1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
|
//===- XeGPUPropagateLayout.cpp - XeGPU Layout Propagation ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Analysis/DataFlow/SparseAnalysis.h"
#include "mlir/Analysis/DataFlow/Utils.h"
#include "mlir/Analysis/DataFlowFramework.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/IR/XeGPUTargetInfo.h"
#include "mlir/Dialect/XeGPU/Transforms/Passes.h"
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "mlir/Interfaces/FunctionInterfaces.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/raw_ostream.h"
namespace mlir {
namespace xegpu {
#define GEN_PASS_DEF_XEGPUPROPAGATELAYOUT
#include "mlir/Dialect/XeGPU/Transforms/Passes.h.inc"
} // namespace xegpu
} // namespace mlir
#define DEBUG_TYPE "xegpu-propagate-layout"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
using namespace mlir;
using namespace mlir::dataflow;
namespace {
//===----------------------------------------------------------------------===//
// LayoutInfo
//===----------------------------------------------------------------------===//
/// Helper class for tracking the analysis state of an mlir value. For layout
/// propagation, the analysis state is simply the distribution layout of
/// each value. The distribution layout information is encapsulated using
/// xegpu::DistributeLayoutAttr class which can hold information about any type
/// of distribution layout that XeGPU dialect supports. Purpose of this analysis
/// to propagate some unique distribution layout for each value in the program
/// starting from a set of anchor operations (like DPAS, StoreNd, etc.). Note
/// that analysis will reach a fixed point when all values are reached some
/// layout and, analysis does not try to modify any already assigned layouts.
///
/// Given this, LayoutInfo satisifies the following properties:
/// 1) A LayoutInfo value can be in one of two states - `assigned` or `not
/// assigned`.
/// 2) Two LayoutInfo values are equal if they are both assigned or
/// both not assigned. The concrete value of assigned state does not matter.
/// 3) The meet operator works as follows:
/// - If current state is assigned, return the current state. (already
/// a unique layout is assigned. don't change it)
/// - Otherwise, return the other state.
struct LayoutInfo {
private:
xegpu::DistributeLayoutAttr storage = nullptr;
public:
LayoutInfo() = default;
LayoutInfo(const xegpu::DistributeLayoutAttr &layout) : storage(layout) {}
// Two lattice values are equal if they have `some` layout. The actual
// content of the layout does not matter.
bool operator==(const LayoutInfo &other) const {
return this->isAssigned() == other.isAssigned();
}
static LayoutInfo meet(const LayoutInfo &lhs, const LayoutInfo &rhs);
static LayoutInfo join(const LayoutInfo &lhs, const LayoutInfo &rhs);
void print(raw_ostream &os) const;
bool isAssigned() const { return storage != nullptr; }
LayoutInfo transpose(ArrayRef<int64_t> permutation) const;
SmallVector<int> getLaneLayout() const;
SmallVector<int> getLaneData() const;
bool isSliceLayout() const {
if (!isAssigned())
return false;
return isa<xegpu::SliceAttr>(storage);
}
int64_t getRank() const {
if (!isAssigned())
return -1;
return storage.getRank();
}
Attribute get() { return storage; }
};
SmallVector<int> LayoutInfo::getLaneLayout() const {
if (!isAssigned())
return {};
assert(storage.getEffectiveLaneLayoutAsInt().size() &&
"Expected lane layout to be assigned");
return llvm::map_to_vector(storage.getEffectiveLaneLayoutAsInt(),
[](int64_t val) { return static_cast<int>(val); });
}
SmallVector<int> LayoutInfo::getLaneData() const {
if (!isAssigned())
return {};
assert(storage.getEffectiveLaneDataAsInt().size() &&
"Expected lane data to be assigned");
return llvm::map_to_vector(storage.getEffectiveLaneDataAsInt(),
[](int64_t val) { return static_cast<int>(val); });
}
void LayoutInfo::print(raw_ostream &os) const {
if (isAssigned()) {
os << storage;
} else {
os << "Not assigned.";
}
}
LayoutInfo LayoutInfo::meet(const LayoutInfo &lhs, const LayoutInfo &rhs) {
if (!lhs.isAssigned())
return rhs;
return lhs;
}
/// Since this is a backward analysis, join method is not used.
LayoutInfo LayoutInfo::join(const LayoutInfo &lhs, const LayoutInfo &rhs) {
llvm_unreachable("Join should not be triggered by layout propagation.");
}
/// Construct a new layout with the transposed lane layout and lane data.
LayoutInfo LayoutInfo::transpose(ArrayRef<int64_t> permutation) const {
if (!isAssigned())
return {};
// Check if the permutation is valid.
llvm::SmallSet<int64_t, 4> seen(permutation.begin(), permutation.end());
bool hasDuplicates = seen.size() != permutation.size();
bool withinRange = llvm::all_of(permutation, [&](int64_t idx) {
return idx >= 0 && idx < static_cast<int64_t>(permutation.size());
});
if (!withinRange || hasDuplicates) {
assert(false && "Invalid permutation for transpose.");
return {};
}
SmallVector<int32_t> laneLayout;
SmallVector<int32_t> laneData;
for (int64_t idx : permutation) {
laneLayout.push_back(static_cast<int32_t>(getLaneLayout()[idx]));
laneData.push_back(static_cast<int32_t>(getLaneData()[idx]));
}
return LayoutInfo(
xegpu::LayoutAttr::get(storage.getContext(), laneLayout, laneData));
}
//===----------------------------------------------------------------------===//
// LayoutInfoLattice
//===----------------------------------------------------------------------===//
/// Lattice holding the LayoutInfo for each value.
struct LayoutInfoLattice : public Lattice<LayoutInfo> {
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(LayoutInfoLattice)
using Lattice::Lattice;
};
/// Helper Functions to get default layouts. A `default layout` is a layout that
/// is assigned to a value when the layout is not fixed by some anchor operation
/// (like DPAS).
/// Helper Function to get the default layout for uniform values like constants.
/// For 1D vector, lane_layout is [subgroupSize] and lane_data is [1].
/// For 2D vector, lane_layout is [1, subgroupSize] and lane_data is [1, 1].
static LayoutInfo getDefaultSIMTLayoutInfo(mlir::MLIRContext *ctx,
unsigned rank) {
assert((rank == 1 || rank == 2) && "Expected 1D or 2D vector.");
if (rank == 1) {
return LayoutInfo(
xegpu::LayoutAttr::get(ctx, {xegpu::targetinfo::subgroupSize}, {1}));
}
return LayoutInfo(xegpu::LayoutAttr::get(
ctx, {1, xegpu::targetinfo::subgroupSize}, {1, 1}));
}
/// Helper to get the default layout for a vector type.
static LayoutInfo getDefaultSIMTLayoutInfo(VectorType vectorTy,
bool isScattered = false) {
// Expecting a 1D or 2D vector.
assert((vectorTy.getRank() == 1 || vectorTy.getRank() == 2) &&
"Expected 1D or 2D vector.");
// Expecting int or float element type.
assert(vectorTy.getElementType().isIntOrFloat() &&
"Expected int or float element type.");
// If the rank is 1, then return default layout for 1D vector.
if (vectorTy.getRank() == 1)
return getDefaultSIMTLayoutInfo(vectorTy.getContext(), 1);
// Packing factor is determined by the element type bitwidth.
int packingFactor = 1;
unsigned bitwidth = vectorTy.getElementType().getIntOrFloatBitWidth();
if (isScattered) {
packingFactor =
bitwidth < xegpu::targetinfo::packedSizeInBitsForGatherScatter
? xegpu::targetinfo::packedSizeInBitsForGatherScatter / bitwidth
: 1;
return LayoutInfo(xegpu::LayoutAttr::get(
vectorTy.getContext(), {xegpu::targetinfo::subgroupSize, 1},
{1, packingFactor}));
}
if (bitwidth < xegpu::targetinfo::packedSizeInBitsForDefault)
packingFactor = xegpu::targetinfo::packedSizeInBitsForDefault / bitwidth;
return LayoutInfo(xegpu::LayoutAttr::get(vectorTy.getContext(),
{1, xegpu::targetinfo::subgroupSize},
{1, packingFactor}));
}
/// Helper to get the default layout for a vector type.
static LayoutInfo getDefaultSIMTLayoutInfo(xegpu::TensorDescType tdescTy,
bool isScattered = false) {
// Expecting a 1D or 2D vector.
assert((tdescTy.getRank() == 1 || tdescTy.getRank() == 2) &&
"Expected 1D or 2D TensorDesc.");
// Expecting int or float element type.
assert(tdescTy.getElementType().isIntOrFloat() &&
"Expected int or float element type.");
// If the rank is 1, then return default layout for 1D vector.
if (tdescTy.getRank() == 1)
return getDefaultSIMTLayoutInfo(tdescTy.getContext(), 1);
// Packing factor is determined by the element type bitwidth.
unsigned bitwidth = tdescTy.getElementType().getIntOrFloatBitWidth();
if (isScattered) {
int packingFactor =
bitwidth < xegpu::targetinfo::packedSizeInBitsForGatherScatter
? xegpu::targetinfo::packedSizeInBitsForGatherScatter / bitwidth
: 1;
return LayoutInfo(xegpu::LayoutAttr::get(
tdescTy.getContext(), {xegpu::targetinfo::subgroupSize, 1},
{1, packingFactor}));
}
int packingFactor =
(bitwidth < xegpu::targetinfo::packedSizeInBitsForDefault)
? xegpu::targetinfo::packedSizeInBitsForDefault / bitwidth
: 1;
return LayoutInfo(xegpu::LayoutAttr::get(tdescTy.getContext(),
{1, xegpu::targetinfo::subgroupSize},
{1, packingFactor}));
}
/// Helper Function to get the expected layouts for DPAS operands. `lane_data`
/// is set according to the following criteria:
/// * For A operand, the data must be packed in minimum
/// `packedSizeInBitsForDefault`
/// * For B operand, the data must be packed in minimum
/// `packedSizeInBitsForDpasB`
static LayoutInfo getSIMTLayoutInfoForDPASOperand(VectorType vectorTy,
unsigned operandNum) {
Type elementTy = vectorTy.getElementType();
assert(elementTy.isIntOrFloat() &&
"Expected int or float type in DPAS operands");
SmallVector<int32_t, 2> layout({1, xegpu::targetinfo::subgroupSize});
// For B operand, data must be packed in minimum `packedDpasBSizeInBits` and
// must have the VNNI format.
if (operandNum == 1 && elementTy.getIntOrFloatBitWidth() <
xegpu::targetinfo::packedSizeInBitsForDpasB) {
SmallVector<int32_t, 2> data(
{static_cast<int32_t>(xegpu::targetinfo::packedSizeInBitsForDpasB /
elementTy.getIntOrFloatBitWidth()),
1});
return LayoutInfo(
xegpu::LayoutAttr::get(vectorTy.getContext(), layout, data));
}
// Otherwise, return the default layout for the vector type.
return getDefaultSIMTLayoutInfo(vectorTy);
}
//===----------------------------------------------------------------------===//
// LayoutInfoPropagation
//===----------------------------------------------------------------------===//
/// Backward data flow analysis to propagate the lane_layout and lane_data of
/// each value in the program. Currently, the layouts for operands DPAS,
/// StoreNd, and StoreScatter are fixed (known before propagation). Purpose of
/// this analysis is to propagate those known layouts to all their producers and
/// (other) consumers.
class LayoutInfoPropagation
: public SparseBackwardDataFlowAnalysis<LayoutInfoLattice> {
private:
void visitDpasOp(xegpu::DpasOp dpas, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitStoreNdOp(xegpu::StoreNdOp store,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitStoreScatterOp(xegpu::StoreScatterOp storeScatter,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitLoadNdOp(xegpu::LoadNdOp load,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitLoadGatherOp(xegpu::LoadGatherOp load,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitTransposeOp(vector::TransposeOp transpose,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitVectorBitcastOp(vector::BitCastOp bitcast,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitCreateDescOp(xegpu::CreateDescOp createDesc,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitUpdateNdOffsetOp(xegpu::UpdateNdOffsetOp updateNdOffset,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitPrefetchNdOp(xegpu::PrefetchNdOp prefetch,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitVectorMultiReductionOp(vector::MultiDimReductionOp reduction,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitVectorBroadCastOp(vector::BroadcastOp broadcast,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
void visitShapeCastOp(vector::ShapeCastOp shapeCast,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results);
public:
LayoutInfoPropagation(DataFlowSolver &solver,
SymbolTableCollection &symbolTable)
: SparseBackwardDataFlowAnalysis(solver, symbolTable) {}
using SparseBackwardDataFlowAnalysis::SparseBackwardDataFlowAnalysis;
LogicalResult
visitOperation(Operation *op, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) override;
void visitBranchOperand(OpOperand &operand) override {};
void visitCallOperand(OpOperand &operand) override {};
void visitExternalCall(CallOpInterface call,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) override {
};
void setToExitState(LayoutInfoLattice *lattice) override {
(void)lattice->meet(LayoutInfo());
}
};
} // namespace
LogicalResult LayoutInfoPropagation::visitOperation(
Operation *op, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
TypeSwitch<Operation *>(op)
.Case<xegpu::DpasOp>(
[&](auto dpasOp) { visitDpasOp(dpasOp, operands, results); })
.Case<xegpu::StoreNdOp>(
[&](auto storeNdOp) { visitStoreNdOp(storeNdOp, operands, results); })
.Case<xegpu::StoreScatterOp>([&](auto storeScatterOp) {
visitStoreScatterOp(storeScatterOp, operands, results);
})
.Case<xegpu::LoadNdOp>(
[&](auto loadNdOp) { visitLoadNdOp(loadNdOp, operands, results); })
.Case<xegpu::LoadGatherOp>([&](auto loadGatherOp) {
visitLoadGatherOp(loadGatherOp, operands, results);
})
.Case<xegpu::CreateDescOp>([&](auto createDescOp) {
visitCreateDescOp(createDescOp, operands, results);
})
.Case<xegpu::UpdateNdOffsetOp>([&](auto updateNdOffsetOp) {
visitUpdateNdOffsetOp(updateNdOffsetOp, operands, results);
})
.Case<xegpu::PrefetchNdOp>([&](auto prefetchNdOp) {
visitPrefetchNdOp(prefetchNdOp, operands, results);
})
.Case<vector::TransposeOp>([&](auto transposeOp) {
visitTransposeOp(transposeOp, operands, results);
})
.Case<vector::BitCastOp>([&](auto bitcastOp) {
visitVectorBitcastOp(bitcastOp, operands, results);
})
.Case<vector::MultiDimReductionOp>([&](auto reductionOp) {
visitVectorMultiReductionOp(reductionOp, operands, results);
})
.Case<vector::BroadcastOp>([&](auto broadcastOp) {
visitVectorBroadCastOp(broadcastOp, operands, results);
})
.Case<vector::ShapeCastOp>([&](auto shapeCastOp) {
visitShapeCastOp(shapeCastOp, operands, results);
})
// All other ops.
.Default([&](Operation *op) {
for (const LayoutInfoLattice *resultInfo : results) {
if (!resultInfo->getValue().isAssigned())
continue;
for (auto [operandInfo, operand] :
llvm::zip(operands, op->getOpOperands())) {
// If the operand type is not a vector or tensor descriptor, skip
// it.
if (!isa<xegpu::TensorDescType, VectorType>(
operand.get().getType()))
continue;
// Propagate the result layout to the operand.
meet(operandInfo, *resultInfo);
}
}
});
return success();
}
void LayoutInfoPropagation::visitPrefetchNdOp(
xegpu::PrefetchNdOp prefetch, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// Here we assign the default layout to the tensor descriptor operand of
// prefetch.
auto tdescTy = prefetch.getTensorDescType();
auto prefetchLayout = getDefaultSIMTLayoutInfo(tdescTy);
// Propagate the layout to the source tensor descriptor.
propagateIfChanged(operands[0], operands[0]->meet(prefetchLayout));
}
void LayoutInfoPropagation::visitVectorMultiReductionOp(
vector::MultiDimReductionOp reduction,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// The layout of the result must be present.
LayoutInfo resultLayout = results[0]->getValue();
if (!resultLayout.isAssigned())
return;
// We only consider 2D -> 1D reductions at this point.
VectorType resultTy = llvm::dyn_cast<VectorType>(reduction.getDestType());
if (!resultTy || resultTy.getRank() != 1) {
reduction.emitWarning("Expecting output type to be 1D vector.");
return;
}
// Given that the result is 1D, the layout of the operand should be 2D with
// default layout.
LayoutInfo operandLayout =
getDefaultSIMTLayoutInfo(reduction->getContext(), 2);
propagateIfChanged(operands[0], operands[0]->meet(operandLayout));
// Accumulator should have the same layout as the result.
propagateIfChanged(operands[1], operands[1]->meet(resultLayout));
}
void LayoutInfoPropagation::visitVectorBroadCastOp(
vector::BroadcastOp broadcast, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// The layout of the result must be present.
LayoutInfo resultLayout = results[0]->getValue();
if (!resultLayout.isAssigned())
return;
// Only consider vector to vector broadcasts for now.
VectorType resultTy = broadcast.getResultVectorType();
VectorType sourceTy = dyn_cast<VectorType>(broadcast.getSourceType());
if (!sourceTy) {
broadcast.emitWarning("Expecting source type to be a vector type.");
return;
}
// Only consider nD -> nD broadcast.
if (sourceTy.getRank() != resultTy.getRank()) {
broadcast.emitWarning("Expecting source and result to have same rank.");
return;
}
SetVector<int64_t> broadcastUnitDims = broadcast.computeBroadcastedUnitDims();
if (broadcastUnitDims.size() != 1) {
broadcast.emitWarning("Expecting source type to be nD vector only with "
"one broadcasted dimension.");
return;
}
// Propagate the result layout to the source operand.
propagateIfChanged(operands[0], operands[0]->meet(resultLayout));
}
void LayoutInfoPropagation::visitShapeCastOp(
vector::ShapeCastOp shapeCast, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// The layout of the result must be present.
LayoutInfo resultLayout = results[0]->getValue();
if (!resultLayout.isAssigned())
return;
VectorType sourceTy = shapeCast.getSourceVectorType();
VectorType resultTy = shapeCast.getResultVectorType();
// Shape cast layout propagation only supports 1D -> 2D shape casts.
// TODO: Support kD -> nD shape casts (k < n, n >= 2) where expanded dims are
// unit dimensions and non-unit dims match.
if (sourceTy.getRank() != 1 || resultTy.getRank() != 2) {
shapeCast.emitWarning("Expecting shape cast to be 1D -> 2D.");
return;
}
int64_t slicedDim = resultTy.getShape()[0] == 1 ? 0 : 1;
xegpu::SliceAttr sliceLayout = xegpu::SliceAttr::get(
shapeCast->getContext(), cast<xegpu::LayoutAttr>(resultLayout.get()),
DenseI64ArrayAttr::get(shapeCast->getContext(), {slicedDim}));
propagateIfChanged(operands[0], operands[0]->meet(LayoutInfo(sliceLayout)));
}
/// Propagate the layout of the result tensor to the source tensor descriptor
/// in UpdateNdOffsetOp.
void LayoutInfoPropagation::visitUpdateNdOffsetOp(
xegpu::UpdateNdOffsetOp updateNdOffset,
ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// The layout of the result must be present.
LayoutInfo resultLayout = results[0]->getValue();
if (!resultLayout.isAssigned())
return;
// Propagate the layout to the source operand.
propagateIfChanged(operands[0], operands[0]->meet(resultLayout));
}
/// Set the layouts for DPAS A, B, and C operands.
void LayoutInfoPropagation::visitDpasOp(
xegpu::DpasOp dpas, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
VectorType aTy = dpas.getLhsType();
VectorType bTy = dpas.getRhsType();
propagateIfChanged(
operands[0], operands[0]->meet(getSIMTLayoutInfoForDPASOperand(aTy, 0)));
propagateIfChanged(
operands[1], operands[1]->meet(getSIMTLayoutInfoForDPASOperand(bTy, 1)));
if (operands.size() > 2) {
VectorType cTy = dpas.getAccType();
propagateIfChanged(
operands[2],
operands[2]->meet(getSIMTLayoutInfoForDPASOperand(cTy, 2)));
}
}
/// Set the layout for the value and tensor descriptor operands in StoreNdOp.
void LayoutInfoPropagation::visitStoreNdOp(
xegpu::StoreNdOp store, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
LayoutInfo storeLayout = getDefaultSIMTLayoutInfo(store.getValueType());
// Both operands should have the same layout
for (LayoutInfoLattice *operand : operands)
propagateIfChanged(operand, operand->meet(storeLayout));
}
/// Propagate the layout of the value to the tensor descriptor operand in
/// LoadNdOp.
void LayoutInfoPropagation::visitLoadNdOp(
xegpu::LoadNdOp load, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
LayoutInfo valueLayout = results[0]->getValue();
// Need the layout of the value to propagate to the tensor descriptor.
if (!valueLayout.isAssigned())
return;
LayoutInfo tensorDescLayout = valueLayout;
// LoadNdOp has the transpose effect. However, at the stage of this analysis
// this effect is not expected and should be abstracted away. Emit a
// warning.
if (auto transpose = load.getTranspose()) {
load.emitWarning("Transpose effect is not expected for LoadNdOp at "
"LayoutInfoPropagation stage.");
tensorDescLayout = valueLayout.transpose(transpose.value());
}
// Propagate the new layout to the tensor descriptor operand.
propagateIfChanged(operands[0], operands[0]->meet(tensorDescLayout));
}
/// For vector::TransposeOp, the layout of the result is transposed and
/// propagated to the operand.
void LayoutInfoPropagation::visitTransposeOp(
vector::TransposeOp transpose, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// Need the layout of transpose result to propagate to the operands.
LayoutInfo resultLayout = results[0]->getValue();
if (!resultLayout.isAssigned())
return;
LayoutInfo newLayout = resultLayout.transpose(transpose.getPermutation());
// Propagate the new layout to the vector operand.
propagateIfChanged(operands[0], operands[0]->meet(newLayout));
}
/// For vector::BitCastOp, the lane_data of the source layout is changed based
/// on the bit width of the source and result types.
void LayoutInfoPropagation::visitVectorBitcastOp(
vector::BitCastOp bitcast, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// Need the layout of bitcast result to propagate to the operands.
LayoutInfo resultLayout = results[0]->getValue();
if (!resultLayout.isAssigned())
return;
int inElemTyBitWidth =
bitcast.getSourceVectorType().getElementType().getIntOrFloatBitWidth();
int outElemTyBitWidth =
bitcast.getResultVectorType().getElementType().getIntOrFloatBitWidth();
// If the element bit widths are the same, then the layout does not change.
if (inElemTyBitWidth == outElemTyBitWidth) {
propagateIfChanged(operands[0], operands[0]->meet(resultLayout));
return;
}
// Check if the result layout is valid. i.e. result vector can be distributed.
auto resultLaneLayout = resultLayout.getLaneLayout();
auto resultLaneData = resultLayout.getLaneData();
if (failed(xegpu::getDistributedVectorType(
bitcast.getResultVectorType(),
xegpu::LayoutAttr::get(bitcast->getContext(), resultLaneLayout,
resultLaneData)))) {
bitcast.emitWarning(
"Result vector type can not be evenly distributed across lanes.");
return;
}
int64_t rank = bitcast.getSourceVectorType().getRank();
// Bitcast is a `narrowing` if the input element type bit width larger than
// the output element type bit width. eg. f32 -> f16 is a narrowing bitcast.
bool isNarrowing = inElemTyBitWidth > outElemTyBitWidth;
int bitCastRatio = isNarrowing ? inElemTyBitWidth / outElemTyBitWidth
: outElemTyBitWidth / inElemTyBitWidth;
SmallVector<int> sourceLaneLayout =
resultLayout.getLaneLayout(); // Lane layout does not change for bitcast.
SmallVector<int> outData = resultLayout.getLaneData();
// TODO: Currently we assume that bitcasts does not require cross lane
// communication. So each lane must own the required number of elements to
// perform the bitcast locally without cross-lane communication.
int outInnerBitsPerLane = outData[rank - 1] * outElemTyBitWidth;
if (outInnerBitsPerLane < inElemTyBitWidth) {
bitcast.emitWarning(
"Narrowing bitcast with cross lane communication is not supported.");
return;
}
// Check if each lane owns a single element in all dimensions except the
// innermost dimension.
SmallVector<int> sourceLaneData(outData.begin(), outData.end() - 1);
if (llvm::any_of(sourceLaneData, [](int64_t d) { return d != 1; })) {
bitcast.emitWarning("Each lane must not own multiple elements in any "
"dimension other than "
"the innermost dimension.");
return;
}
// Decide lane data based on whether the bitcast is narrowing or widening.
int64_t innerMostLaneData = isNarrowing ? outData[rank - 1] / bitCastRatio
: outData[rank - 1] * bitCastRatio;
sourceLaneData.push_back(innerMostLaneData);
propagateIfChanged(
operands[0],
operands[0]->meet(LayoutInfo(xegpu::LayoutAttr::get(
bitcast->getContext(), sourceLaneLayout, sourceLaneData))));
}
/// Propagate the layout of the result to the tensor descriptor, mask and offset
/// operands in LoadGatherOp.
void LayoutInfoPropagation::visitLoadGatherOp(
xegpu::LoadGatherOp load, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// The layout is strictly determined by the payload type.
auto payloadTy = dyn_cast<VectorType>(load.getValueType());
if (!payloadTy) {
load.emitWarning("Not propagating, non-vector payload supplied.");
return;
}
LayoutInfo layout = getDefaultSIMTLayoutInfo(payloadTy, /*scattered*/ true);
// Mask operand should have 1D default layout.
LayoutInfo maskLayout = getDefaultSIMTLayoutInfo(load->getContext(), 1);
// Propagate the new layout to the tensor descriptor operand.
if (isa<xegpu::TensorDescType>(load.getSourceType()))
propagateIfChanged(operands[0], operands[0]->meet(layout));
// Propagate the new layout to the mask and optional offset operand.
propagateIfChanged(operands[1], operands[1]->meet(maskLayout));
if (load.getOffsets())
propagateIfChanged(operands[2], operands[2]->meet(maskLayout));
}
/// Propagate the layout of the descriptor to the vector offset operand in
/// CreateDescOp.
void LayoutInfoPropagation::visitCreateDescOp(
xegpu::CreateDescOp createDesc, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
LayoutInfo descLayout = results[0]->getValue();
// Need the layout of the descriptor to propagate to the operands.
if (!descLayout.isAssigned())
return;
// For offset operand propagate 1D default layout.
LayoutInfo layout = getDefaultSIMTLayoutInfo(createDesc->getContext(), 1);
propagateIfChanged(operands[1], operands[1]->meet(layout));
}
/// Set the layout for the value, tensor descriptor, offset and mask operands in
/// the StoreScatterOp.
void LayoutInfoPropagation::visitStoreScatterOp(
xegpu::StoreScatterOp storeScatter, ArrayRef<LayoutInfoLattice *> operands,
ArrayRef<const LayoutInfoLattice *> results) {
// Currently, for 2D StoreScatterOp we expect that the height dimension of
// the tensor descriptor is equal to the subgroup size. This is ensured by
// the op verifier.
auto payloadTy = dyn_cast<VectorType>(storeScatter.getValueType());
if (!payloadTy) {
storeScatter.emitWarning("Not propagating, non-vector payload supplied.");
return;
}
auto payloadShape = payloadTy.getShape();
if (payloadShape.size() > 1)
assert(
payloadShape[0] == xegpu::targetinfo::subgroupSize &&
"Expected the first dimension of 2D tensor descriptor to be equal to "
"subgroup size.");
LayoutInfo payloadLayout =
getDefaultSIMTLayoutInfo(payloadTy, /*scattered=*/true);
LayoutInfo maskLayout =
getDefaultSIMTLayoutInfo(storeScatter->getContext(), 1);
// Propagate the payload operand layout
propagateIfChanged(operands[0], operands[0]->meet(payloadLayout));
// Propagate the destination (if tdesc) operand layout
if (isa<xegpu::TensorDescType>(storeScatter.getDestType()))
propagateIfChanged(operands[1], operands[1]->meet(payloadLayout));
// Propagate the new layout to the mask and optional offset operand.
propagateIfChanged(operands[2], operands[2]->meet(maskLayout));
if (storeScatter.getOffsets())
propagateIfChanged(operands[3], operands[3]->meet(maskLayout));
}
namespace {
//===----------------------------------------------------------------------===//
// RunLayoutInfoPropagation
//===----------------------------------------------------------------------===//
/// Driver class for running the LayoutInfoPropagation analysis.
class RunLayoutInfoPropagation {
public:
MLIR_DEFINE_EXPLICIT_INTERNAL_INLINE_TYPE_ID(RunLayoutInfoPropagation)
RunLayoutInfoPropagation(Operation *op) : target(op) {
SymbolTableCollection symbolTable;
loadBaselineAnalyses(solver);
solver.load<LayoutInfoPropagation>(symbolTable);
(void)solver.initializeAndRun(op);
}
LayoutInfo getLayoutInfo(Value val);
void printAnalysisResult(llvm::raw_ostream &os);
private:
DataFlowSolver solver;
const Operation *target;
};
} // namespace
LayoutInfo RunLayoutInfoPropagation::getLayoutInfo(Value val) {
auto *state = solver.lookupState<LayoutInfoLattice>(val);
if (!state)
return {};
return state->getValue();
}
// Print the analysis result for debugging purposes.
void RunLayoutInfoPropagation::printAnalysisResult(llvm::raw_ostream &os) {
auto printFunctionResult = [&](FunctionOpInterface funcOp) {
os << "function: " << funcOp.getName() << ":\n";
// Function arguments
for (BlockArgument arg : funcOp.getArguments()) {
LayoutInfo layout = getLayoutInfo(arg);
os << "argument: " << arg << "\n";
os << "layout : ";
layout.print(os);
os << "\n";
}
// Function ops
funcOp.walk([&](Operation *op) {
// Skip ops that do not have results
if (op->getResults().empty())
return;
os << "op : ";
// For control-flow ops, print the op name only.
if (isa<BranchOpInterface>(op) || isa<RegionBranchOpInterface>(op))
os << op->getName();
else
op->print(os);
os << "\n";
// Print the layout for each result.
for (auto [i, r] : llvm::enumerate(op->getResults())) {
LayoutInfo layout = getLayoutInfo(r);
os << "layout for result #" << i << ": ";
layout.print(os);
os << "\n";
}
});
};
SmallVector<FunctionOpInterface> funcOps;
if (auto modOp = dyn_cast<ModuleOp>(target)) {
for (auto funcOp : modOp.getOps<FunctionOpInterface>())
funcOps.push_back(funcOp);
// Collect all GpuFuncOps in the module.
for (auto gpuModOp : modOp.getOps<gpu::GPUModuleOp>()) {
for (auto gpuFuncOp : gpuModOp.getOps<FunctionOpInterface>())
funcOps.push_back(gpuFuncOp);
}
}
// Print the analysis result for each function.
for (FunctionOpInterface funcOp : funcOps)
printFunctionResult(funcOp);
}
using GetLayoutFnTy = function_ref<xegpu::DistributeLayoutAttr(Value)>;
/// Update an operation with the layout of its results. If the result type is
/// a vector type, a temporary layout attribute is added to the operation. If
/// the result type is a tensor descriptor type, the type is updated with the
/// layout attribute. The users of the result are also updated with the layout
/// attribute.
static LogicalResult updateOp(mlir::OpBuilder &builder, mlir::Operation *op,
GetLayoutFnTy getLayoutOfValue) {
// Region ops (like scf.for) are already handled by the
// updateControlFlowOps.
if (mlir::isa<mlir::RegionBranchOpInterface>(op))
return success();
// Iterate over all the results.
for (OpResult result : op->getResults()) {
Type resultType = result.getType();
// Layouts are needed only for vector and tensor descriptor types.
if (!isa<VectorType, xegpu::TensorDescType>(resultType))
continue;
// If the result has no layout but has users, emit a warning and continue.
xegpu::DistributeLayoutAttr layout = getLayoutOfValue(result);
if (!layout && result.getNumUses() > 0) {
op->emitWarning("op has users but no layout assigned for its result");
continue;
}
// If the result is a tensor descriptor type, update the tensor desc type
// with layout.
if (auto tensorDescTy = dyn_cast<xegpu::TensorDescType>(resultType)) {
auto typeWithLayout = xegpu::TensorDescType::get(
tensorDescTy.getContext(), tensorDescTy.getShape(),
tensorDescTy.getElementType(), tensorDescTy.getEncoding(), layout);
result.setType(typeWithLayout);
continue;
}
// If the result is a vector type, add a temporary layout attribute to the
// op.
xegpu::setDistributeLayoutAttr(result, layout);
}
return success();
}
/// Region ops like scf.for need special handling because they have blocks
/// inside. If the blocks have tensor descriptor type as block arguments,
/// thier types must be updated. Also region op can have results that may not
/// have any users (e.g. A and B tiles). They are not assigned a layout by
/// layout analysis because they have no users. However inside the region op
/// corresponding block arguments for these results do have layouts.
/// Therefore, in this case we still need to update the result types with the
/// layout attribute. This function function updates the internal block
/// arguments and the result types of the region op with the assigned layouts.
/// clang-format off
/// Example: scf.for ... iter_args(...) -> (out types) {
/// ^bb0(block types):
/// ...
/// scf.yield ... : (yield types)
/// }
/// clang-format on
/// In this example, at scf.yield, control-flow can transfer to two successor
/// regions. One is the ^bb0 (for loop body) and the other is the scf.for op
/// itself (yield the results). So we update both the block arguments of the
/// successor region (i.e. block types) and the result types of the scf.for op
/// (i.e. out types). Note that yield types are updated by respective
/// producers inside bb0.
static LogicalResult
updateControlFlowOps(mlir::OpBuilder &builder,
mlir::RegionBranchTerminatorOpInterface terminator,
GetLayoutFnTy getLayoutOfValue) {
// Only process if the terminator is inside a region branch op.
if (!mlir::isa<mlir::RegionBranchOpInterface>(terminator->getParentOp()))
return success();
llvm::SmallVector<mlir::RegionSuccessor> successors;
llvm::SmallVector<mlir::Attribute> operands(terminator->getNumOperands(),
nullptr);
terminator.getSuccessorRegions(operands, successors);
for (mlir::RegionSuccessor &successor : successors) {
mlir::OperandRange successorOperands =
terminator.getSuccessorOperands(successor);
mlir::ValueRange successorInputs = successor.getSuccessorInputs();
for (auto [successorOperand, successorInput] :
llvm::zip(successorOperands, successorInputs)) {
Type inputType = successorInput.getType();
// We only need to operate on tensor descriptor or vector types.
if (!isa<xegpu::TensorDescType, VectorType>(inputType))
continue;
xegpu::DistributeLayoutAttr successorInputLayout =
getLayoutOfValue(successorInput);
xegpu::DistributeLayoutAttr successorOperandLayout =
getLayoutOfValue(successorOperand);
// If either of the layouts is not assigned, we cannot proceed.
if (!successorOperandLayout) {
LLVM_DEBUG(DBGS() << "No layout assigned for forwarded operand in "
"branch terminator: "
<< successorOperand << "\n");
return failure();
}
// We expect the layouts to match.
if (successorInputLayout &&
successorInputLayout != successorOperandLayout) {
LLVM_DEBUG(DBGS() << "Conflicting layouts for region argument and "
"operand forwarded as the argument: "
<< successorInputLayout << " vs "
<< successorOperandLayout << "\n");
return failure();
}
// Get tensor descriptor type with the layout.
if (auto tdescTy = dyn_cast<xegpu::TensorDescType>(inputType)) {
auto newTdescTy = xegpu::TensorDescType::get(
tdescTy.getContext(), tdescTy.getShape(), tdescTy.getElementType(),
tdescTy.getEncoding(), successorOperandLayout);
successorInput.setType(newTdescTy);
continue;
}
// If the type is a vector type and this region argument is an OpResult,
// set the layout attribute on the OpResult.
if (auto result = dyn_cast<OpResult>(successorInput))
xegpu::setDistributeLayoutAttr(result, successorOperandLayout);
}
}
return success();
}
/// Update the function arguments and results with the layouts.
static LogicalResult updateFunctionOpInterface(mlir::OpBuilder &builder,
mlir::FunctionOpInterface funcOp,
GetLayoutFnTy getLayoutOfValue) {
SmallVector<Type> newArgTypes;
// Update the function arguments.
for (BlockArgument arg : funcOp.getArguments()) {
Type argType = arg.getType();
newArgTypes.push_back(argType);
if (!isa<VectorType, xegpu::TensorDescType>(argType))
continue;
xegpu::DistributeLayoutAttr layout = getLayoutOfValue(arg);
if (!layout) {
LLVM_DEBUG(DBGS() << "Expecting layout for function argument: " << arg
<< " but got none.\n");
return failure();
}
if (auto tensorDescTy = dyn_cast<xegpu::TensorDescType>(argType)) {
auto newTdescTy = xegpu::TensorDescType::get(
tensorDescTy.getContext(), tensorDescTy.getShape(),
tensorDescTy.getElementType(), tensorDescTy.getEncoding(), layout);
arg.setType(newTdescTy);
newArgTypes.back() = newTdescTy;
}
}
// Update the function type with the new argument types.
// NOTE: We assume that function results are not expected to have layouts.
funcOp.setType(FunctionType::get(funcOp.getContext(), newArgTypes,
funcOp.getResultTypes()));
return success();
}
namespace {
struct XeGPUPropagateLayoutPass final
: public xegpu::impl::XeGPUPropagateLayoutBase<XeGPUPropagateLayoutPass> {
XeGPUPropagateLayoutPass() = default;
XeGPUPropagateLayoutPass(const XeGPUPropagateLayoutPass &other) = default;
XeGPUPropagateLayoutPass(xegpu::XeGPUPropagateLayoutOptions options)
: XeGPUPropagateLayoutBase(options) {}
void runOnOperation() override;
};
} // namespace
void XeGPUPropagateLayoutPass::runOnOperation() {
auto &analysis = getAnalysis<RunLayoutInfoPropagation>();
// Print the analysis result and exit. (for debugging purposes)
if (printOnly) {
auto &os = llvm::outs();
analysis.printAnalysisResult(os);
return;
}
// Helper to convert LayoutInfo to xegpu::LayoutAttr.
auto getXeGPULayoutForValue = [&](Value val) -> xegpu::DistributeLayoutAttr {
LayoutInfo layout = analysis.getLayoutInfo(val);
if (!layout.isAssigned())
return {};
if (layout.isSliceLayout())
return cast<xegpu::SliceAttr>(layout.get());
return cast<xegpu::LayoutAttr>(layout.get());
};
mlir::OpBuilder builder(&getContext());
Operation *op = getOperation();
auto walkResult = op->walk([&](mlir::Block *block) -> WalkResult {
for (mlir::Operation &op : llvm::reverse(block->getOperations())) {
LogicalResult r = success();
TypeSwitch<Operation *>(&op)
.Case<mlir::RegionBranchTerminatorOpInterface>(
[&](mlir::RegionBranchTerminatorOpInterface branchTermOp) {
r = updateControlFlowOps(builder, branchTermOp,
getXeGPULayoutForValue);
})
.Case<mlir::FunctionOpInterface>(
[&](mlir::FunctionOpInterface funcOp) {
r = updateFunctionOpInterface(builder, funcOp,
getXeGPULayoutForValue);
})
.Default([&](Operation *op) {
r = updateOp(builder, op, getXeGPULayoutForValue);
});
if (failed(r)) {
op.emitError("Failed to update operation with the layout.");
return WalkResult::interrupt();
}
}
return WalkResult::advance();
});
if (walkResult.wasInterrupted()) {
signalPassFailure();
return;
}
}
|