1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
|
//===- XeGPUUnroll.cpp - patterns to do unrolling ---------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains patterns for unrolling XeGPU operations. It follows a
// similar concept and design as vector unroll patterns, serving as a complement
// to them.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/Transforms/Transforms.h"
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/DebugLog.h"
namespace mlir {
namespace xegpu {
#define GEN_PASS_DEF_XEGPUUNROLL
#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
} // namespace xegpu
} // namespace mlir
#define DEBUG_TYPE "xegpu-unroll"
using namespace mlir;
namespace {
template <typename SourceOp>
struct UnrollPattern : public OpRewritePattern<SourceOp> {
UnrollPattern(MLIRContext *context, const xegpu::UnrollOptions &options,
PatternBenefit benefit = 1)
: OpRewritePattern<SourceOp>(context, benefit), options(options) {}
protected:
/// Return the target shape for the given `op`. Return std::nullopt if the
/// op shouldn't be or cannot be unrolled.
std::optional<SmallVector<int64_t>> getTargetShape(Operation *op) const {
LDBG() << "Get unroll shape for: " << *op;
if (options.filterConstraint && failed(options.filterConstraint(op))) {
LDBG() << "--no filter constraint -> BAIL";
return std::nullopt;
}
assert(options.nativeShape &&
"expects the native shape for native shape call back function.");
auto nativeShape = options.nativeShape(op);
return nativeShape;
}
SmallVector<Type> getUnrolledTypes(ShapedType type,
ArrayRef<int64_t> tileShape,
bool returnSingleType = false) const {
return options.getUnrolledTypes(type, tileShape, returnSingleType);
}
/// Emulate the the unpack behavior using insert_strided_slice for VectorType
/// values and unrealized_conversion_cast for TensorDescType values.
Value unpack(ValueRange srcs, Type destTy, ArrayRef<int64_t> blockSize,
Location loc, PatternRewriter &rewriter) const {
if (auto vecTy = dyn_cast<VectorType>(destTy)) {
assert(vecTy.getRank() == static_cast<int64_t>(blockSize.size()) &&
"Expecting blockSize size to match the rank of destTy.");
auto shape = vecTy.getShape();
return xegpu::createVectorWithShapeFromValues(rewriter, loc, srcs, shape);
}
if (isa<xegpu::TensorDescType>(destTy)) {
auto attr = NamedAttribute(rewriter.getStringAttr(unpackAttrName),
rewriter.getUnitAttr());
auto blkAttr = NamedAttribute(rewriter.getStringAttr(blockAttrName),
rewriter.getDenseI64ArrayAttr(blockSize));
auto castOp = UnrealizedConversionCastOp::create(
rewriter, loc, destTy, srcs,
ArrayRef<NamedAttribute>({attr, blkAttr}));
return castOp.getResult(0);
}
llvm_unreachable("Unexpected destTy.");
return Value();
}
/// Emulate the the pack behavior using extract_strided_slice for VectorType
/// values and unrealized_conversion_cast for TensorDescType values.
SmallVector<Value> pack(Value src, TypeRange destTypes,
ArrayRef<int64_t> blockSize, Location loc,
PatternRewriter &rewriter) const {
if (auto vecTy = dyn_cast<VectorType>(src.getType())) {
assert(vecTy.getRank() == static_cast<int64_t>(blockSize.size()) &&
"Expecting blockSize size to match the rank of src.");
return xegpu::extractVectorsWithShapeFromValue(rewriter, loc, src,
blockSize);
}
if (isa<xegpu::TensorDescType>(src.getType())) {
auto attr = NamedAttribute(rewriter.getStringAttr(packAttrName),
rewriter.getUnitAttr());
auto blkAttr = NamedAttribute(rewriter.getStringAttr(blockAttrName),
rewriter.getDenseI64ArrayAttr(blockSize));
auto castOp = UnrealizedConversionCastOp::create(
rewriter, loc, destTypes, src,
ArrayRef<NamedAttribute>({attr, blkAttr}));
return castOp.getResults();
}
llvm_unreachable("Unexpected src type.");
return SmallVector<Value>();
}
private:
const char *const packAttrName = "__xegpu_blocking_pack__";
const char *const unpackAttrName = "__xegpu_blocking_unpack__";
const char *const blockAttrName = "__xegpu_blocking_tile_shape__";
xegpu::UnrollOptions options;
};
// Generic helper function for unrolling operations with offsets.
//
// Iterates over tile offsets within the tensor descriptor shape and calls
// the provided createOp function for each computed offset. This is used by
// operations like LoadNd, StoreNd, CreateNdDesc, and PrefetchNd when they
// have explicit offsets that need to be adjusted for each unrolled tile.
SmallVector<Value> computeUnrolledOffsets(
SmallVector<OpFoldResult> mixedOffsets, xegpu::TensorDescType tdescTy,
ArrayRef<int64_t> targetShape,
const std::function<Value(SmallVector<OpFoldResult>)> &createOp,
Location loc, PatternRewriter &rewriter) {
int64_t rank = tdescTy.getRank();
ArrayRef<int64_t> shape = tdescTy.getShape();
auto addi = [&](OpFoldResult a, int64_t b) -> Value {
std::optional<int64_t> maybeInt = getConstantIntValue(a);
if (maybeInt) {
return arith::ConstantIndexOp::create(rewriter, loc, *maybeInt + b);
} else {
auto aV = llvm::cast<Value>(a);
auto bV = arith::ConstantIndexOp::create(rewriter, loc, b);
return rewriter.createOrFold<arith::AddIOp>(loc, aV, bV);
}
};
SmallVector<OpFoldResult> oldOffsets = llvm::to_vector(
llvm::drop_begin(mixedOffsets, mixedOffsets.size() - rank));
auto validIdxes =
llvm::seq<int64_t>(mixedOffsets.size() - rank, mixedOffsets.size());
SmallVector<Value> newOps;
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(shape, targetShape)) {
for (auto [idx, oldOff, offset] :
llvm::zip(validIdxes, oldOffsets, offsets))
mixedOffsets[idx] = addi(oldOff, offset);
auto newOp = createOp(mixedOffsets);
newOps.push_back(newOp);
}
return newOps;
}
struct UnrollCreateNdOp : public UnrollPattern<xegpu::CreateNdDescOp> {
using UnrollPattern<xegpu::CreateNdDescOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::CreateNdDescOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getType();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<Value> newOps;
auto newTdescTy = getUnrolledTypes(tdescTy, *targetShape)[0];
bool hasOffsets = op.getMixedOffsets().size() != 0;
if (!hasOffsets) {
auto newOp = xegpu::CreateNdDescOp::create(
rewriter, loc, newTdescTy, op.getSource(), op.getMixedSizes(),
op.getMixedStrides());
newOps.push_back(newOp);
} else {
auto createOp = [&](SmallVector<OpFoldResult> offsets) -> Value {
return xegpu::CreateNdDescOp::create(
rewriter, loc, newTdescTy, op.getSource(), offsets,
op.getMixedSizes(), op.getMixedStrides());
};
newOps = computeUnrolledOffsets(op.getMixedOffsets(), tdescTy,
*targetShape, createOp, loc, rewriter);
}
Value castOp = unpack(newOps, tdescTy, *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollUpdateNdOffsetOp : public UnrollPattern<xegpu::UpdateNdOffsetOp> {
using UnrollPattern<xegpu::UpdateNdOffsetOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::UpdateNdOffsetOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<Type> convertedTdescTypes =
getUnrolledTypes(tdescTy, *targetShape);
SmallVector<Value> convertedTdesc = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
SmallVector<Value> newOps;
for (auto t : convertedTdesc) {
auto newOp = xegpu::UpdateNdOffsetOp::create(
rewriter, loc, t.getType(), t, op.getOffsets(), op.getConstOffsets());
newOps.push_back(newOp);
}
Value castOp = unpack(newOps, op.getType(), *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollPrefetchNdOp : public UnrollPattern<xegpu::PrefetchNdOp> {
using UnrollPattern<xegpu::PrefetchNdOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::PrefetchNdOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
int64_t offsetSize = static_cast<int64_t>(op.getOffsets().size());
bool hasOffsets = (offsetSize != 0) || op.getConstOffsetsAttr();
SmallVector<Type> convertedTdescTypes = getUnrolledTypes(
tdescTy, *targetShape, /*returnSingleType*/ hasOffsets);
SmallVector<Value> convertedTdesc = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
if (!hasOffsets) {
for (auto t : convertedTdesc)
xegpu::PrefetchNdOp::create(rewriter, loc, TypeRange(), t,
op->getAttrs());
} else {
auto createPrefetch = [&](SmallVector<OpFoldResult> offsets) -> Value {
xegpu::PrefetchNdOp::create(rewriter, loc, convertedTdesc[0], offsets,
op.getL1HintAttr(), op.getL2HintAttr(),
op.getL3HintAttr());
// return dummy Value to satisfy function's signature
return nullptr;
};
computeUnrolledOffsets(op.getMixedOffsets(), tdescTy, *targetShape,
createPrefetch, loc, rewriter);
}
rewriter.eraseOp(op);
return success();
}
};
struct UnrollLoadNdOp : public UnrollPattern<xegpu::LoadNdOp> {
using UnrollPattern<xegpu::LoadNdOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::LoadNdOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = op.getType();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
int64_t offsetSize = static_cast<int64_t>(op.getOffsets().size());
bool hasOffsets = (offsetSize != 0) || op.getConstOffsetsAttr();
Type elemTy = tdescTy.getElementType();
VectorType newValueTy = valueTy.cloneWith(*targetShape, elemTy);
SmallVector<Type> convertedTdescTypes = getUnrolledTypes(
tdescTy, *targetShape, /*returnSingleType*/ hasOffsets);
SmallVector<Value> convertedTdescs = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
SmallVector<Value> newOps;
if (!hasOffsets) {
for (auto t : convertedTdescs) {
auto newOp = xegpu::LoadNdOp::create(rewriter, loc, newValueTy, t,
op->getAttrs());
newOps.push_back(newOp);
}
} else {
auto createLoad = [&](SmallVector<OpFoldResult> offsets) {
return xegpu::LoadNdOp::create(
rewriter, loc, newValueTy, convertedTdescs[0], offsets,
op.getPackedAttr(), op.getTransposeAttr(), op.getL1HintAttr(),
op.getL2HintAttr(), op.getL3HintAttr());
};
newOps = computeUnrolledOffsets(op.getMixedOffsets(), tdescTy,
*targetShape, createLoad, loc, rewriter);
}
Value castOp = unpack(newOps, op.getType(), *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollStoreNdOp : public UnrollPattern<xegpu::StoreNdOp> {
using UnrollPattern<xegpu::StoreNdOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::StoreNdOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = op.getValueType();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
int64_t offsetSize = static_cast<int64_t>(op.getOffsets().size());
bool hasOffsets = (offsetSize != 0) || op.getConstOffsetsAttr();
SmallVector<Type> convertedValTypes =
getUnrolledTypes(valueTy, *targetShape);
SmallVector<Type> convertedTdescTypes = getUnrolledTypes(
tdescTy, *targetShape, /*returnSingleType*/ hasOffsets);
SmallVector<Value> convertedTdescs = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
SmallVector<Value> convertedValues =
pack(op.getValue(), convertedValTypes, *targetShape, loc, rewriter);
if (!hasOffsets) {
for (auto [v, t] : llvm::zip(convertedValues, convertedTdescs))
xegpu::StoreNdOp::create(rewriter, loc, v, t, op.getL1HintAttr(),
op.getL2HintAttr(), op.getL3HintAttr());
} else {
size_t valueIndex = 0;
auto createStore = [&](SmallVector<OpFoldResult> offsets) {
xegpu::StoreNdOp::create(rewriter, loc, convertedValues[valueIndex++],
convertedTdescs[0], offsets,
op.getL1HintAttr(), op.getL2HintAttr(),
op.getL3HintAttr());
// return dummy Value to satisfy function's signature
return nullptr;
};
computeUnrolledOffsets(op.getMixedOffsets(), tdescTy, *targetShape,
createStore, loc, rewriter);
}
rewriter.eraseOp(op);
return success();
}
};
struct UnrollDpasOp : public UnrollPattern<xegpu::DpasOp> {
using UnrollPattern<xegpu::DpasOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::DpasOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
// expecting every operands is a 2D Vector
if (llvm::any_of(op->getOperandTypes(), [&](Type type) {
auto vecTy = dyn_cast<VectorType>(type);
return !vecTy || vecTy.getRank() != 2;
}))
return failure();
// A vector of 3 elements should be returned, representing M, K, N
// respectively.
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || targetShape->size() != 3)
return failure();
auto M = (*targetShape)[0];
auto K = (*targetShape)[1];
auto N = (*targetShape)[2];
int64_t aBlockSize[2] = {M, K};
int64_t bBlockSize[2] = {K, N};
int64_t cBlockSize[2] = {M, N};
auto packWrapper = [&](TypedValue<VectorType> val,
ArrayRef<int64_t> blockSize) {
VectorType type = val.getType();
std::optional<SmallVector<int64_t>> grids =
computeShapeRatio(type.getShape(), blockSize);
assert(grids && "Expecting grids to be computed.");
auto numNewOps = computeProduct(*grids);
if (numNewOps == 1)
return SmallVector<Value>({val});
VectorType newVecTy = type.cloneWith(blockSize, type.getElementType());
SmallVector<Type> convertedTypes(numNewOps, newVecTy);
SmallVector<Value> values =
pack(val, convertedTypes, blockSize, loc, rewriter);
return values;
};
auto a = op.getLhs();
auto b = op.getRhs();
auto c = op.getAcc();
auto aShape = a.getType().getShape();
auto bShape = b.getType().getShape();
SmallVector<Value> aVals, bVals, cVals;
aVals = packWrapper(a, aBlockSize);
bVals = packWrapper(b, bBlockSize);
if (c)
cVals = packWrapper(c, cBlockSize);
// Skip the operation if every operand has an invalid blocking size (empty)
// or if the original shape matches the blocking size (size == 1).
auto ranges = c ? SmallVector<ValueRange>({aVals, bVals, cVals})
: SmallVector<ValueRange>({aVals, bVals});
if (llvm::any_of(ranges, [](auto &v) { return v.size() == 0; }) ||
llvm::all_of(ranges, [](auto &v) { return v.size() == 1; }))
return failure();
VectorType resultTy = op.getResult().getType();
auto vecTy = VectorType::get(cBlockSize, resultTy.getElementType());
int64_t mIters = aShape[0] / M;
int64_t kIters = aShape[1] / K;
int64_t nIters = bShape[1] / N;
SmallVector<Value> newOps;
for (int64_t i = 0; i < mIters; ++i) {
for (int64_t j = 0; j < nIters; ++j) {
Value tmpC;
if (c)
tmpC = cVals[i * nIters + j]; // init with acc
for (int64_t k = 0; k < kIters; ++k) {
Value aVec = aVals[i * kIters + k];
Value bVec = bVals[k * nIters + j];
SmallVector<Value> operands({aVec, bVec});
if (tmpC)
operands.push_back(tmpC);
tmpC = xegpu::DpasOp::create(rewriter, loc, vecTy, operands,
op->getAttrs());
}
newOps.push_back(tmpC);
}
}
Value castOp = unpack(newOps, resultTy, cBlockSize, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollCreateDescOp : public UnrollPattern<xegpu::CreateDescOp> {
using UnrollPattern<xegpu::CreateDescOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::CreateDescOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getType();
TypedValue<::mlir::VectorType> indiceVec = op.getOffsets();
VectorType indiceVecTy = indiceVec.getType();
if (!tdescTy.isScattered())
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<int64_t> targetIndiceShape(*targetShape);
int64_t originalChunkSize = tdescTy.getChunkSizeAsInt();
// IndiceVec is 1 dim lower than tdescTy when chunkSize is larger than 1.
if (originalChunkSize > 1)
targetIndiceShape.pop_back();
auto newTdescTy = getUnrolledTypes(tdescTy, *targetShape)[0];
SmallVector<Type> convertedIndiceTypes =
getUnrolledTypes(indiceVecTy, targetIndiceShape);
SmallVector<Value> convertedIndiceVec =
pack(indiceVec, convertedIndiceTypes, targetIndiceShape, loc, rewriter);
SmallVector<Value> newOps;
// More indices is need when chunkSize > 1. Since a big load from one
// address could be break into multiple small loads.
if (originalChunkSize > 1) {
int64_t blockedChunkSize = targetShape->back();
int64_t numNewChunks = originalChunkSize / blockedChunkSize;
for (auto [indice, indiceType] :
llvm::zip(convertedIndiceVec, convertedIndiceTypes)) {
for (int64_t i = 0; i < numNewChunks; ++i) {
// Compute the offset
Value inc = arith::ConstantIndexOp::create(rewriter, loc,
i * blockedChunkSize);
Value incVec =
vector::BroadcastOp::create(rewriter, loc, indiceType, inc);
Value offsetIndice =
arith::AddIOp::create(rewriter, loc, indice, incVec);
auto newOp = xegpu::CreateDescOp::create(
rewriter, loc, newTdescTy, op.getSource(), offsetIndice);
newOps.push_back(newOp);
}
}
} else {
for (auto indice : convertedIndiceVec) {
auto newOp = xegpu::CreateDescOp::create(rewriter, loc, newTdescTy,
op.getSource(), indice);
newOps.push_back(newOp);
}
}
Value castOp = unpack(newOps, tdescTy, *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollLoadGatherOp : public UnrollPattern<xegpu::LoadGatherOp> {
using UnrollPattern<xegpu::LoadGatherOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::LoadGatherOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = llvm::dyn_cast<VectorType>(op.getValue().getType());
xegpu::TensorDescType tdescTy = op.getTensorDescType();
// TODO: handle the unstructure source case (!tdesTy)
if (!tdescTy || op.getOffsets())
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<int64_t> targetMaskShape(*targetShape);
int64_t originalChunkSize = tdescTy.getChunkSizeAsInt();
VectorType maskTy = llvm::dyn_cast<VectorType>(op.getMask().getType());
Type elemTy = tdescTy.getElementType();
VectorType newValueTy = valueTy.cloneWith(*targetShape, elemTy);
SmallVector<Type> convertedTdescTypes =
getUnrolledTypes(tdescTy, *targetShape);
SmallVector<Value> convertedTdescs = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
SmallVector<Type> convertedMaskTypes;
SmallVector<Value> convertedMasks;
if (originalChunkSize > 1) {
targetMaskShape.pop_back();
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
int64_t blockedChunkSize = targetShape->back();
int64_t numNewChunks = originalChunkSize / blockedChunkSize;
// the mask is reused across the chunk_size dimension
for (auto mask : pack(op.getMask(), convertedMaskTypes, targetMaskShape,
loc, rewriter))
convertedMasks.append(numNewChunks, mask);
newValueTy = valueTy.cloneWith(*targetShape, elemTy);
} else {
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
convertedMasks = pack(op.getMask(), convertedMaskTypes, targetMaskShape,
loc, rewriter);
}
SmallVector<Value> newOps;
for (auto [t, m] : llvm::zip(convertedTdescs, convertedMasks)) {
auto newOp = xegpu::LoadGatherOp::create(
rewriter, loc, newValueTy, t, m, op.getL1HintAttr(),
op.getL2HintAttr(), op.getL3HintAttr());
newOps.push_back(newOp);
}
Value castOp = unpack(newOps, op.getType(), *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
/// This pattern handles the unrolling of LoadGatherOp with offsets (gathered
/// load).
/// It unrolls the offsets and mask operands accordingly, and creates multiple
/// LoadGatherOp with the unrolled operands.
struct UnrollLoadGatherOpWithOffset
: public UnrollPattern<xegpu::LoadGatherOp> {
using UnrollPattern<xegpu::LoadGatherOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::LoadGatherOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = llvm::dyn_cast<VectorType>(op.getType());
Value offsets = op.getOffsets();
Value mask = op.getMask();
// Only handle the case where offsets are present (scattered load)
if (!offsets)
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<int64_t> targetMaskShape(*targetShape);
int64_t chunkSize = 1;
if (auto chunkSizeAttr = op->getAttr("chunk_size")) {
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(chunkSizeAttr))
chunkSize = intAttr.getInt();
}
// Unroll mask and offsets with correct shape
VectorType maskTy = llvm::dyn_cast<VectorType>(mask.getType());
VectorType offsetsTy = llvm::dyn_cast<VectorType>(offsets.getType());
Type elemTy = valueTy.getElementType();
VectorType newValueTy = valueTy.cloneWith(*targetShape, elemTy);
SmallVector<Type> convertedMaskTypes;
SmallVector<Value> convertedMasks;
SmallVector<Type> convertedOffsetTypes;
SmallVector<Value> convertedOffsets;
if (chunkSize > 1) {
// For chunked loads, mask and offsets have one less dimension
targetMaskShape.pop_back();
int64_t blockedChunkSize = targetShape->back();
int64_t numNewChunks = chunkSize / blockedChunkSize;
chunkSize = blockedChunkSize;
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
convertedOffsetTypes = getUnrolledTypes(offsetsTy, targetMaskShape);
SmallVector<Value> convertedMasksBase =
pack(mask, convertedMaskTypes, targetMaskShape, loc, rewriter);
SmallVector<Value> convertedOffsetsBase =
pack(offsets, convertedOffsetTypes, targetMaskShape, loc, rewriter);
for (auto maskVal : convertedMasksBase)
convertedMasks.append(numNewChunks, maskVal);
for (auto [baseOffset, offsetType] :
llvm::zip(convertedOffsetsBase, convertedOffsetTypes)) {
for (int64_t i = 0; i < numNewChunks; ++i) {
Value inc = arith::ConstantIndexOp::create(rewriter, loc,
i * blockedChunkSize);
Value incVec =
vector::BroadcastOp::create(rewriter, loc, offsetType, inc);
Value offsetVal =
arith::AddIOp::create(rewriter, loc, baseOffset, incVec);
convertedOffsets.push_back(offsetVal);
}
}
} else {
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
convertedMasks =
pack(mask, convertedMaskTypes, targetMaskShape, loc, rewriter);
convertedOffsetTypes = getUnrolledTypes(offsetsTy, *targetShape);
convertedOffsets =
pack(offsets, convertedOffsetTypes, *targetShape, loc, rewriter);
}
SmallVector<Value> newOps;
for (auto [o, m] : llvm::zip(convertedOffsets, convertedMasks)) {
auto newOp = xegpu::LoadGatherOp::create(
rewriter, loc, newValueTy, op.getSource(), o, m,
rewriter.getI64IntegerAttr(chunkSize), op.getL1HintAttr(),
op.getL2HintAttr(), op.getL3HintAttr());
newOps.push_back(newOp);
}
Value castOp = unpack(newOps, op.getType(), *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
/// This pattern handles the unrolling of StoreScatterOp with offsets (scattered
/// store).
/// It unrolls the offsets and mask operands accordingly, and creates multiple
/// StoreScatterOp with the unrolled operands.
struct UnrollStoreScatterOpWithOffsets
: public UnrollPattern<xegpu::StoreScatterOp> {
using UnrollPattern<xegpu::StoreScatterOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::StoreScatterOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = llvm::dyn_cast<VectorType>(op.getValue().getType());
Value offsets = op.getOffsets();
Value mask = op.getMask();
// Only handle the case where offsets are present (scattered store)
if (!offsets)
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
int64_t chunkSize = 1;
if (auto chunkSizeAttr = op->getAttr("chunk_size")) {
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(chunkSizeAttr))
chunkSize = intAttr.getInt();
}
SmallVector<int64_t> targetMaskShape(*targetShape);
VectorType maskTy = llvm::dyn_cast<VectorType>(mask.getType());
VectorType offsetsTy = llvm::dyn_cast<VectorType>(offsets.getType());
SmallVector<Type> convertedMaskTypes;
SmallVector<Value> convertedMasks;
SmallVector<Type> convertedOffsetTypes;
SmallVector<Value> convertedOffsets;
if (chunkSize > 1) {
targetMaskShape.pop_back();
int64_t blockedChunkSize = targetShape->back();
int64_t numNewChunks = chunkSize / blockedChunkSize;
chunkSize = blockedChunkSize;
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
convertedOffsetTypes = getUnrolledTypes(offsetsTy, targetMaskShape);
SmallVector<Value> convertedMasksBase =
pack(mask, convertedMaskTypes, targetMaskShape, loc, rewriter);
SmallVector<Value> convertedOffsetsBase =
pack(offsets, convertedOffsetTypes, targetMaskShape, loc, rewriter);
for (auto maskVal : convertedMasksBase)
convertedMasks.append(numNewChunks, maskVal);
for (auto [baseOffset, offsetType] :
llvm::zip(convertedOffsetsBase, convertedOffsetTypes)) {
for (int64_t i = 0; i < numNewChunks; ++i) {
Value inc = arith::ConstantIndexOp::create(rewriter, loc,
i * blockedChunkSize);
Value incVec =
vector::BroadcastOp::create(rewriter, loc, offsetType, inc);
Value offsetVal =
arith::AddIOp::create(rewriter, loc, baseOffset, incVec);
convertedOffsets.push_back(offsetVal);
}
}
} else {
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
convertedMasks =
pack(mask, convertedMaskTypes, targetMaskShape, loc, rewriter);
convertedOffsetTypes = getUnrolledTypes(offsetsTy, *targetShape);
convertedOffsets =
pack(offsets, convertedOffsetTypes, *targetShape, loc, rewriter);
}
SmallVector<Type> convertedValTypes =
getUnrolledTypes(valueTy, *targetShape);
SmallVector<Value> convertedValues =
pack(op.getValue(), convertedValTypes, *targetShape, loc, rewriter);
for (auto [v, o, m] :
llvm::zip(convertedValues, convertedOffsets, convertedMasks)) {
xegpu::StoreScatterOp::create(rewriter, loc, v, op.getDest(), o, m,
rewriter.getI64IntegerAttr(chunkSize),
op.getL1HintAttr(), op.getL2HintAttr(),
op.getL3HintAttr());
}
rewriter.eraseOp(op);
return success();
}
};
struct UnrollPrefetchOp : public UnrollPattern<xegpu::PrefetchOp> {
using UnrollPattern<xegpu::PrefetchOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::PrefetchOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
// TODO: handle the unstructure source case (!tdesTy)
if (!tdescTy || op.getOffsets())
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<Type> convertedTdescTypes =
getUnrolledTypes(tdescTy, *targetShape);
SmallVector<Value> convertedTdesc = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
for (auto t : convertedTdesc)
xegpu::PrefetchOp::create(rewriter, loc, TypeRange(), t, op->getAttrs());
rewriter.eraseOp(op);
return success();
}
};
struct UnrollStoreScatterOp : public UnrollPattern<xegpu::StoreScatterOp> {
using UnrollPattern<xegpu::StoreScatterOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::StoreScatterOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = llvm::dyn_cast<VectorType>(op.getValue().getType());
xegpu::TensorDescType tdescTy = op.getTensorDescType();
// TODO: handle the unstructure source case (!tdesTy)
if (!tdescTy || op.getOffsets())
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<int64_t> targetMaskShape(*targetShape);
int64_t originalChunkSize = tdescTy.getChunkSizeAsInt();
VectorType maskTy = llvm::dyn_cast<VectorType>(op.getMask().getType());
SmallVector<Type> convertedTdescTypes =
getUnrolledTypes(tdescTy, *targetShape);
SmallVector<Value> convertedTdescs = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
SmallVector<Type> convertedMaskTypes;
SmallVector<Value> convertedMasks;
if (originalChunkSize > 1) {
targetMaskShape.pop_back();
int64_t blockedChunkSize = targetShape->back();
int64_t numNewChunks = originalChunkSize / blockedChunkSize;
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
// the mask is reused across the chunk_size dimension
for (auto mask : pack(op.getMask(), convertedMaskTypes, targetMaskShape,
loc, rewriter))
convertedMasks.append(numNewChunks, mask);
} else {
convertedMaskTypes = getUnrolledTypes(maskTy, targetMaskShape);
convertedMasks = pack(op.getMask(), convertedMaskTypes, targetMaskShape,
loc, rewriter);
}
SmallVector<Type> convertedValTypes =
getUnrolledTypes(valueTy, *targetShape);
SmallVector<Value> convertedValues =
pack(op.getValue(), convertedValTypes, *targetShape, loc, rewriter);
for (size_t i = 0; i < convertedValues.size(); ++i) {
Value v = convertedValues[i];
Value t = convertedTdescs[i];
Value m = op.getMask() ? convertedMasks[i] : nullptr;
xegpu::StoreScatterOp::create(rewriter, loc, v, t, m, op.getL1HintAttr(),
op.getL2HintAttr(), op.getL3HintAttr());
}
rewriter.eraseOp(op);
return success();
}
};
struct UnrollUpdateOffsetOp : public UnrollPattern<xegpu::UpdateOffsetOp> {
using UnrollPattern<xegpu::UpdateOffsetOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::UpdateOffsetOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
xegpu::TensorDescType tdescTy = op.getTensorDescType();
if (!tdescTy.isScattered())
return failure();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
SmallVector<Type> convertedTdescTypes =
getUnrolledTypes(tdescTy, *targetShape);
SmallVector<Value> convertedTdesc = pack(
op.getTensorDesc(), convertedTdescTypes, *targetShape, loc, rewriter);
TypedValue<::mlir::VectorType> offsetVec = op.getOffsets();
VectorType offsetVecTy = offsetVec.getType();
SmallVector<Type> convertedOffsetTypes;
SmallVector<Value> convertedOffsetVec;
SmallVector<Value> newOps;
int64_t originalChunkSize = tdescTy.getChunkSizeAsInt();
if (originalChunkSize > 1) {
auto targetOffsetShape = ArrayRef<int64_t>(*targetShape).drop_back();
convertedOffsetTypes = getUnrolledTypes(offsetVecTy, targetOffsetShape);
int64_t blockedChunkSize = targetShape->back();
int64_t numNewChunks = originalChunkSize / blockedChunkSize;
// the offset is reused across the chunk_size dimension
for (auto offset : pack(offsetVec, convertedOffsetTypes,
targetOffsetShape, loc, rewriter))
convertedOffsetVec.append(numNewChunks, offset);
} else {
convertedOffsetTypes = getUnrolledTypes(offsetVecTy, *targetShape);
convertedOffsetVec =
pack(offsetVec, convertedOffsetTypes, *targetShape, loc, rewriter);
}
for (auto [t, o] : llvm::zip(convertedTdesc, convertedOffsetVec)) {
auto newOp =
xegpu::UpdateOffsetOp::create(rewriter, loc, t.getType(), t, o);
newOps.push_back(newOp);
}
Value castOp = unpack(newOps, op.getType(), *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollLoadMatrixOp : public UnrollPattern<xegpu::LoadMatrixOp> {
using UnrollPattern<xegpu::LoadMatrixOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::LoadMatrixOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
VectorType valueTy = op.getType();
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape || targetShape->size() != (size_t)valueTy.getRank())
return failure();
Type elemTy = valueTy.getElementType();
ArrayRef<int64_t> shape = valueTy.getShape();
auto layout = dyn_cast<xegpu::LayoutAttr>(op.getLayoutAttr());
VectorType newValueTy = valueTy.cloneWith(*targetShape, elemTy);
SmallVector<OpFoldResult> mixedOffsets = op.getMixedOffsets();
SmallVector<SmallVector<OpFoldResult>> offsetsList;
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(shape, *targetShape)) {
auto adds = xegpu::addElementwise(
rewriter, loc, mixedOffsets,
getAsIndexOpFoldResult(op.getContext(), offsets));
offsetsList.push_back(adds);
}
SmallVector<Value> newOps;
layout = layout.dropInstData();
for (SmallVector<OpFoldResult> offsets : offsetsList) {
auto newOp = xegpu::LoadMatrixOp::create(
rewriter, op.getLoc(), newValueTy, op.getMemDesc(), offsets, layout);
newOps.push_back(newOp);
}
Value castOp = unpack(newOps, op.getType(), *targetShape, loc, rewriter);
rewriter.replaceOp(op, castOp);
return success();
}
};
struct UnrollStoreMatrixOp : public UnrollPattern<xegpu::StoreMatrixOp> {
using UnrollPattern<xegpu::StoreMatrixOp>::UnrollPattern;
LogicalResult matchAndRewrite(xegpu::StoreMatrixOp op,
PatternRewriter &rewriter) const override {
std::optional<SmallVector<int64_t>> targetShape = getTargetShape(op);
if (!targetShape)
return failure();
Location loc = op.getLoc();
VectorType valueTy = op.getData().getType();
ArrayRef<int64_t> shape = valueTy.getShape();
auto layout = dyn_cast<xegpu::LayoutAttr>(op.getLayoutAttr());
SmallVector<Type> convertedValTypes =
getUnrolledTypes(valueTy, *targetShape);
SmallVector<Value> convertedValues =
pack(op.getData(), convertedValTypes, *targetShape, loc, rewriter);
SmallVector<OpFoldResult> mixedOffsets = op.getMixedOffsets();
SmallVector<SmallVector<OpFoldResult>> offsetsList;
for (SmallVector<int64_t> offsets :
StaticTileOffsetRange(shape, *targetShape)) {
auto adds = xegpu::addElementwise(
rewriter, loc, mixedOffsets,
getAsIndexOpFoldResult(op.getContext(), offsets));
offsetsList.push_back(adds);
}
for (auto [v, offsets] : llvm::zip_equal(convertedValues, offsetsList))
xegpu::StoreMatrixOp::create(rewriter, loc, v, op.getMemDesc(), offsets,
layout.dropInstData());
rewriter.eraseOp(op);
return success();
}
};
} // namespace
void mlir::xegpu::populateXeGPUUnrollPatterns(
RewritePatternSet &patterns, const xegpu::UnrollOptions &options) {
patterns
.add<UnrollCreateNdOp, UnrollUpdateNdOffsetOp, UnrollPrefetchNdOp,
UnrollLoadNdOp, UnrollStoreNdOp, UnrollDpasOp, UnrollCreateDescOp,
UnrollLoadGatherOp, UnrollStoreScatterOp, UnrollPrefetchOp,
UnrollUpdateOffsetOp, UnrollLoadMatrixOp, UnrollStoreMatrixOp,
UnrollLoadGatherOpWithOffset, UnrollStoreScatterOpWithOffsets>(
patterns.getContext(), options);
}
|