aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Interfaces/ControlFlowInterfaces.cpp
blob: 1e56810ff7aaf8b993b6093ae607ec22c3674197 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
//===- ControlFlowInterfaces.cpp - ControlFlow Interfaces -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <utility>

#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/Support/DebugLog.h"

using namespace mlir;

//===----------------------------------------------------------------------===//
// ControlFlowInterfaces
//===----------------------------------------------------------------------===//

#include "mlir/Interfaces/ControlFlowInterfaces.cpp.inc"

SuccessorOperands::SuccessorOperands(MutableOperandRange forwardedOperands)
    : producedOperandCount(0), forwardedOperands(std::move(forwardedOperands)) {
}

SuccessorOperands::SuccessorOperands(unsigned int producedOperandCount,
                                     MutableOperandRange forwardedOperands)
    : producedOperandCount(producedOperandCount),
      forwardedOperands(std::move(forwardedOperands)) {}

//===----------------------------------------------------------------------===//
// BranchOpInterface
//===----------------------------------------------------------------------===//

/// Returns the `BlockArgument` corresponding to operand `operandIndex` in some
/// successor if 'operandIndex' is within the range of 'operands', or
/// std::nullopt if `operandIndex` isn't a successor operand index.
std::optional<BlockArgument>
detail::getBranchSuccessorArgument(const SuccessorOperands &operands,
                                   unsigned operandIndex, Block *successor) {
  LDBG() << "Getting branch successor argument for operand index "
         << operandIndex << " in successor block";

  OperandRange forwardedOperands = operands.getForwardedOperands();
  // Check that the operands are valid.
  if (forwardedOperands.empty()) {
    LDBG() << "No forwarded operands, returning nullopt";
    return std::nullopt;
  }

  // Check to ensure that this operand is within the range.
  unsigned operandsStart = forwardedOperands.getBeginOperandIndex();
  if (operandIndex < operandsStart ||
      operandIndex >= (operandsStart + forwardedOperands.size())) {
    LDBG() << "Operand index " << operandIndex << " out of range ["
           << operandsStart << ", "
           << (operandsStart + forwardedOperands.size())
           << "), returning nullopt";
    return std::nullopt;
  }

  // Index the successor.
  unsigned argIndex =
      operands.getProducedOperandCount() + operandIndex - operandsStart;
  LDBG() << "Computed argument index " << argIndex << " for successor block";
  return successor->getArgument(argIndex);
}

/// Verify that the given operands match those of the given successor block.
LogicalResult
detail::verifyBranchSuccessorOperands(Operation *op, unsigned succNo,
                                      const SuccessorOperands &operands) {
  LDBG() << "Verifying branch successor operands for successor #" << succNo
         << " in operation " << op->getName();

  // Check the count.
  unsigned operandCount = operands.size();
  Block *destBB = op->getSuccessor(succNo);
  LDBG() << "Branch has " << operandCount << " operands, target block has "
         << destBB->getNumArguments() << " arguments";

  if (operandCount != destBB->getNumArguments())
    return op->emitError() << "branch has " << operandCount
                           << " operands for successor #" << succNo
                           << ", but target block has "
                           << destBB->getNumArguments();

  // Check the types.
  LDBG() << "Checking type compatibility for "
         << (operandCount - operands.getProducedOperandCount())
         << " forwarded operands";
  for (unsigned i = operands.getProducedOperandCount(); i != operandCount;
       ++i) {
    Type operandType = operands[i].getType();
    Type argType = destBB->getArgument(i).getType();
    LDBG() << "Checking type compatibility: operand type " << operandType
           << " vs argument type " << argType;

    if (!cast<BranchOpInterface>(op).areTypesCompatible(operandType, argType))
      return op->emitError() << "type mismatch for bb argument #" << i
                             << " of successor #" << succNo;
  }

  LDBG() << "Branch successor operand verification successful";
  return success();
}

//===----------------------------------------------------------------------===//
// WeightedBranchOpInterface
//===----------------------------------------------------------------------===//

static LogicalResult verifyWeights(Operation *op,
                                   llvm::ArrayRef<int32_t> weights,
                                   std::size_t expectedWeightsNum,
                                   llvm::StringRef weightAnchorName,
                                   llvm::StringRef weightRefName) {
  if (weights.empty())
    return success();

  if (weights.size() != expectedWeightsNum)
    return op->emitError() << "expects number of " << weightAnchorName
                           << " weights to match number of " << weightRefName
                           << ": " << weights.size() << " vs "
                           << expectedWeightsNum;

  if (llvm::all_of(weights, [](int32_t value) { return value == 0; }))
    return op->emitError() << "branch weights cannot all be zero";

  return success();
}

LogicalResult detail::verifyBranchWeights(Operation *op) {
  llvm::ArrayRef<int32_t> weights =
      cast<WeightedBranchOpInterface>(op).getWeights();
  return verifyWeights(op, weights, op->getNumSuccessors(), "branch",
                       "successors");
}

//===----------------------------------------------------------------------===//
// WeightedRegionBranchOpInterface
//===----------------------------------------------------------------------===//

LogicalResult detail::verifyRegionBranchWeights(Operation *op) {
  llvm::ArrayRef<int32_t> weights =
      cast<WeightedRegionBranchOpInterface>(op).getWeights();
  return verifyWeights(op, weights, op->getNumRegions(), "region", "regions");
}

//===----------------------------------------------------------------------===//
// RegionBranchOpInterface
//===----------------------------------------------------------------------===//

static InFlightDiagnostic &printRegionEdgeName(InFlightDiagnostic &diag,
                                               RegionBranchPoint sourceNo,
                                               RegionSuccessor succRegionNo) {
  diag << "from ";
  if (Operation *op = sourceNo.getTerminatorPredecessorOrNull())
    diag << "Operation " << op->getName();
  else
    diag << "parent operands";

  diag << " to ";
  if (Region *region = succRegionNo.getSuccessor())
    diag << "Region #" << region->getRegionNumber();
  else
    diag << "parent results";
  return diag;
}

/// Verify that types match along all region control flow edges originating from
/// `sourcePoint`. `getInputsTypesForRegion` is a function that returns the
/// types of the inputs that flow to a successor region.
static LogicalResult
verifyTypesAlongAllEdges(RegionBranchOpInterface branchOp,
                         RegionBranchPoint sourcePoint,
                         function_ref<FailureOr<TypeRange>(RegionSuccessor)>
                             getInputsTypesForRegion) {
  SmallVector<RegionSuccessor, 2> successors;
  branchOp.getSuccessorRegions(sourcePoint, successors);

  for (RegionSuccessor &succ : successors) {
    FailureOr<TypeRange> sourceTypes = getInputsTypesForRegion(succ);
    if (failed(sourceTypes))
      return failure();

    TypeRange succInputsTypes = succ.getSuccessorInputs().getTypes();
    if (sourceTypes->size() != succInputsTypes.size()) {
      InFlightDiagnostic diag =
          branchOp->emitOpError("region control flow edge ");
      std::string succStr;
      llvm::raw_string_ostream os(succStr);
      os << succ;
      return printRegionEdgeName(diag, sourcePoint, succ)
             << ": source has " << sourceTypes->size()
             << " operands, but target successor " << os.str() << " needs "
             << succInputsTypes.size();
    }

    for (const auto &typesIdx :
         llvm::enumerate(llvm::zip(*sourceTypes, succInputsTypes))) {
      Type sourceType = std::get<0>(typesIdx.value());
      Type inputType = std::get<1>(typesIdx.value());

      if (!branchOp.areTypesCompatible(sourceType, inputType)) {
        InFlightDiagnostic diag =
            branchOp->emitOpError("along control flow edge ");
        return printRegionEdgeName(diag, sourcePoint, succ)
               << ": source type #" << typesIdx.index() << " " << sourceType
               << " should match input type #" << typesIdx.index() << " "
               << inputType;
      }
    }
  }

  return success();
}

/// Verify that types match along control flow edges described the given op.
LogicalResult detail::verifyTypesAlongControlFlowEdges(Operation *op) {
  auto regionInterface = cast<RegionBranchOpInterface>(op);

  auto inputTypesFromParent = [&](RegionSuccessor successor) -> TypeRange {
    return regionInterface.getEntrySuccessorOperands(successor).getTypes();
  };

  // Verify types along control flow edges originating from the parent.
  if (failed(verifyTypesAlongAllEdges(
          regionInterface, RegionBranchPoint::parent(), inputTypesFromParent)))
    return failure();

  // Verify types along control flow edges originating from each region.
  for (Region &region : op->getRegions()) {
    // Collect all return-like terminators in the region.
    SmallVector<RegionBranchTerminatorOpInterface> regionReturnOps;
    for (Block &block : region)
      if (!block.empty())
        if (auto terminator =
                dyn_cast<RegionBranchTerminatorOpInterface>(block.back()))
          regionReturnOps.push_back(terminator);

    // If there is no return-like terminator, the op itself should verify
    // type consistency.
    if (regionReturnOps.empty())
      continue;

    // Verify types along control flow edges originating from each return-like
    // terminator.
    for (RegionBranchTerminatorOpInterface regionReturnOp : regionReturnOps) {

      auto inputTypesForRegion =
          [&](RegionSuccessor successor) -> FailureOr<TypeRange> {
        OperandRange terminatorOperands =
            regionReturnOp.getSuccessorOperands(successor);
        return TypeRange(terminatorOperands.getTypes());
      };
      if (failed(verifyTypesAlongAllEdges(regionInterface, regionReturnOp,
                                          inputTypesForRegion)))
        return failure();
    }
  }

  return success();
}

/// Stop condition for `traverseRegionGraph`. The traversal is interrupted if
/// this function returns "true" for a successor region. The first parameter is
/// the successor region. The second parameter indicates all already visited
/// regions.
using StopConditionFn = function_ref<bool(Region *, ArrayRef<bool> visited)>;

/// Traverse the region graph starting at `begin`. The traversal is interrupted
/// if `stopCondition` evaluates to "true" for a successor region. In that case,
/// this function returns "true". Otherwise, if the traversal was not
/// interrupted, this function returns "false".
static bool traverseRegionGraph(Region *begin,
                                StopConditionFn stopConditionFn) {
  auto op = cast<RegionBranchOpInterface>(begin->getParentOp());
  LDBG() << "Starting region graph traversal from region #"
         << begin->getRegionNumber() << " in operation " << op->getName();

  SmallVector<bool> visited(op->getNumRegions(), false);
  visited[begin->getRegionNumber()] = true;
  LDBG() << "Initialized visited array with " << op->getNumRegions()
         << " regions";

  // Retrieve all successors of the region and enqueue them in the worklist.
  SmallVector<Region *> worklist;
  auto enqueueAllSuccessors = [&](Region *region) {
    LDBG() << "Enqueuing successors for region #" << region->getRegionNumber();
    SmallVector<Attribute> operandAttributes(op->getNumOperands());
    for (Block &block : *region) {
      if (block.empty())
        continue;
      auto terminator =
          dyn_cast<RegionBranchTerminatorOpInterface>(block.back());
      if (!terminator)
        continue;
      SmallVector<RegionSuccessor> successors;
      operandAttributes.resize(terminator->getNumOperands());
      terminator.getSuccessorRegions(operandAttributes, successors);
      LDBG() << "Found " << successors.size()
             << " successors from terminator in block";
      for (RegionSuccessor successor : successors) {
        if (!successor.isParent()) {
          worklist.push_back(successor.getSuccessor());
          LDBG() << "Added region #"
                 << successor.getSuccessor()->getRegionNumber()
                 << " to worklist";
        } else {
          LDBG() << "Skipping parent successor";
        }
      }
    }
  };
  enqueueAllSuccessors(begin);
  LDBG() << "Initial worklist size: " << worklist.size();

  // Process all regions in the worklist via DFS.
  while (!worklist.empty()) {
    Region *nextRegion = worklist.pop_back_val();
    LDBG() << "Processing region #" << nextRegion->getRegionNumber()
           << " from worklist (remaining: " << worklist.size() << ")";

    if (stopConditionFn(nextRegion, visited)) {
      LDBG() << "Stop condition met for region #"
             << nextRegion->getRegionNumber() << ", returning true";
      return true;
    }
    llvm::dbgs() << "Region: " << nextRegion << "\n";
    if (!nextRegion->getParentOp()) {
      llvm::errs() << "Region " << *nextRegion << " has no parent op\n";
      return false;
    }
    if (visited[nextRegion->getRegionNumber()]) {
      LDBG() << "Region #" << nextRegion->getRegionNumber()
             << " already visited, skipping";
      continue;
    }
    visited[nextRegion->getRegionNumber()] = true;
    LDBG() << "Marking region #" << nextRegion->getRegionNumber()
           << " as visited";
    enqueueAllSuccessors(nextRegion);
  }

  LDBG() << "Traversal completed, returning false";
  return false;
}

/// Return `true` if region `r` is reachable from region `begin` according to
/// the RegionBranchOpInterface (by taking a branch).
static bool isRegionReachable(Region *begin, Region *r) {
  assert(begin->getParentOp() == r->getParentOp() &&
         "expected that both regions belong to the same op");
  return traverseRegionGraph(begin,
                             [&](Region *nextRegion, ArrayRef<bool> visited) {
                               // Interrupt traversal if `r` was reached.
                               return nextRegion == r;
                             });
}

/// Return `true` if `a` and `b` are in mutually exclusive regions.
///
/// 1. Find the first common of `a` and `b` (ancestor) that implements
///    RegionBranchOpInterface.
/// 2. Determine the regions `regionA` and `regionB` in which `a` and `b` are
///    contained.
/// 3. Check if `regionA` and `regionB` are mutually exclusive. They are
///    mutually exclusive if they are not reachable from each other as per
///    RegionBranchOpInterface::getSuccessorRegions.
bool mlir::insideMutuallyExclusiveRegions(Operation *a, Operation *b) {
  LDBG() << "Checking if operations are in mutually exclusive regions: "
         << a->getName() << " and " << b->getName();

  assert(a && "expected non-empty operation");
  assert(b && "expected non-empty operation");

  auto branchOp = a->getParentOfType<RegionBranchOpInterface>();
  while (branchOp) {
    LDBG() << "Checking branch operation " << branchOp->getName();

    // Check if b is inside branchOp. (We already know that a is.)
    if (!branchOp->isProperAncestor(b)) {
      LDBG() << "Operation b is not inside branchOp, checking next ancestor";
      // Check next enclosing RegionBranchOpInterface.
      branchOp = branchOp->getParentOfType<RegionBranchOpInterface>();
      continue;
    }

    LDBG() << "Both operations are inside branchOp, finding their regions";

    // b is contained in branchOp. Retrieve the regions in which `a` and `b`
    // are contained.
    Region *regionA = nullptr, *regionB = nullptr;
    for (Region &r : branchOp->getRegions()) {
      if (r.findAncestorOpInRegion(*a)) {
        assert(!regionA && "already found a region for a");
        regionA = &r;
        LDBG() << "Found region #" << r.getRegionNumber() << " for operation a";
      }
      if (r.findAncestorOpInRegion(*b)) {
        assert(!regionB && "already found a region for b");
        regionB = &r;
        LDBG() << "Found region #" << r.getRegionNumber() << " for operation b";
      }
    }
    assert(regionA && regionB && "could not find region of op");

    LDBG() << "Region A: #" << regionA->getRegionNumber() << ", Region B: #"
           << regionB->getRegionNumber();

    // `a` and `b` are in mutually exclusive regions if both regions are
    // distinct and neither region is reachable from the other region.
    bool regionsAreDistinct = (regionA != regionB);
    bool aNotReachableFromB = !isRegionReachable(regionA, regionB);
    bool bNotReachableFromA = !isRegionReachable(regionB, regionA);

    LDBG() << "Regions distinct: " << regionsAreDistinct
           << ", A not reachable from B: " << aNotReachableFromB
           << ", B not reachable from A: " << bNotReachableFromA;

    bool mutuallyExclusive =
        regionsAreDistinct && aNotReachableFromB && bNotReachableFromA;
    LDBG() << "Operations are mutually exclusive: " << mutuallyExclusive;

    return mutuallyExclusive;
  }

  // Could not find a common RegionBranchOpInterface among a's and b's
  // ancestors.
  LDBG() << "No common RegionBranchOpInterface found, operations are not "
            "mutually exclusive";
  return false;
}

bool RegionBranchOpInterface::isRepetitiveRegion(unsigned index) {
  LDBG() << "Checking if region #" << index << " is repetitive in operation "
         << getOperation()->getName();

  Region *region = &getOperation()->getRegion(index);
  bool isRepetitive = isRegionReachable(region, region);

  LDBG() << "Region #" << index << " is repetitive: " << isRepetitive;
  return isRepetitive;
}

bool RegionBranchOpInterface::hasLoop() {
  LDBG() << "Checking if operation " << getOperation()->getName()
         << " has loops";

  SmallVector<RegionSuccessor> entryRegions;
  getSuccessorRegions(RegionBranchPoint::parent(), entryRegions);
  LDBG() << "Found " << entryRegions.size() << " entry regions";

  for (RegionSuccessor successor : entryRegions) {
    if (!successor.isParent()) {
      LDBG() << "Checking entry region #"
             << successor.getSuccessor()->getRegionNumber() << " for loops";

      bool hasLoop =
          traverseRegionGraph(successor.getSuccessor(),
                              [](Region *nextRegion, ArrayRef<bool> visited) {
                                // Interrupt traversal if the region was already
                                // visited.
                                return visited[nextRegion->getRegionNumber()];
                              });

      if (hasLoop) {
        LDBG() << "Found loop in entry region #"
               << successor.getSuccessor()->getRegionNumber();
        return true;
      }
    } else {
      LDBG() << "Skipping parent successor";
    }
  }

  LDBG() << "No loops found in operation";
  return false;
}

Region *mlir::getEnclosingRepetitiveRegion(Operation *op) {
  LDBG() << "Finding enclosing repetitive region for operation "
         << op->getName();

  while (Region *region = op->getParentRegion()) {
    LDBG() << "Checking region #" << region->getRegionNumber()
           << " in operation " << region->getParentOp()->getName();

    op = region->getParentOp();
    if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op)) {
      LDBG()
          << "Found RegionBranchOpInterface, checking if region is repetitive";
      if (branchOp.isRepetitiveRegion(region->getRegionNumber())) {
        LDBG() << "Found repetitive region #" << region->getRegionNumber();
        return region;
      }
    } else {
      LDBG() << "Parent operation does not implement RegionBranchOpInterface";
    }
  }

  LDBG() << "No enclosing repetitive region found";
  return nullptr;
}

Region *mlir::getEnclosingRepetitiveRegion(Value value) {
  LDBG() << "Finding enclosing repetitive region for value";

  Region *region = value.getParentRegion();
  while (region) {
    LDBG() << "Checking region #" << region->getRegionNumber()
           << " in operation " << region->getParentOp()->getName();

    Operation *op = region->getParentOp();
    if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op)) {
      LDBG()
          << "Found RegionBranchOpInterface, checking if region is repetitive";
      if (branchOp.isRepetitiveRegion(region->getRegionNumber())) {
        LDBG() << "Found repetitive region #" << region->getRegionNumber();
        return region;
      }
    } else {
      LDBG() << "Parent operation does not implement RegionBranchOpInterface";
    }
    region = op->getParentRegion();
  }

  LDBG() << "No enclosing repetitive region found for value";
  return nullptr;
}