1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
|
//===- EmptyOpPatterns.cpp - Patterns related to tensor.empty folding ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Transforms/Transforms.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::tensor;
namespace {
template <typename ReshapeOp>
struct FoldEmptyTensorWithReshapeOp : public OpRewritePattern<ReshapeOp> {
FoldEmptyTensorWithReshapeOp(MLIRContext *ctx, PatternBenefit benefit = 1,
bool foldSingleUseOnly = false)
: OpRewritePattern<ReshapeOp>(ctx, benefit),
foldSingleUseOnly(foldSingleUseOnly) {}
LogicalResult matchAndRewrite(ReshapeOp reshapeOp,
PatternRewriter &rewriter) const override {
// Check for tensor.empty source.
auto emptyOp = reshapeOp.getSrc().template getDefiningOp<EmptyOp>();
if (!emptyOp)
return failure();
// Check for single use.
if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
return failure();
// Reify result shape.
Location loc = reshapeOp.getLoc();
ReifiedRankedShapedTypeDims resultShapes;
if (failed(reifyResultShapes(rewriter, reshapeOp, resultShapes)) ||
!llvm::hasSingleElement(resultShapes))
return failure();
// Create new tensor.empty op.
// TODO: Do not drop tensor type encoding.
Value emptyTensor =
EmptyOp::create(rewriter, loc, resultShapes[0],
reshapeOp.getResultType().getElementType());
if (emptyTensor.getType() != reshapeOp.getResultType()) {
rewriter.replaceOpWithNewOp<tensor::CastOp>(
reshapeOp, reshapeOp.getResultType(), emptyTensor);
} else {
rewriter.replaceOp(reshapeOp, emptyTensor);
}
return success();
}
private:
bool foldSingleUseOnly = false;
};
/// tensor.empty does not define any tensor contents, so a slice of a
/// tensor.empty can be folded to a smaller tensor.empty.
struct FoldEmptyTensorWithExtractSliceOp
: public OpRewritePattern<ExtractSliceOp> {
FoldEmptyTensorWithExtractSliceOp(MLIRContext *ctx,
PatternBenefit benefit = 1,
bool foldSingleUseOnly = false)
: OpRewritePattern<ExtractSliceOp>(ctx, benefit),
foldSingleUseOnly(foldSingleUseOnly) {}
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
// Check for tensor.empty source.
auto emptyOp = sliceOp.getSource().template getDefiningOp<EmptyOp>();
if (!emptyOp)
return failure();
// Check for single use.
if (foldSingleUseOnly && !llvm::hasSingleElement(emptyOp->getUses()))
return failure();
// Create new tensor.empty op. tensor.extract_slice may be rank-reducing;
// its dynamic sizes must be preserved as well as its result type.
auto tensorType = RankedTensorType::get(sliceOp.getType().getShape(),
sliceOp.getType().getElementType(),
sliceOp.getType().getEncoding());
rewriter.replaceOpWithNewOp<EmptyOp>(sliceOp, tensorType,
sliceOp.getSizes());
return success();
}
private:
bool foldSingleUseOnly = false;
};
// Fold concat operation where all the operands are empty.
struct FoldConcatsOfEmpty : public OpRewritePattern<ConcatOp> {
using OpRewritePattern<ConcatOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ConcatOp concatOp,
PatternRewriter &rewriter) const override {
auto concatOperands = concatOp.getInputs();
if (concatOperands.empty()) {
return failure();
}
auto firstEmptyOp = concatOperands.front().getDefiningOp<tensor::EmptyOp>();
if (!firstEmptyOp) {
return failure();
}
auto isDefinedByEmptyOp = [](Value v) -> bool {
return v.getDefiningOp<tensor::EmptyOp>();
};
if (!llvm::all_of(concatOperands.drop_front(), isDefinedByEmptyOp)) {
return rewriter.notifyMatchFailure(
concatOp, "not all operands are defined by an empty op");
}
SmallVector<SmallVector<OpFoldResult>> resultShape;
if (failed(concatOp.reifyResultShapes(rewriter, resultShape))) {
return rewriter.notifyMatchFailure(concatOp,
"failed to get result shape");
}
rewriter.replaceOpWithNewOp<tensor::EmptyOp>(
concatOp, resultShape[0], concatOp.getResultType().getElementType());
return success();
}
};
} // namespace
void mlir::tensor::populateFoldTensorEmptyPatterns(RewritePatternSet &patterns,
bool foldSingleUseOnly) {
patterns.add<FoldEmptyTensorWithExtractSliceOp,
FoldEmptyTensorWithReshapeOp<tensor::ExpandShapeOp>,
FoldEmptyTensorWithReshapeOp<tensor::CollapseShapeOp>>(
patterns.getContext(), /*benefit=*/1, foldSingleUseOnly);
patterns.add<FoldConcatsOfEmpty>(patterns.getContext(),
/*benefit=*/1);
}
|