1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
|
//===- VectorUtils.cpp - MLIR Utilities for VectorOps ------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements utility methods for working with the Vector dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/DebugLog.h"
#include "llvm/Support/InterleavedRange.h"
#define DEBUG_TYPE "vector-utils"
using namespace mlir;
/// Helper function that creates a memref::DimOp or tensor::DimOp depending on
/// the type of `source`.
Value mlir::vector::createOrFoldDimOp(OpBuilder &b, Location loc, Value source,
int64_t dim) {
if (isa<UnrankedMemRefType, MemRefType>(source.getType()))
return b.createOrFold<memref::DimOp>(loc, source, dim);
if (isa<UnrankedTensorType, RankedTensorType>(source.getType()))
return b.createOrFold<tensor::DimOp>(loc, source, dim);
llvm_unreachable("Expected MemRefType or TensorType");
}
/// Given the n-D transpose pattern 'transp', return true if 'dim0' and 'dim1'
/// should be transposed with each other within the context of their 2D
/// transposition slice.
///
/// Example 1: dim0 = 0, dim1 = 2, transp = [2, 1, 0]
/// Return true: dim0 and dim1 are transposed within the context of their 2D
/// transposition slice ([1, 0]).
///
/// Example 2: dim0 = 0, dim1 = 1, transp = [2, 1, 0]
/// Return true: dim0 and dim1 are transposed within the context of their 2D
/// transposition slice ([1, 0]). Paradoxically, note how dim1 (1) is *not*
/// transposed within the full context of the transposition.
///
/// Example 3: dim0 = 0, dim1 = 1, transp = [2, 0, 1]
/// Return false: dim0 and dim1 are *not* transposed within the context of
/// their 2D transposition slice ([0, 1]). Paradoxically, note how dim0 (0)
/// and dim1 (1) are transposed within the full context of the of the
/// transposition.
static bool areDimsTransposedIn2DSlice(int64_t dim0, int64_t dim1,
ArrayRef<int64_t> transp) {
// Perform a linear scan along the dimensions of the transposed pattern. If
// dim0 is found first, dim0 and dim1 are not transposed within the context of
// their 2D slice. Otherwise, 'dim1' is found first and they are transposed.
for (int64_t permDim : transp) {
if (permDim == dim0)
return false;
if (permDim == dim1)
return true;
}
llvm_unreachable("Ill-formed transpose pattern");
}
FailureOr<std::pair<int, int>>
mlir::vector::isTranspose2DSlice(vector::TransposeOp op) {
VectorType srcType = op.getSourceVectorType();
SmallVector<int64_t> srcGtOneDims;
for (auto [index, size] : llvm::enumerate(srcType.getShape()))
if (size > 1)
srcGtOneDims.push_back(index);
if (srcGtOneDims.size() != 2)
return failure();
// Check whether the two source vector dimensions that are greater than one
// must be transposed with each other so that we can apply one of the 2-D
// transpose pattens. Otherwise, these patterns are not applicable.
if (!areDimsTransposedIn2DSlice(srcGtOneDims[0], srcGtOneDims[1],
op.getPermutation()))
return failure();
return std::pair<int, int>(srcGtOneDims[0], srcGtOneDims[1]);
}
/// Constructs a permutation map from memref indices to vector dimension.
///
/// The implementation uses the knowledge of the mapping of enclosing loop to
/// vector dimension. `enclosingLoopToVectorDim` carries this information as a
/// map with:
/// - keys representing "vectorized enclosing loops";
/// - values representing the corresponding vector dimension.
/// The algorithm traverses "vectorized enclosing loops" and extracts the
/// at-most-one MemRef index that is invariant along said loop. This index is
/// guaranteed to be at most one by construction: otherwise the MemRef is not
/// vectorizable.
/// If this invariant index is found, it is added to the permutation_map at the
/// proper vector dimension.
/// If no index is found to be invariant, 0 is added to the permutation_map and
/// corresponds to a vector broadcast along that dimension.
///
/// Returns an empty AffineMap if `enclosingLoopToVectorDim` is empty,
/// signalling that no permutation map can be constructed given
/// `enclosingLoopToVectorDim`.
///
/// Examples can be found in the documentation of `makePermutationMap`, in the
/// header file.
static AffineMap makePermutationMap(
ArrayRef<Value> indices,
const DenseMap<Operation *, unsigned> &enclosingLoopToVectorDim) {
if (enclosingLoopToVectorDim.empty())
return AffineMap();
MLIRContext *context =
enclosingLoopToVectorDim.begin()->getFirst()->getContext();
SmallVector<AffineExpr> perm(enclosingLoopToVectorDim.size(),
getAffineConstantExpr(0, context));
for (auto kvp : enclosingLoopToVectorDim) {
assert(kvp.second < perm.size());
auto invariants = affine::getInvariantAccesses(
cast<affine::AffineForOp>(kvp.first).getInductionVar(), indices);
unsigned numIndices = indices.size();
unsigned countInvariantIndices = 0;
for (unsigned dim = 0; dim < numIndices; ++dim) {
if (!invariants.count(indices[dim])) {
assert(perm[kvp.second] == getAffineConstantExpr(0, context) &&
"permutationMap already has an entry along dim");
perm[kvp.second] = getAffineDimExpr(dim, context);
} else {
++countInvariantIndices;
}
}
assert((countInvariantIndices == numIndices ||
countInvariantIndices == numIndices - 1) &&
"Vectorization prerequisite violated: at most 1 index may be "
"invariant wrt a vectorized loop");
(void)countInvariantIndices;
}
return AffineMap::get(indices.size(), 0, perm, context);
}
/// Implementation detail that walks up the parents and records the ones with
/// the specified type.
/// TODO: could also be implemented as a collect parents followed by a
/// filter and made available outside this file.
template <typename T>
static SetVector<Operation *> getParentsOfType(Block *block) {
SetVector<Operation *> res;
auto *current = block->getParentOp();
while (current) {
if ([[maybe_unused]] auto typedParent = dyn_cast<T>(current)) {
assert(res.count(current) == 0 && "Already inserted");
res.insert(current);
}
current = current->getParentOp();
}
return res;
}
/// Returns the enclosing AffineForOp, from closest to farthest.
static SetVector<Operation *> getEnclosingforOps(Block *block) {
return getParentsOfType<affine::AffineForOp>(block);
}
AffineMap mlir::makePermutationMap(
Block *insertPoint, ArrayRef<Value> indices,
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
DenseMap<Operation *, unsigned> enclosingLoopToVectorDim;
auto enclosingLoops = getEnclosingforOps(insertPoint);
for (auto *forInst : enclosingLoops) {
auto it = loopToVectorDim.find(forInst);
if (it != loopToVectorDim.end()) {
enclosingLoopToVectorDim.insert(*it);
}
}
return ::makePermutationMap(indices, enclosingLoopToVectorDim);
}
AffineMap mlir::makePermutationMap(
Operation *op, ArrayRef<Value> indices,
const DenseMap<Operation *, unsigned> &loopToVectorDim) {
return makePermutationMap(op->getBlock(), indices, loopToVectorDim);
}
bool matcher::operatesOnSuperVectorsOf(Operation &op,
VectorType subVectorType) {
// First, extract the vector type and distinguish between:
// a. ops that *must* lower a super-vector (i.e. vector.transfer_read,
// vector.transfer_write); and
// b. ops that *may* lower a super-vector (all other ops).
// The ops that *may* lower a super-vector only do so if the super-vector to
// sub-vector ratio exists. The ops that *must* lower a super-vector are
// explicitly checked for this property.
/// TODO: there should be a single function for all ops to do this so we
/// do not have to special case. Maybe a trait, or just a method, unclear atm.
bool mustDivide = false;
(void)mustDivide;
VectorType superVectorType;
if (auto transfer = dyn_cast<VectorTransferOpInterface>(op)) {
superVectorType = transfer.getVectorType();
mustDivide = true;
} else if (op.getNumResults() == 0) {
if (!isa<func::ReturnOp>(op)) {
op.emitError("NYI: assuming only return operations can have 0 "
" results at this point");
}
return false;
} else if (op.getNumResults() == 1) {
if (auto v = dyn_cast<VectorType>(op.getResult(0).getType())) {
superVectorType = v;
} else {
// Not a vector type.
return false;
}
} else {
// Not a vector.transfer and has more than 1 result, fail hard for now to
// wake us up when something changes.
op.emitError("NYI: operation has more than 1 result");
return false;
}
// Get the ratio.
auto ratio =
computeShapeRatio(superVectorType.getShape(), subVectorType.getShape());
// Sanity check.
assert((ratio || !mustDivide) &&
"vector.transfer operation in which super-vector size is not an"
" integer multiple of sub-vector size");
// This catches cases that are not strictly necessary to have multiplicity but
// still aren't divisible by the sub-vector shape.
// This could be useful information if we wanted to reshape at the level of
// the vector type (but we would have to look at the compute and distinguish
// between parallel, reduction and possibly other cases.
return ratio.has_value();
}
bool vector::isContiguousSlice(MemRefType memrefType, VectorType vectorType) {
if (vectorType.isScalable())
return false;
// Ignore a leading sequence of adjacent unit dimensions in the vector.
ArrayRef<int64_t> vectorShape =
vectorType.getShape().drop_while([](auto v) { return v == 1; });
auto vecRank = vectorShape.size();
if (!memrefType.areTrailingDimsContiguous(vecRank))
return false;
// Extract the trailing dims of the input memref
auto memrefShape = memrefType.getShape().take_back(vecRank);
// Compare the dims of `vectorType` against `memrefType`.
// All of the dimensions, except the first must match.
return llvm::equal(vectorShape.drop_front(), memrefShape.drop_front());
}
std::optional<StaticTileOffsetRange>
vector::createUnrollIterator(VectorType vType, int64_t targetRank) {
if (vType.getRank() <= targetRank)
return {};
// Attempt to unroll until targetRank or the first scalable dimension (which
// cannot be unrolled).
auto shapeToUnroll = vType.getShape().drop_back(targetRank);
auto inputScalableVecDimsToUnroll =
vType.getScalableDims().drop_back(targetRank);
const auto *it = llvm::find(inputScalableVecDimsToUnroll, true);
auto firstScalableDim = it - inputScalableVecDimsToUnroll.begin();
if (firstScalableDim == 0)
return {};
// All scalable dimensions should be removed now.
inputScalableVecDimsToUnroll =
inputScalableVecDimsToUnroll.slice(0, firstScalableDim);
assert(!llvm::is_contained(inputScalableVecDimsToUnroll, true) &&
"unexpected leading scalable dimension");
// Create an unroll iterator for leading dimensions.
shapeToUnroll = shapeToUnroll.slice(0, firstScalableDim);
return StaticTileOffsetRange(shapeToUnroll, /*unrollStep=*/1);
}
SmallVector<OpFoldResult> vector::getMixedSizesXfer(bool hasTensorSemantics,
Operation *xfer,
RewriterBase &rewriter) {
auto loc = xfer->getLoc();
Value base = TypeSwitch<Operation *, Value>(xfer)
.Case<vector::TransferReadOp>(
[&](auto readOp) { return readOp.getBase(); })
.Case<vector::TransferWriteOp>(
[&](auto writeOp) { return writeOp.getOperand(1); });
SmallVector<OpFoldResult> mixedSourceDims =
hasTensorSemantics ? tensor::getMixedSizes(rewriter, loc, base)
: memref::getMixedSizes(rewriter, loc, base);
return mixedSourceDims;
}
bool vector::isLinearizableVector(VectorType type) {
return (type.getRank() > 1) && (type.getNumScalableDims() <= 1);
}
Value vector::createReadOrMaskedRead(OpBuilder &builder, Location loc,
Value source,
ArrayRef<int64_t> inputVectorSizes,
std::optional<Value> padValue,
bool useInBoundsInsteadOfMasking,
ArrayRef<bool> inputScalableVecDims) {
assert(!llvm::is_contained(inputVectorSizes, ShapedType::kDynamic) &&
"invalid input vector sizes");
auto sourceShapedType = cast<ShapedType>(source.getType());
auto sourceShape = sourceShapedType.getShape();
assert(sourceShape.size() == inputVectorSizes.size() &&
"expected same ranks.");
auto vectorType =
VectorType::get(inputVectorSizes, sourceShapedType.getElementType(),
inputScalableVecDims);
assert((!padValue.has_value() ||
padValue.value().getType() == sourceShapedType.getElementType()) &&
"expected same pad element type to match source element type");
int64_t readRank = inputVectorSizes.size();
auto zero = arith::ConstantIndexOp::create(builder, loc, 0);
SmallVector<bool> inBoundsVal(readRank, true);
if (useInBoundsInsteadOfMasking) {
// Update the inBounds attribute.
// FIXME: This computation is too weak - it ignores the read indices.
for (unsigned i = 0; i < readRank; i++)
inBoundsVal[i] = (sourceShape[i] == inputVectorSizes[i]) &&
ShapedType::isStatic(sourceShape[i]);
}
auto transferReadOp = vector::TransferReadOp::create(
builder, loc,
/*vectorType=*/vectorType,
/*source=*/source,
/*indices=*/SmallVector<Value>(readRank, zero),
/*padding=*/padValue,
/*inBounds=*/inBoundsVal);
if (llvm::equal(inputVectorSizes, sourceShape) || useInBoundsInsteadOfMasking)
return transferReadOp;
SmallVector<OpFoldResult> mixedSourceDims =
isa<MemRefType>(source.getType())
? memref::getMixedSizes(builder, loc, source)
: tensor::getMixedSizes(builder, loc, source);
auto maskType = VectorType::get(inputVectorSizes, builder.getI1Type(),
inputScalableVecDims);
Value mask =
vector::CreateMaskOp::create(builder, loc, maskType, mixedSourceDims);
return mlir::vector::maskOperation(builder, transferReadOp, mask)
->getResult(0);
}
LogicalResult
vector::isValidMaskedInputVector(ArrayRef<int64_t> shape,
ArrayRef<int64_t> inputVectorSizes) {
LDBG() << "Iteration space static sizes:" << llvm::interleaved(shape);
if (inputVectorSizes.size() != shape.size()) {
LDBG() << "Input vector sizes don't match the number of loops";
return failure();
}
if (ShapedType::isDynamicShape(inputVectorSizes)) {
LDBG() << "Input vector sizes can't have dynamic dimensions";
return failure();
}
if (!llvm::all_of(llvm::zip(shape, inputVectorSizes),
[](std::tuple<int64_t, int64_t> sizePair) {
int64_t staticSize = std::get<0>(sizePair);
int64_t inputSize = std::get<1>(sizePair);
return ShapedType::isDynamic(staticSize) ||
staticSize <= inputSize;
})) {
LDBG() << "Input vector sizes must be greater than or equal to iteration "
"space static sizes";
return failure();
}
return success();
}
/// Takes a 2+ dimensional vector as an input
/// returns n vector values produced by n vector.extract operations.
/// I.e. calling unrollVectorValue([[%v]], rewriter) such that
///
/// %v : vector<nxaxb...>
///
/// will produce the following IR changes
///
/// %v0 = vector.extract %v[0] : vector<axbx...> from vector<nxaxb...>
/// %v1 = vector.extract %v[1] : vector<axbx...> from vector<nxaxb...>
/// ...
/// %vnminusone = vector.extract %v[n-1] : vector<axbx...> from ...
///
/// and returns SmallVector<Value> r = {[[%v0]], [[%v1]], ..., [[%vnminusone]]}
FailureOr<SmallVector<Value>>
vector::unrollVectorValue(TypedValue<VectorType> vector,
RewriterBase &rewriter) {
SmallVector<Value> subvectors;
VectorType ty = cast<VectorType>(vector.getType());
Location loc = vector.getLoc();
if (ty.getRank() < 2)
return rewriter.notifyMatchFailure(loc, "already 1-D");
// Unrolling doesn't take vscale into account. Pattern is disabled for
// vectors with leading scalable dim(s).
if (ty.getScalableDims().front())
return rewriter.notifyMatchFailure(loc, "cannot unroll scalable dim");
for (int64_t i = 0, e = ty.getShape().front(); i < e; ++i) {
subvectors.push_back(vector::ExtractOp::create(rewriter, loc, vector, i));
}
return subvectors;
}
LogicalResult vector::unrollVectorOp(Operation *op, PatternRewriter &rewriter,
vector::UnrollVectorOpFn unrollFn) {
assert(op->getNumResults() == 1 && "expected single result");
assert(isa<VectorType>(op->getResult(0).getType()) && "expected vector type");
VectorType resultTy = cast<VectorType>(op->getResult(0).getType());
if (resultTy.getRank() < 2)
return rewriter.notifyMatchFailure(op, "already 1-D");
// Unrolling doesn't take vscale into account. Pattern is disabled for
// vectors with leading scalable dim(s).
if (resultTy.getScalableDims().front())
return rewriter.notifyMatchFailure(op, "cannot unroll scalable dim");
Location loc = op->getLoc();
Value result = ub::PoisonOp::create(rewriter, loc, resultTy);
VectorType subTy = VectorType::Builder(resultTy).dropDim(0);
for (int64_t i = 0, e = resultTy.getShape().front(); i < e; ++i) {
Value subVector = unrollFn(rewriter, loc, subTy, i);
result = vector::InsertOp::create(rewriter, loc, subVector, result, i);
}
rewriter.replaceOp(op, result);
return success();
}
|