1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
|
//===- RankReductionPatterns.cpp - Patterns related to rank reductions ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/LogicalResult.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
/// Fold expand_shape(extract_slice) ops that cancel itself out.
struct FoldExpandOfRankReducingExtract
: public OpRewritePattern<ExpandShapeOp> {
using OpRewritePattern<ExpandShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExpandShapeOp expandShapeOp,
PatternRewriter &rewriter) const override {
RankedTensorType resultType = expandShapeOp.getResultType();
auto extractSliceOp =
expandShapeOp.getSrc().getDefiningOp<ExtractSliceOp>();
if (!extractSliceOp)
return failure();
RankedTensorType srcType = extractSliceOp.getSourceType();
// Only cases where the ExpandShapeOp can be folded away entirely are
// supported. Moreover, only simple cases where the resulting ExtractSliceOp
// has no rank-reduction anymore are supported at the moment.
RankedTensorType nonReducingExtractType = ExtractSliceOp::inferResultType(
srcType, extractSliceOp.getStaticOffsets(),
extractSliceOp.getStaticSizes(), extractSliceOp.getStaticStrides());
if (nonReducingExtractType != resultType)
return failure();
SmallVector<OpFoldResult> mixedOffsets = extractSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = extractSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = extractSliceOp.getMixedStrides();
rewriter.replaceOpWithNewOp<tensor::ExtractSliceOp>(
expandShapeOp, extractSliceOp.getSource(), mixedOffsets, mixedSizes,
mixedStrides);
return success();
}
};
/// Fold collapse_shape which only removes static dimensions of size `1`
/// into extract_slice.
struct FoldUnPaddingCollapseIntoExtract
: public OpRewritePattern<tensor::CollapseShapeOp> {
using OpRewritePattern<tensor::CollapseShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::CollapseShapeOp collapseShapeOp,
PatternRewriter &rewriter) const override {
auto extractSliceOp =
collapseShapeOp.getSrc().getDefiningOp<tensor::ExtractSliceOp>();
// Collapse cannot be folded away with multiple users of the extract slice
// and it is not necessarily beneficial to only convert the collapse into
// another extract slice.
if (!extractSliceOp || !extractSliceOp->hasOneUse())
return failure();
// Only fold away simple collapse where all removed dimensions have static
// size `1`.
SliceVerificationResult res = isRankReducedType(
collapseShapeOp.getSrcType(), collapseShapeOp.getResultType());
if (res != SliceVerificationResult::Success)
return rewriter.notifyMatchFailure(collapseShapeOp,
"expected unpadding collapse");
Value unPaddedExtractSlice = tensor::ExtractSliceOp::create(
rewriter, extractSliceOp.getLoc(), collapseShapeOp.getResultType(),
extractSliceOp.getSource(), extractSliceOp.getMixedOffsets(),
extractSliceOp.getMixedSizes(), extractSliceOp.getMixedStrides());
rewriter.replaceOp(collapseShapeOp, unPaddedExtractSlice);
return success();
}
};
/// Fold insert_slice(collapse_shape) ops that cancel itself out.
template <typename OpTy>
struct FoldInsertOfRankReducingInsert : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy insertSliceOp,
PatternRewriter &rewriter) const override {
auto collapseShapeOp =
insertSliceOp.getSource().template getDefiningOp<CollapseShapeOp>();
if (!collapseShapeOp)
return failure();
RankedTensorType srcType = collapseShapeOp.getSrcType();
// Only cases where the CollapseShapeOp can be folded away entirely are
// supported. Moreover, only simple cases where the resulting InsertSliceOp
// has no rank-reduction anymore are supported at the moment.
RankedTensorType nonReducingInsertType =
RankedTensorType::get(insertSliceOp.getStaticSizes(),
insertSliceOp.getDestType().getElementType());
if (nonReducingInsertType != srcType)
return failure();
SmallVector<OpFoldResult> mixedOffsets = insertSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = insertSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = insertSliceOp.getMixedStrides();
rewriter.replaceOpWithNewOp<OpTy>(insertSliceOp, collapseShapeOp.getSrc(),
insertSliceOp.getDest(), mixedOffsets,
mixedSizes, mixedStrides);
return success();
}
};
/// Fold expand_shape which only adds static dimensions of size `1`
/// into insert_slice.
template <typename OpTy>
struct FoldPaddingExpandIntoInsert : public OpRewritePattern<OpTy> {
using OpRewritePattern<OpTy>::OpRewritePattern;
LogicalResult matchAndRewrite(OpTy insertSliceOp,
PatternRewriter &rewriter) const override {
auto expandShapeOp = insertSliceOp.getSource()
.template getDefiningOp<tensor::ExpandShapeOp>();
if (!expandShapeOp)
return failure();
// Only fold away simple expansion where all added dimensions have static
// size `1`.
SliceVerificationResult res = isRankReducedType(
expandShapeOp.getResultType(), expandShapeOp.getSrcType());
if (res != SliceVerificationResult::Success)
return rewriter.notifyMatchFailure(insertSliceOp,
"expected rank increasing expansion");
rewriter.modifyOpInPlace(insertSliceOp, [&]() {
insertSliceOp.getSourceMutable().assign(expandShapeOp.getSrc());
});
return success();
}
};
/// Pattern to bubble up a tensor.expand_shape op through a producer
/// tensor.collapse_shape op that has non intersecting reassociations.
struct BubbleUpExpandThroughParallelCollapse
: public OpRewritePattern<tensor::ExpandShapeOp> {
using OpRewritePattern<tensor::ExpandShapeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExpandShapeOp expandOp,
PatternRewriter &rewriter) const override {
auto collapseOp =
expandOp.getSrc().getDefiningOp<tensor::CollapseShapeOp>();
if (!collapseOp)
return failure();
auto expandReInds = expandOp.getReassociationIndices();
auto collapseReInds = collapseOp.getReassociationIndices();
// Special case where the collapsed tensor to expand is a 0-D tensor,
// then the reassociation maps will be empty and not produce valid results.
if (expandReInds.size() == 0) {
return failure();
}
// Reshapes are parallel to each other (by construction the number of
// reassociations specified in the collapse and expand are the same), if at
// any position
// 1. either the reassociation indices are of the same size, or
// 2. either the reassociation in the collapse or the expand is of size 1.
ArrayRef<int64_t> staticSourceSize = collapseOp.getSrcType().getShape();
ArrayRef<int64_t> staticResultSize = expandOp.getStaticOutputShape();
for (auto [expandReassociation, collapseReassociation] :
llvm::zip_equal(expandReInds, collapseReInds)) {
if (collapseReassociation.size() == expandReassociation.size()) {
// Even if the reassociations are the same, the collapse/expand should
// result in the same dimensions. i.e 4x8x2 into 64 should be expanded
// into 4x8x2 again. In presense of dynamic dimensions one can only
// verify "equality" when there is only one dynamic dimension present,
// and all other static dimensions are equal.
ArrayRef<int64_t> collapsedStaticShapes = staticSourceSize.slice(
collapseReassociation.front(), collapseReassociation.size());
int64_t numCollapsedDynamic =
llvm::count_if(collapsedStaticShapes, ShapedType::isDynamic);
ArrayRef<int64_t> expandedStaticShapes = staticResultSize.slice(
expandReassociation.front(), expandReassociation.size());
int64_t numExpandedDynamic =
llvm::count_if(expandedStaticShapes, ShapedType::isDynamic);
if (numCollapsedDynamic > 1 || numExpandedDynamic > 1 ||
collapsedStaticShapes != expandedStaticShapes) {
return failure();
}
continue;
}
// If the reassociations are not same, one or the other needs to be of
// size one.
if (collapseReassociation.size() != 1 && expandReassociation.size() != 1)
return failure();
}
// Compute new reassociation indices and expanded/collaped shapes.
SmallVector<ReassociationIndices> newExpandReInds, newCollapseReInds;
Location loc = expandOp->getLoc();
SmallVector<OpFoldResult> sourceSizes =
tensor::getMixedSizes(rewriter, loc, collapseOp.getSrc());
SmallVector<OpFoldResult> resultSizes = expandOp.getMixedOutputShape();
SmallVector<OpFoldResult> newExpandSizes;
int64_t newExpandIndex = 0, newCollapseIndex = 0, sourceSizeIndex = 0,
resultSizeIndex = 0;
for (size_t idx = 0, idxEnd = collapseReInds.size(); idx < idxEnd; idx++) {
auto &collapseReassociation = collapseReInds[idx];
auto &expandReassociation = expandReInds[idx];
// Case 1. The reassociations are same in the collapse producer
// and expand consumer. In the swapped expand, each of the final
// dimensions are kept as is in the expand and the collapse. So,
// for every element in the `ReassocationIndices` vector add a new
// `ReassociationIndices` vector for the swapped expand and collapse
// (of size 1).
if (collapseReassociation.size() == expandReassociation.size()) {
for (size_t i = 0; i < collapseReassociation.size(); ++i) {
newCollapseReInds.push_back({newCollapseIndex++});
newExpandReInds.push_back({newExpandIndex++});
newExpandSizes.push_back(resultSizes[resultSizeIndex++]);
sourceSizeIndex++;
}
continue;
}
// Case 2. The `ReassociationIndices` in the collapse is of size > 1 (and
// in the expand is of size == 1). In this case, the original dimensions
// are preserved on expansion and collapsed subsequently.
if (collapseReassociation.size() != 1) {
ReassociationIndices newCollapseReassociation;
for (size_t i = 0; i < collapseReassociation.size(); ++i) {
newCollapseReassociation.push_back(newCollapseIndex++);
newExpandReInds.push_back({newExpandIndex++});
newExpandSizes.push_back(sourceSizes[sourceSizeIndex++]);
}
resultSizeIndex++;
newCollapseReInds.push_back(newCollapseReassociation);
continue;
}
// Case 3. The `ReassociationIndices` in the expand is of size > 1 (and
// in the collapse is of size == 1). In this case, the expansion happens
// first and the expanded dimensions are preserved on collapse.
ReassociationIndices newExpandReassociation;
for (size_t i = 0; i < expandReassociation.size(); ++i) {
newExpandReassociation.push_back(newExpandIndex++);
newCollapseReInds.push_back({newCollapseIndex++});
newExpandSizes.push_back(resultSizes[resultSizeIndex++]);
}
newExpandReInds.push_back(newExpandReassociation);
sourceSizeIndex++;
}
// Swap reshape order.
SmallVector<Value> dynamicSizes;
SmallVector<int64_t> staticSizes;
dispatchIndexOpFoldResults(newExpandSizes, dynamicSizes, staticSizes);
auto expandResultType = expandOp.getResultType().clone(staticSizes);
Value newCollapseSrc = collapseOp.getSrc();
// If the number of reassociation indices in the new `expand_shape` op
// matches the number of dimensions of the result, then the expand_shape
// is a no-op.
if (newExpandReInds.size() != newExpandSizes.size()) {
newCollapseSrc = tensor::ExpandShapeOp::create(
rewriter, loc, expandResultType, newCollapseSrc, newExpandReInds,
newExpandSizes);
}
// If the number of reassociation indices in the new `collapse_shape` op
// matches the number of dimensions of the source, then the collapse_shape
// is a no-op.
Value replacement = newCollapseSrc;
if (newCollapseReInds.size() != newExpandSizes.size()) {
replacement = tensor::CollapseShapeOp::create(
rewriter, loc, newCollapseSrc, newCollapseReInds);
}
rewriter.replaceOp(expandOp, replacement);
return success();
}
};
/// Converts `tensor.extract_slice(tensor.expand_shape)` to
/// `tensor.expand_shape(tensor.extract_slice)`.
///
/// For this transformation to be possible, the slice must be fully contiguous
/// within each reassociation group of the expand_shape. A slice is defined as
/// fully contiguous within a reassociation group if after flattening the
/// reassociation group to a single 1D range, then the slice taken out of the
/// group could be defined as a single contiguous subrange within that range.
///
/// Rank reducing slices are not supported.
///
/// Example:
/// The transformation is possible because each reassociation group has a
/// contiguous slice (i.e., [2x4->2x4], [2x8->1x5], [4x2x4->1x1x4]).
/// ```
/// BEFORE:
/// %reshape = tensor.expand_shape %in [[0, 1], [2, 3], [4, 5, 6]]
/// tensor<8x16x32xf32> to tensor<2x4x2x8x4x2x4xf32>
/// %slice = tensor.extract_slice %reshape ...
/// tensor<2x4x2x8x4x2x4xf32> to tensor<2x4x1x5x1x1x4xf32>
///
/// AFTER:
/// %slice = tensor.extract_slice %in ...
/// tensor<8x16x32xf32> to tensor<8x5x4xf32>
/// %reshape = tensor.expand_shape %slice [[0, 1], [2, 3], [4, 5, 6]]
/// tensor<8x5x4xf32> to tensor<2x4x1x5x1x1x4xf32>
/// ```
///
/// Note - this pattern could be extended to be a swap pattern between
/// `tensor.expand_shape` and `tensor.extract_slice`, but is currently
/// implemented only as a bubble up pattern for `tensor.extract_slice`.
struct BubbleUpExtractSliceThroughExpandShape
: public OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
auto expandShapeOp =
sliceOp.getSource().getDefiningOp<tensor::ExpandShapeOp>();
if (!expandShapeOp) {
return rewriter.notifyMatchFailure(
sliceOp, "tensor.extract_slice source not produced by expand_shape");
}
SmallVector<ReassociationIndices> reassociation =
expandShapeOp.getReassociationIndices();
SmallVector<OpFoldResult> offsets, sizes, strides;
if (failed(getCollapsedExtractSliceInfo(rewriter, sliceOp, reassociation,
offsets, sizes, strides)))
return failure();
// The shape of the result can be obtained from the sizes passed in.
SmallVector<OpFoldResult> expandedSizes = sliceOp.getMixedSizes();
RankedTensorType resultType = sliceOp.getResultType();
// Create a new ExtractSliceOp and ExpandShapeOp.
Location loc = sliceOp.getLoc();
Value newSliceOp = tensor::ExtractSliceOp::create(
rewriter, loc, expandShapeOp.getSrc(), offsets, sizes, strides);
rewriter.replaceOpWithNewOp<tensor::ExpandShapeOp>(
sliceOp, resultType, newSliceOp,
expandShapeOp.getReassociationIndices(), expandedSizes);
return success();
}
};
/// Converts `tensor.extract_slice(tensor.collapse_shape)` to
/// `tensor.collapse_shape(tensor.extract_slice)`.
///
/// For this transformation to be possible - after bubbling up, the extraction
/// of the contiguous slice must be representable as a single slice obtained via
/// tensor.extract_slice within each reassociation group of the src.
///
/// In case the size and offset extracted are static then this is possible if
/// the following conditions are met within each reassociation group:
/// Let T be a tensor of shape [A0, A1, ..., An] (these are the sizes of the
/// dimensions in the reassociation group), and let S = [S0, S1, ..., Sn] be the
/// shape of a desired slice. A slice of shape S can be extracted as a
/// contiguous span of elements if and only if there exists an index k in {0, 1,
/// ..., n} such that:
/// S_i = 1 for all i < k (that is, all leading dimensions are singleton),
/// 1 <= S_k <= A_k (that is, non trivial slicing occurs along exactly
/// one dimension),
/// S_i = A_i for all i > k (that is, all trailing dimensions are preserved
/// in full).
/// In other words, the slice shape S must be of the form:
/// [ 1, 1, ..., 1, Sk, Ak + 1, Ak + 2, ...,An ]
///
/// In case the size and/or offset extracted are dynamic then this is possible
/// only if there is single dimension in the reassociation group that has a size
/// not equal to 1.
/// In other words, the tensor shape must be of the form:
/// [ 1, 1, ..., 1, A, 1, ...,1 ]
/// Note - it might be possible to enable this pattern for more cases when the
/// size/offset are dynamic via performing an analysis of the possible values
/// that could be given to the size/offset.
///
/// Example:
/// The transformation is possible because each reassociation group can be
/// represented as a contiguous slice (i.e., [8x16->2x16], [1x7->1x?],
/// [20->10]).
/// ```
/// BEFORE:
/// %collapse = tensor.collapse_shape %src [[0, 1], [2, 3], [4]] ...
/// tensor<8x16x1x7x20f32> to tensor<128x7x20xf32>
/// %slice = tensor.extract_slice %slice [0, 0, 0][32, %size, 10][1, 1, 1]
/// tensor<128x7x20xf32> to tensor<32x?x10xf32>
///
/// AFTER:
/// %slice = tensor.extract_slice %src [0, 0, 0, 0, 0][2, 16, 1, %size, 10]
// [1, 1, 1, 1, 1] : tensor<8x16x1x7x20f32> to tensor<2x16x1x?x10xf32>
/// %collapse = tensor.collapse_shape %slice [[0, 1], [2, 3], [4]] ...
/// tensor<2x16x1x?x10xf32> to tensor<32x?x10xf32>
/// ```
///
/// Negative example:
/// The transformation is not possible because we cannot use a single slice to
/// represent the reassociation group [2x3x10->???]. If we would want the
/// collapse to be after the extraction, we would need to extract multiple
/// slices and concat them together.
/// ```
/// %collapse = tensor.collapse_shape %src [[0, 1, 2]] : tensor<2x3x10xf32> into
/// tensor<60xf32> %extract = tensor.extract_slice %collapse[0][15][1] :
/// tensor<60xf32> to tensor<15xf32>
/// ```
/// If we would want the collapse to be after the extraction, a possible
/// alternate transformation could be to extract multiple slices and concat them
/// together:
/// ```
/// %extract_1 = tensor.extract_slice %src[0, 0, 0][1, 1, 10] :
/// tensor<2x3x10xf32> to tensor <1x1x10xf32>
/// %extract_2 = tensor.extract_slice %src[0, 1, 0][1, 1, 5] :
/// tensor<2x3x10xf32> to tensor <1x1x5xf32>
/// %concat = tosa.concat %extract_1, %extract_2 {axis = 0 : i32} :
/// (<1x1x10xf32>, <1x1x5xf32>) -> <1x1x15xf32>
/// %collapse = tensor.collapse_shape %concat [[0, 1, 2]] : tensor<1x1x15xf32>
/// to tensor<15xf32>
/// ```
/// But this is not the intended purpose of the transformation.
struct BubbleUpExtractSliceThroughCollapseShape
: public OpRewritePattern<tensor::ExtractSliceOp> {
using OpRewritePattern<tensor::ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
auto collapseShapeOp =
sliceOp.getSource().getDefiningOp<tensor::CollapseShapeOp>();
if (!collapseShapeOp) {
return rewriter.notifyMatchFailure(
sliceOp,
"tensor.extract_slice source not produced by tensor.collapse_shape");
}
SmallVector<OpFoldResult> offsets, sizes, strides;
if (failed(getExpandedExtractSliceInfo(
rewriter, sliceOp, collapseShapeOp.getReassociationIndices(),
collapseShapeOp.getSrcType().getShape(), offsets, sizes, strides)))
return failure();
Value newSliceOp = tensor::ExtractSliceOp::create(
rewriter, collapseShapeOp->getLoc(), collapseShapeOp.getSrc(), offsets,
sizes, strides);
rewriter.replaceOpWithNewOp<tensor::CollapseShapeOp>(
sliceOp, sliceOp.getResultType(), newSliceOp,
collapseShapeOp.getReassociationIndices());
return success();
}
};
} // namespace
LogicalResult mlir::tensor::getCollapsedExtractSliceInfo(
OpBuilder &b, tensor::ExtractSliceOp sliceOp,
ArrayRef<ReassociationIndices> reassociation,
SmallVectorImpl<OpFoldResult> &collapsedOffsets,
SmallVectorImpl<OpFoldResult> &collapsedSizes,
SmallVectorImpl<OpFoldResult> &collapsedStrides) {
if (!sliceOp.hasUnitStride()) {
return failure();
}
SmallVector<OpFoldResult> offsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = sliceOp.getMixedSizes();
if (static_cast<size_t>(sliceOp.getResultType().getRank()) != sizes.size()) {
return failure();
}
auto isZeroOffsetAndFullSize = [&](OpFoldResult offset,
OpFoldResult sliceSize, int64_t inputDim) {
if (!isZeroInteger(offset))
return false;
ValueBoundsConstraintSet::Variable inputSize(sliceOp.getSource(), inputDim);
FailureOr<bool> maybeEqual =
ValueBoundsConstraintSet::areEqual(sliceSize, inputSize);
return llvm::succeeded(maybeEqual) && maybeEqual.value();
};
// Check that the slice is contiguous within each reassociation group.
// The slice is contiguous only if after the first dimension where a non
// unit slice is taken, the slice size on all subsequent dimensions of the
// group is equal to the entire size of the dimension.
// Examples of contiguous slices:
// full sizes: [8, 8, 10] slice offsets: [0, 0, 0] slice sizes: [1, 1, 10]
// full sizes: [5, 10] slice offsets: [3, 0] slice sizes: [2, 10]
// Examples of non contiguous slices:
// full sizes: [8, 8, 10] slice offsets: [0, 0, 0] slice sizes: [1, 2, 5]
// full sizes: [5, 10] slice offsets: [0, 4] slice sizes: [2, 5]
for (const ReassociationIndices &indices : reassociation) {
int64_t i = 0;
int64_t e = indices.size();
// Find the first expanded dim after the first dim with non-unit extracted
// size.
for (; i < e; ++i) {
if (!isOneInteger(sizes[indices[i]])) {
// +1 to skip the first non-unit size dim.
i++;
break;
}
}
// Verify that all subsequent dimensions extract the full size of the
// source tensor.
for (; i < e; ++i) {
int64_t expandedDim = indices[i];
if (!isZeroOffsetAndFullSize(offsets[expandedDim], sizes[expandedDim],
expandedDim)) {
return failure();
}
}
}
// The tensor.extract_slice before applying the pattern works on the result
// of the tensor.expand_shape, so variables (i.e. inputs for ExtractSliceOp)
// referring to the state before applying the pattern are named with the
// prefix "expanded", and ones referring to the state after applying the
// pattern are named with the prefix "collapsed".
Location loc = sliceOp.getLoc();
SmallVector<OpFoldResult> expandedOffsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> expandedSizes = sliceOp.getMixedSizes();
SmallVector<OpFoldResult> expandedShape =
getMixedSizes(b, loc, sliceOp.getSource());
// Helper variables and function for accumulating the size values.
AffineExpr d0, d1, d2;
bindDims(b.getContext(), d0, d1, d2);
// Multiply two integers.
auto mul = [&](OpFoldResult v1, OpFoldResult v2) {
auto mulMap = AffineMap::get(2, 0, {d0 * d1});
return affine::makeComposedFoldedAffineApply(b, loc, mulMap, {v1, v2});
};
// Compute new offsets, sizes, and strides for tensor.extract_slice.
// The new tensor.extract_slice will work on a tensor that has has a rank of
// ReassociationIndices.size(). In the loop a single offset, size, and
// stride value is computed per reassociation group.
for (const ReassociationIndices &indices : reassociation) {
// collapsedSize will hold the size of the single dim that represents the
// reassociation group in the non expanded tensor.
OpFoldResult collapsedSize = b.getIndexAttr(1);
// The reassocGroupSizes and reassocGroupOffsets are used to create an
// affine.linearize_index op to linearize the single offset value required
// for this reassociation group.
SmallVector<OpFoldResult> reassocGroupSizes, reassocGroupOffsets;
for (long expandedDim : indices) {
// reassocGroupSizes and reassocGroupOffsets can be obtained directly
// from the expanded state, but the collapsed size requires calculation
// as it did not previously exist.
reassocGroupSizes.push_back(expandedShape[expandedDim]);
reassocGroupOffsets.push_back(expandedOffsets[expandedDim]);
collapsedSize = mul(collapsedSize, expandedSizes[expandedDim]);
}
SmallVector<Value> offsetVals =
llvm::map_to_vector(reassocGroupOffsets, [&](OpFoldResult ofr) {
return getValueOrCreateConstantIndexOp(b, loc, ofr);
});
OpFoldResult collapsedOffset = affine::AffineLinearizeIndexOp::create(
b, loc, offsetVals, reassocGroupSizes,
/*disjoint=*/true)
.getResult();
collapsedOffsets.push_back(collapsedOffset);
collapsedSizes.push_back(collapsedSize);
// Only unit stride is supported.
collapsedStrides.push_back(b.getIndexAttr(1));
}
return success();
}
LogicalResult mlir::tensor::getExpandedExtractSliceInfo(
OpBuilder &b, tensor::ExtractSliceOp sliceOp,
ArrayRef<ReassociationIndices> reassociation,
ArrayRef<int64_t> expandedShape,
SmallVectorImpl<OpFoldResult> &expandedOffsets,
SmallVectorImpl<OpFoldResult> &expandedSizes,
SmallVectorImpl<OpFoldResult> &expandedStrides) {
if (!sliceOp.hasUnitStride()) {
return failure();
}
// The tensor.extract_slice before applying the pattern works on the result
// of the tensor.collapse_shape, so variables (i.e. inputs for
// ExtractSliceOp) referring to the state before applying the pattern are
// named with the prefix "collapsed", and ones referring to the state after
// applying the pattern are named with the prefix "expanded".
SmallVector<OpFoldResult> collapsedOffsets = sliceOp.getMixedOffsets();
SmallVector<OpFoldResult> collapsedSizes = sliceOp.getMixedSizes();
if (static_cast<size_t>(sliceOp.getResultType().getRank()) !=
collapsedSizes.size()) {
return failure();
}
// Compute new offsets, sizes, and strides for tensor.extract_slice.
// The new tensor.extract_slice will work on a tensor that has has a rank
// equal to the rank of the src of the collapse_shape. In each iteration of
// the loop, the offsets and sizes will be computed per reassociation group.
expandedStrides.resize(expandedShape.size(), b.getIndexAttr(1));
for (auto [collapsedSize, collapsedOffset, reassocIndices] :
llvm::zip_equal(collapsedSizes, collapsedOffsets, reassociation)) {
// CASE #1 - size and/or offset are dynamic.
// In this case, the slice can be represented as a contiguous slice only
// if there is a single dimension in the reassociation group that has a
// size not equal to 1.
if (isa<Value>(collapsedSize) || isa<Value>(collapsedOffset)) {
int nonUnitSizeCount = 0;
for (int64_t expandedShapeIdx : reassocIndices) {
if (expandedShape[expandedShapeIdx] != 1) {
nonUnitSizeCount++;
expandedSizes.push_back(collapsedSize);
expandedOffsets.push_back(collapsedOffset);
continue;
}
expandedSizes.push_back(b.getIndexAttr(1));
expandedOffsets.push_back(b.getIndexAttr(0));
}
if (nonUnitSizeCount != 1) {
return failure();
}
continue;
}
// CASE #2 = size and offset are static.
// Verify that the slice can be represented as a contiguous slice of the
// src of the collapse_shape.
// Checking this is done on order of most internal dimensions first,
// so traversal is done in reverse order of the reassociation group.
// If the expected slice shape is [1, 1, ..., 1, Sk, Ak + 1, Ak + 2,
// ...,An] then we first find the size and offset for n...k+1 then for k
// and then for k-1...0.
// currentCollapsedsize and currentCollapsedOffset are initialized with
// the original collapsed size and offset and divided by the expanded
// shape size in each dimension as we go along the reassociation group.
// In essence we are spreading the original collapsed size and offset over
// the various expanded slice dimensions.
// The variables are used both to check the validity of the slice and to
// compute the expanded sizes and offsets.
int64_t currentCollapsedsize = getConstantIntValue(collapsedSize).value();
int64_t currentCollapsedOffset =
getConstantIntValue(collapsedOffset).value();
SmallVector<OpFoldResult> groupExpandedSizes, groupExpandedOffsets;
ReassociationIndices reversedReassocIndices(reassocIndices.rbegin(),
reassocIndices.rend());
int64_t idx = 0;
int64_t reassocGroupSize = reassocIndices.size();
// First handle the trailing dimensions where the slice size should be
// equal to the tensor shape and the offset should be 0 (n...k+1).
for (; idx < reassocGroupSize; ++idx) {
int64_t expandedShapeSize = expandedShape[reversedReassocIndices[idx]];
if (currentCollapsedsize < expandedShapeSize)
break;
// We need to make sure that the slice size can be set to the shape size
// and the offset to 0.
if ((currentCollapsedsize % expandedShapeSize) != 0 ||
(currentCollapsedOffset % expandedShapeSize) != 0) {
return failure();
}
groupExpandedSizes.push_back(b.getIndexAttr(expandedShapeSize));
groupExpandedOffsets.push_back(b.getIndexAttr(0));
currentCollapsedsize /= expandedShapeSize;
currentCollapsedOffset /= expandedShapeSize;
}
// Now handle the first dim where slicing occurs on (k).
if (idx < reassocGroupSize) {
int64_t expandedShapeSize = expandedShape[reversedReassocIndices[idx]];
int64_t offsetInDim = currentCollapsedOffset % expandedShapeSize;
// We need to make sure that the slice size in this dim + offset will
// not exceed the shape size.
if ((currentCollapsedsize + offsetInDim) >= expandedShapeSize) {
return failure();
}
groupExpandedSizes.push_back(b.getIndexAttr(currentCollapsedsize));
groupExpandedOffsets.push_back(b.getIndexAttr(offsetInDim));
currentCollapsedOffset /= expandedShapeSize;
}
// Now handle the leading dimensions where the slice size is equal to 1
// (k-1...0).
// The size for these dimensions must be 1 because of how we constructed
// the slice size of the expanded shape. We spread the original collapsed
// size over the expanded shape sizes until we reached dimension k where
// the remaining size was smaller than the expanded shape size, and spread
// the remaining size on it. So, now we are left with only 1s.
for (idx++; idx < reassocGroupSize; ++idx) {
int64_t expandedShapeSize = expandedShape[reversedReassocIndices[idx]];
int64_t offsetInDim = currentCollapsedOffset % expandedShapeSize;
groupExpandedSizes.push_back(b.getIndexAttr(1));
groupExpandedOffsets.push_back(b.getIndexAttr(offsetInDim));
currentCollapsedOffset /= expandedShapeSize;
}
expandedSizes.append(groupExpandedSizes.rbegin(),
groupExpandedSizes.rend());
expandedOffsets.append(groupExpandedOffsets.rbegin(),
groupExpandedOffsets.rend());
}
return success();
}
void mlir::tensor::populateReassociativeReshapeFoldingPatterns(
RewritePatternSet &patterns) {
patterns
.add<FoldExpandOfRankReducingExtract, FoldUnPaddingCollapseIntoExtract,
FoldInsertOfRankReducingInsert<tensor::InsertSliceOp>,
FoldInsertOfRankReducingInsert<tensor::ParallelInsertSliceOp>,
FoldPaddingExpandIntoInsert<tensor::InsertSliceOp>,
FoldPaddingExpandIntoInsert<tensor::ParallelInsertSliceOp>>(
patterns.getContext());
}
void mlir::tensor::populateBubbleUpExpandShapePatterns(
RewritePatternSet &patterns) {
patterns.add<BubbleUpExpandThroughParallelCollapse>(patterns.getContext());
}
void mlir::tensor::populateBubbleUpExtractSliceOpPatterns(
RewritePatternSet &patterns) {
patterns.add<BubbleUpExtractSliceThroughExpandShape,
BubbleUpExtractSliceThroughCollapseShape>(patterns.getContext());
}
|