1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
//===- UpliftWhileToFor.cpp - scf.while to scf.for loop uplifting ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Transforms SCF.WhileOp's into SCF.ForOp's.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
namespace {
struct UpliftWhileOp : public OpRewritePattern<scf::WhileOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(scf::WhileOp loop,
PatternRewriter &rewriter) const override {
return upliftWhileToForLoop(rewriter, loop);
}
};
} // namespace
FailureOr<scf::ForOp> mlir::scf::upliftWhileToForLoop(RewriterBase &rewriter,
scf::WhileOp loop) {
Block *beforeBody = loop.getBeforeBody();
if (!llvm::hasSingleElement(beforeBody->without_terminator()))
return rewriter.notifyMatchFailure(loop, "Loop body must have single op");
auto cmp = dyn_cast<arith::CmpIOp>(beforeBody->front());
if (!cmp)
return rewriter.notifyMatchFailure(loop,
"Loop body must have single cmp op");
scf::ConditionOp beforeTerm = loop.getConditionOp();
if (!cmp->hasOneUse() || beforeTerm.getCondition() != cmp.getResult())
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Expected single condition use: " << *cmp;
});
// If all 'before' arguments are forwarded but the order is different from
// 'after' arguments, here is the mapping from the 'after' argument index to
// the 'before' argument index.
std::optional<SmallVector<unsigned>> argReorder;
// All `before` block args must be directly forwarded to ConditionOp.
// They will be converted to `scf.for` `iter_vars` except induction var.
if (ValueRange(beforeBody->getArguments()) != beforeTerm.getArgs()) {
auto getArgReordering =
[](Block *beforeBody,
scf::ConditionOp cond) -> std::optional<SmallVector<unsigned>> {
// Skip further checking if their sizes mismatch.
if (beforeBody->getNumArguments() != cond.getArgs().size())
return std::nullopt;
// Bitset on which 'before' argument is forwarded.
llvm::SmallBitVector forwarded(beforeBody->getNumArguments(), false);
// The forwarding order of 'before' arguments.
SmallVector<unsigned> order;
for (Value a : cond.getArgs()) {
BlockArgument arg = dyn_cast<BlockArgument>(a);
// Skip if 'arg' is not a 'before' argument.
if (!arg || arg.getOwner() != beforeBody)
return std::nullopt;
unsigned idx = arg.getArgNumber();
// Skip if 'arg' is already forwarded in another place.
if (forwarded[idx])
return std::nullopt;
// Record the presence of 'arg' and its order.
forwarded[idx] = true;
order.push_back(idx);
}
// Skip if not all 'before' arguments are forwarded.
if (!forwarded.all())
return std::nullopt;
return order;
};
// Check if 'before' arguments are all forwarded but just reordered.
argReorder = getArgReordering(beforeBody, beforeTerm);
if (!argReorder)
return rewriter.notifyMatchFailure(loop, "Invalid args order");
}
using Pred = arith::CmpIPredicate;
Pred predicate = cmp.getPredicate();
if (predicate != Pred::slt && predicate != Pred::sgt)
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Expected 'slt' or 'sgt' predicate: " << *cmp;
});
BlockArgument inductionVar;
Value ub;
DominanceInfo dom;
// Check if cmp has a suitable form. One of the arguments must be a `before`
// block arg, other must be defined outside `scf.while` and will be treated
// as upper bound.
for (bool reverse : {false, true}) {
auto expectedPred = reverse ? Pred::sgt : Pred::slt;
if (cmp.getPredicate() != expectedPred)
continue;
auto arg1 = reverse ? cmp.getRhs() : cmp.getLhs();
auto arg2 = reverse ? cmp.getLhs() : cmp.getRhs();
auto blockArg = dyn_cast<BlockArgument>(arg1);
if (!blockArg || blockArg.getOwner() != beforeBody)
continue;
if (!dom.properlyDominates(arg2, loop))
continue;
inductionVar = blockArg;
ub = arg2;
break;
}
if (!inductionVar)
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Unrecognized cmp form: " << *cmp;
});
// inductionVar must have 2 uses: one is in `cmp` and other is `condition`
// arg.
if (!llvm::hasNItems(inductionVar.getUses(), 2))
return rewriter.notifyMatchFailure(loop, [&](Diagnostic &diag) {
diag << "Unrecognized induction var: " << inductionVar;
});
Block *afterBody = loop.getAfterBody();
scf::YieldOp afterTerm = loop.getYieldOp();
unsigned argNumber = inductionVar.getArgNumber();
Value afterTermIndArg = afterTerm.getResults()[argNumber];
auto findAfterArgNo = [](ArrayRef<unsigned> indices, unsigned beforeArgNo) {
return std::distance(indices.begin(),
llvm::find_if(indices, [beforeArgNo](unsigned n) {
return n == beforeArgNo;
}));
};
Value inductionVarAfter = afterBody->getArgument(
argReorder ? findAfterArgNo(*argReorder, argNumber) : argNumber);
// Find suitable `addi` op inside `after` block, one of the args must be an
// Induction var passed from `before` block and second arg must be defined
// outside of the loop and will be considered step value.
// TODO: Add `subi` support?
auto addOp = afterTermIndArg.getDefiningOp<arith::AddIOp>();
if (!addOp)
return rewriter.notifyMatchFailure(loop, "Didn't found suitable 'addi' op");
Value step;
if (addOp.getLhs() == inductionVarAfter) {
step = addOp.getRhs();
} else if (addOp.getRhs() == inductionVarAfter) {
step = addOp.getLhs();
}
if (!step || !dom.properlyDominates(step, loop))
return rewriter.notifyMatchFailure(loop, "Invalid 'addi' form");
Value lb = loop.getInits()[argNumber];
assert(lb.getType().isIntOrIndex());
assert(lb.getType() == ub.getType());
assert(lb.getType() == step.getType());
SmallVector<Value> newArgs;
// Populate inits for new `scf.for`, skip induction var.
newArgs.reserve(loop.getInits().size());
for (auto &&[i, init] : llvm::enumerate(loop.getInits())) {
if (i == argNumber)
continue;
newArgs.emplace_back(init);
}
Location loc = loop.getLoc();
// With `builder == nullptr`, ForOp::build will try to insert terminator at
// the end of newly created block and we don't want it. Provide empty
// dummy builder instead.
auto emptyBuilder = [](OpBuilder &, Location, Value, ValueRange) {};
auto newLoop =
scf::ForOp::create(rewriter, loc, lb, ub, step, newArgs, emptyBuilder);
Block *newBody = newLoop.getBody();
// Populate block args for `scf.for` body, move induction var to the front.
newArgs.clear();
ValueRange newBodyArgs = newBody->getArguments();
for (auto i : llvm::seq<size_t>(0, newBodyArgs.size())) {
if (i < argNumber) {
newArgs.emplace_back(newBodyArgs[i + 1]);
} else if (i == argNumber) {
newArgs.emplace_back(newBodyArgs.front());
} else {
newArgs.emplace_back(newBodyArgs[i]);
}
}
if (argReorder) {
// Reorder arguments following the 'after' argument order from the original
// 'while' loop.
SmallVector<Value> args;
for (unsigned order : *argReorder)
args.push_back(newArgs[order]);
newArgs = args;
}
rewriter.inlineBlockBefore(loop.getAfterBody(), newBody, newBody->end(),
newArgs);
auto term = cast<scf::YieldOp>(newBody->getTerminator());
// Populate new yield args, skipping the induction var.
newArgs.clear();
for (auto &&[i, arg] : llvm::enumerate(term.getResults())) {
if (i == argNumber)
continue;
newArgs.emplace_back(arg);
}
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(term);
rewriter.replaceOpWithNewOp<scf::YieldOp>(term, newArgs);
// Compute induction var value after loop execution.
rewriter.setInsertionPointAfter(newLoop);
Value one;
if (isa<IndexType>(step.getType())) {
one = arith::ConstantIndexOp::create(rewriter, loc, 1);
} else {
one = arith::ConstantIntOp::create(rewriter, loc, step.getType(), 1);
}
Value stepDec = arith::SubIOp::create(rewriter, loc, step, one);
Value len = arith::SubIOp::create(rewriter, loc, ub, lb);
len = arith::AddIOp::create(rewriter, loc, len, stepDec);
len = arith::DivSIOp::create(rewriter, loc, len, step);
len = arith::SubIOp::create(rewriter, loc, len, one);
Value res = arith::MulIOp::create(rewriter, loc, len, step);
res = arith::AddIOp::create(rewriter, loc, lb, res);
// Reconstruct `scf.while` results, inserting final induction var value
// into proper place.
newArgs.clear();
llvm::append_range(newArgs, newLoop.getResults());
newArgs.insert(newArgs.begin() + argNumber, res);
if (argReorder) {
// Reorder arguments following the 'after' argument order from the original
// 'while' loop.
SmallVector<Value> results;
for (unsigned order : *argReorder)
results.push_back(newArgs[order]);
newArgs = results;
}
rewriter.replaceOp(loop, newArgs);
return newLoop;
}
void mlir::scf::populateUpliftWhileToForPatterns(RewritePatternSet &patterns) {
patterns.add<UpliftWhileOp>(patterns.getContext());
}
|