEngine::create(*module);
ASSERT_TRUE(!!jitOrError);
std::unique_ptr<ExecutionEngine> jit = std::move(jitOrError.get());
// The result of the function must be passed as output argument.
int result = 0;
llvm::Error error =
jit->invoke("foo", 42, ExecutionEngine::Result<int>(result));
ASSERT_TRUE(!error);
ASSERT_EQ(result, 42 + 42);
}
TEST(MLIRExecutionEngine, SKIP_WITHOUT_JIT(SubtractFloat)) {
std::string moduleStr = R"mlir(
func.func @foo(%arg0 : f32, %arg1 : f32) -> f32 attributes { llvm.emit_c_interface } {
%res = arith.subf %arg0, %arg1 : f32
return %res : f32
}
)mlir";
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
auto jitOrError = ExecutionEngine::create(*module);
ASSERT_TRUE(!!jitOrError);
std::unique_ptr<ExecutionEngine> jit = std::move(jitOrError.get());
// The result of the function must be passed as output argument.
float result = -1;
llvm::Error error =
jit->invoke("foo", 43.0f, 1.0f, ExecutionEngine::result(result));
ASSERT_TRUE(!error);
ASSERT_EQ(result, 42.f);
}
TEST(NativeMemRefJit, SKIP_WITHOUT_JIT(ZeroRankMemref)) {
OwningMemRef<float, 0> a({});
a[{}] = 42.;
ASSERT_EQ(*a->data, 42);
a[{}] = 0;
std::string moduleStr = R"mlir(
func.func @zero_ranked(%arg0 : memref<f32>) attributes { llvm.emit_c_interface } {
%cst42 = arith.constant 42.0 : f32
memref.store %cst42, %arg0[] : memref<f32>
return
}
)mlir";
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
auto module = parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
auto jitOrError = ExecutionEngine::create(*module);
ASSERT_TRUE(!!jitOrError);
auto jit = std::move(jitOrError.get());
llvm::Error error = jit->invoke("zero_ranked", &*a);
ASSERT_TRUE(!error);
EXPECT_EQ((a[{}]), 42.);
for (float &elt : *a)
EXPECT_EQ(&elt, &(a[{}]));
}
TEST(NativeMemRefJit, SKIP_WITHOUT_JIT(RankOneMemref)) {
int64_t shape[] = {9};
OwningMemRef<float, 1> a(shape);
int count = 1;
for (float &elt : *a) {
EXPECT_EQ(&elt, &(a[{count - 1}]));
elt = count++;
}
std::string moduleStr = R"mlir(
func.func @one_ranked(%arg0 : memref<?xf32>) attributes { llvm.emit_c_interface } {
%cst42 = arith.constant 42.0 : f32
%cst5 = arith.constant 5 : index
memref.store %cst42, %arg0[%cst5] : memref<?xf32>
return
}
)mlir";
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
auto module = parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
auto jitOrError = ExecutionEngine::create(*module);
ASSERT_TRUE(!!jitOrError);
auto jit = std::move(jitOrError.get());
llvm::Error error = jit->invoke("one_ranked", &*a);
ASSERT_TRUE(!error);
count = 1;
for (float &elt : *a) {
if (count == 6)
EXPECT_EQ(elt, 42.);
else
EXPECT_EQ(elt, count);
count++;
}
}
TEST(NativeMemRefJit, SKIP_WITHOUT_JIT(BasicMemref)) {
constexpr int k = 3;
constexpr int m = 7;
// Prepare arguments beforehand.
auto init = [=](float &elt, ArrayRef<int64_t> indices) {
assert(indices.size() == 2);
elt = m * indices[0] + indices[1];
};
int64_t shape[] = {k, m};
int64_t shapeAlloc[] = {k + 1, m + 1};
// Use a large alignment to stress the case where the memref data/basePtr are
// disjoint.
int alignment = 8192;
OwningMemRef<float, 2> a(shape, shapeAlloc, init, alignment);
ASSERT_EQ(
(void *)(((uintptr_t)a->basePtr + alignment - 1) & ~(alignment - 1)),
a->data);
ASSERT_EQ(a->sizes[0], k);
ASSERT_EQ(a->sizes[1], m);
ASSERT_EQ(a->strides[0], m + 1);
ASSERT_EQ(a->strides[1], 1);
for (int i = 0; i < k; ++i) {
for (int j = 0; j < m; ++j) {
EXPECT_EQ((a[{i, j}]), i * m + j);
EXPECT_EQ(&(a[{i, j}]), &((*a)[i][j]));
}
}
std::string moduleStr = R"mlir(
func.func @rank2_memref(%arg0 : memref<?x?xf32>, %arg1 : memref<?x?xf32>) attributes { llvm.emit_c_interface } {
%x = arith.constant 2 : index
%y = arith.constant 1 : index
%cst42 = arith.constant 42.0 : f32
memref.store %cst42, %arg0[%y, %x] : memref<?x?xf32>
memref.store %cst42, %arg1[%x, %y] : memref<?x?xf32>
return
}
)mlir";
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
OwningOpRef<ModuleOp> module =
parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
auto jitOrError = ExecutionEngine::create(*module);
ASSERT_TRUE(!!jitOrError);
std::unique_ptr<ExecutionEngine> jit = std::move(jitOrError.get());
llvm::Error error = jit->invoke("rank2_memref", &*a, &*a);
ASSERT_TRUE(!error);
EXPECT_EQ(((*a)[1][2]), 42.);
EXPECT_EQ((a[{2, 1}]), 42.);
}
TEST(NativeMemRefJit, SKIP_WITHOUT_JIT(OwningMemrefZeroInit)) {
constexpr int k = 3;
constexpr int m = 7;
int64_t shape[] = {k, m};
// Use a large alignment to stress the case where the memref data/basePtr are
// disjoint.
int alignment = 8192;
OwningMemRef<float, 2> a(shape, {}, {}, alignment);
ASSERT_EQ(
(void *)(((uintptr_t)a->basePtr + alignment - 1) & ~(alignment - 1)),
a->data);
for (int i = 0; i < k; ++i) {
for (int j = 0; j < m; ++j) {
EXPECT_EQ((a[{i, j}]), 0.);
}
}
}
// A helper function that will be called from the JIT
static void memrefMultiply(::StridedMemRefType<float, 2> *memref,
int32_t coefficient) {
for (float &elt : *memref)
elt *= coefficient;
}
// MSAN does not work with JIT.
#if __has_feature(memory_sanitizer)
#define MAYBE_JITCallback DISABLED_JITCallback
#else
#define MAYBE_JITCallback SKIP_WITHOUT_JIT(JITCallback)
#endif
TEST(NativeMemRefJit, MAYBE_JITCallback) {
constexpr int k = 2;
constexpr int m = 2;
int64_t shape[] = {k, m};
int64_t shapeAlloc[] = {k + 1, m + 1};
OwningMemRef<float, 2> a(shape, shapeAlloc);
int count = 1;
for (float &elt : *a)
elt = count++;
#ifdef __s390__
std::string moduleStr = R"mlir(
func.func private @callback(%arg0: memref<?x?xf32>, %coefficient: i32 {llvm.signext}) attributes { llvm.emit_c_interface }
func.func @caller_for_callback(%arg0: memref<?x?xf32>, %coefficient: i32 {llvm.signext}) attributes { llvm.emit_c_interface } {
%unranked = memref.cast %arg0: memref<?x?xf32> to memref<*xf32>
call @callback(%arg0, %coefficient) : (memref<?x?xf32>, i32) -> ()
return
}
)mlir";
#else
std::string moduleStr = R"mlir(
func.func private @callback(%arg0: memref<?x?xf32>, %coefficient: i32) attributes { llvm.emit_c_interface }
func.func @caller_for_callback(%arg0: memref<?x?xf32>, %coefficient: i32) attributes { llvm.emit_c_interface } {
%unranked = memref.cast %arg0: memref<?x?xf32> to memref<*xf32>
call @callback(%arg0, %coefficient) : (memref<?x?xf32>, i32) -> ()
return
}
)mlir";
#endif
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
auto module = parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
auto jitOrError = ExecutionEngine::create(*module);
ASSERT_TRUE(!!jitOrError);
auto jit = std::move(jitOrError.get());
// Define any extra symbols so they're available at runtime.
jit->registerSymbols([&](llvm::orc::MangleAndInterner interner) {
llvm::orc::SymbolMap symbolMap;
symbolMap[interner("_mlir_ciface_callback")] = {
llvm::orc::ExecutorAddr::fromPtr(memrefMultiply),
llvm::JITSymbolFlags::Exported};
return symbolMap;
});
int32_t coefficient = 3.;
llvm::Error error = jit->invoke("caller_for_callback", &*a, coefficient);
ASSERT_TRUE(!error);
count = 1;
for (float elt : *a)
ASSERT_EQ(elt, coefficient * count++);
}
static int initCnt = 0;
// A helper function that will be called during the JIT's initialization.
static void initCallback() { initCnt += 1; }
TEST(MLIRExecutionEngine, SKIP_WITHOUT_JIT(CallbackInGlobalCtor)) {
auto tmBuilderOrError = llvm::orc::JITTargetMachineBuilder::detectHost();
ASSERT_TRUE(!!tmBuilderOrError);
if (tmBuilderOrError->getTargetTriple().isAArch64()) {
GTEST_SKIP() << "Skipping global ctor initialization test on Aarch64 "
"because of bug #71963";
return;
}
std::string moduleStr = R"mlir(
llvm.mlir.global_ctors ctors = [@ctor], priorities = [0 : i32], data = [#llvm.zero]
llvm.func @ctor() {
func.call @init_callback() : () -> ()
llvm.return
}
func.func private @init_callback() attributes { llvm.emit_c_interface }
)mlir";
DialectRegistry registry;
registerAllDialects(registry);
registerBuiltinDialectTranslation(registry);
registerLLVMDialectTranslation(registry);
MLIRContext context(registry);
auto module = parseSourceString<ModuleOp>(moduleStr, &context);
ASSERT_TRUE(!!module);
ASSERT_TRUE(succeeded(lowerToLLVMDialect(*module)));
ExecutionEngineOptions jitOptions;
auto jitOrError = ExecutionEngine::create(*module, jitOptions);
ASSERT_TRUE(!!jitOrError);
// validate initialization is not run on construction
ASSERT_EQ(initCnt, 0);
auto jit = std::move(jitOrError.get());
// Define any extra symbols so they're available at initialization.
jit->registerSymbols([&](llvm::orc::MangleAndInterner interner) {
llvm::orc::SymbolMap symbolMap;
symbolMap[interner("_mlir_ciface_init_callback")] = {
llvm::orc::ExecutorAddr::fromPtr(initCallback),
llvm::JITSymbolFlags::Exported};
return symbolMap;
});
jit->initialize();
// validate the side effect of initialization
ASSERT_EQ(initCnt, 1);
// next initialization should be noop
jit->initialize();
ASSERT_EQ(initCnt, 1);
}
#endif // _WIN32
|