1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
|
//===- TestBackwardDataFlowAnalysis.cpp - Test dead code analysis ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/SparseAnalysis.h"
#include "mlir/Analysis/DataFlow/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
using namespace mlir;
using namespace mlir::dataflow;
namespace {
/// Lattice value storing the a set of memory resources that something
/// is written to.
struct WrittenToLatticeValue {
bool operator==(const WrittenToLatticeValue &other) {
return this->writes == other.writes;
}
static WrittenToLatticeValue meet(const WrittenToLatticeValue &lhs,
const WrittenToLatticeValue &rhs) {
WrittenToLatticeValue res = lhs;
(void)res.addWrites(rhs.writes);
return res;
}
static WrittenToLatticeValue join(const WrittenToLatticeValue &lhs,
const WrittenToLatticeValue &rhs) {
// Should not be triggered by this test, but required by `Lattice<T>`
llvm_unreachable("Join should not be triggered by this test");
}
ChangeResult addWrites(const SetVector<StringAttr> &writes) {
int sizeBefore = this->writes.size();
this->writes.insert_range(writes);
int sizeAfter = this->writes.size();
return sizeBefore == sizeAfter ? ChangeResult::NoChange
: ChangeResult::Change;
}
void print(raw_ostream &os) const {
os << "[";
llvm::interleave(
writes, os, [&](const StringAttr &a) { os << a.str(); }, " ");
os << "]";
}
void clear() { writes.clear(); }
SetVector<StringAttr> writes;
};
/// This lattice represents, for a given value, the set of memory resources that
/// this value, or anything derived from this value, is potentially written to.
struct WrittenTo : public Lattice<WrittenToLatticeValue> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(WrittenTo)
using Lattice::Lattice;
};
/// An analysis that, by going backwards along the dataflow graph, annotates
/// each value with all the memory resources it (or anything derived from it)
/// is eventually written to.
class WrittenToAnalysis : public SparseBackwardDataFlowAnalysis<WrittenTo> {
public:
WrittenToAnalysis(DataFlowSolver &solver, SymbolTableCollection &symbolTable,
bool assumeFuncWrites)
: SparseBackwardDataFlowAnalysis(solver, symbolTable),
assumeFuncWrites(assumeFuncWrites) {}
LogicalResult visitOperation(Operation *op, ArrayRef<WrittenTo *> operands,
ArrayRef<const WrittenTo *> results) override;
void visitBranchOperand(OpOperand &operand) override;
void visitCallOperand(OpOperand &operand) override;
void visitExternalCall(CallOpInterface call, ArrayRef<WrittenTo *> operands,
ArrayRef<const WrittenTo *> results) override;
void setToExitState(WrittenTo *lattice) override {
lattice->getValue().clear();
}
private:
bool assumeFuncWrites;
};
LogicalResult
WrittenToAnalysis::visitOperation(Operation *op, ArrayRef<WrittenTo *> operands,
ArrayRef<const WrittenTo *> results) {
if (auto store = dyn_cast<memref::StoreOp>(op)) {
SetVector<StringAttr> newWrites;
newWrites.insert(op->getAttrOfType<StringAttr>("tag_name"));
propagateIfChanged(operands[0],
operands[0]->getValue().addWrites(newWrites));
return success();
} // By default, every result of an op depends on every operand.
for (const WrittenTo *r : results) {
for (WrittenTo *operand : operands) {
meet(operand, *r);
}
addDependency(const_cast<WrittenTo *>(r), getProgramPointAfter(op));
}
return success();
}
void WrittenToAnalysis::visitBranchOperand(OpOperand &operand) {
// Mark branch operands as "brancharg%d", with %d the operand number.
WrittenTo *lattice = getLatticeElement(operand.get());
SetVector<StringAttr> newWrites;
newWrites.insert(
StringAttr::get(operand.getOwner()->getContext(),
"brancharg" + Twine(operand.getOperandNumber())));
propagateIfChanged(lattice, lattice->getValue().addWrites(newWrites));
}
void WrittenToAnalysis::visitCallOperand(OpOperand &operand) {
// Mark call operands as "callarg%d", with %d the operand number.
WrittenTo *lattice = getLatticeElement(operand.get());
SetVector<StringAttr> newWrites;
newWrites.insert(
StringAttr::get(operand.getOwner()->getContext(),
"callarg" + Twine(operand.getOperandNumber())));
propagateIfChanged(lattice, lattice->getValue().addWrites(newWrites));
}
void WrittenToAnalysis::visitExternalCall(CallOpInterface call,
ArrayRef<WrittenTo *> operands,
ArrayRef<const WrittenTo *> results) {
if (!assumeFuncWrites) {
return SparseBackwardDataFlowAnalysis::visitExternalCall(call, operands,
results);
}
for (WrittenTo *lattice : operands) {
SetVector<StringAttr> newWrites;
StringAttr name = call->getAttrOfType<StringAttr>("tag_name");
if (!name) {
name = StringAttr::get(call->getContext(),
call.getOperation()->getName().getStringRef());
}
newWrites.insert(name);
propagateIfChanged(lattice, lattice->getValue().addWrites(newWrites));
}
}
} // end anonymous namespace
namespace {
struct TestWrittenToPass
: public PassWrapper<TestWrittenToPass, OperationPass<>> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(TestWrittenToPass)
TestWrittenToPass() = default;
TestWrittenToPass(const TestWrittenToPass &other) : PassWrapper(other) {
interprocedural = other.interprocedural;
assumeFuncWrites = other.assumeFuncWrites;
}
StringRef getArgument() const override { return "test-written-to"; }
Option<bool> interprocedural{
*this, "interprocedural", llvm::cl::init(true),
llvm::cl::desc("perform interprocedural analysis")};
Option<bool> assumeFuncWrites{
*this, "assume-func-writes", llvm::cl::init(false),
llvm::cl::desc(
"assume external functions have write effect on all arguments")};
void runOnOperation() override {
Operation *op = getOperation();
SymbolTableCollection symbolTable;
DataFlowSolver solver(DataFlowConfig().setInterprocedural(interprocedural));
loadBaselineAnalyses(solver);
solver.load<WrittenToAnalysis>(symbolTable, assumeFuncWrites);
if (failed(solver.initializeAndRun(op)))
return signalPassFailure();
raw_ostream &os = llvm::outs();
op->walk([&](Operation *op) {
auto tag = op->getAttrOfType<StringAttr>("tag");
if (!tag)
return;
os << "test_tag: " << tag.getValue() << ":\n";
for (auto [index, operand] : llvm::enumerate(op->getOperands())) {
const WrittenTo *writtenTo = solver.lookupState<WrittenTo>(operand);
assert(writtenTo && "expected a sparse lattice");
os << " operand #" << index << ": ";
writtenTo->print(os);
os << "\n";
}
for (auto [index, operand] : llvm::enumerate(op->getResults())) {
const WrittenTo *writtenTo = solver.lookupState<WrittenTo>(operand);
assert(writtenTo && "expected a sparse lattice");
os << " result #" << index << ": ";
writtenTo->print(os);
os << "\n";
}
});
}
};
} // end anonymous namespace
namespace mlir {
namespace test {
void registerTestWrittenToPass() { PassRegistration<TestWrittenToPass>(); }
} // end namespace test
} // end namespace mlir
|