1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
|
//===- Tiling.cpp - Implementation of tiling using TilingInterface -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the tiling using TilingInterface.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/TileUsingInterface.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Analysis/TopologicalSortUtils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/SCF/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Interfaces/DestinationStyleOpInterface.h"
#include "mlir/Interfaces/TilingInterface.h"
#include "mlir/Rewrite/FrozenRewritePatternSet.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "tile-using-interface"
using namespace mlir;
scf::SCFTilingOptions &
scf::SCFTilingOptions::setTileSizes(ArrayRef<OpFoldResult> ts) {
assert(!tileSizeComputationFunction && "tile sizes already set");
auto tileSizes = llvm::to_vector(ts);
tileSizeComputationFunction = [tileSizes](OpBuilder &b, Operation *op) {
return tileSizes;
};
return *this;
}
scf::SCFTilingOptions &
scf::SCFTilingOptions::setNumThreads(ArrayRef<OpFoldResult> nt) {
assert(!numThreadsComputationFunction && "num tiles already set");
auto numThreads = llvm::to_vector(nt);
numThreadsComputationFunction = [numThreads](OpBuilder &b, Operation *op) {
return numThreads;
};
return *this;
}
/// Helper method to adjust the interchange vector to match the iteration
/// domain.
static SmallVector<int64_t>
fillInterchangeVector(ArrayRef<int64_t> interchangeVector,
size_t iterationDomainSize) {
SmallVector<int64_t> filledVector = llvm::to_vector(interchangeVector);
if (filledVector.size() < iterationDomainSize) {
auto range = llvm::seq<int64_t>(filledVector.size(), iterationDomainSize);
filledVector.append(range.begin(), range.end());
}
if (filledVector.size() > iterationDomainSize)
filledVector.resize(iterationDomainSize);
return filledVector;
}
//===----------------------------------------------------------------------===//
// tileUsingSCF implementation.
//===----------------------------------------------------------------------===//
/// Verify the tile size options are set in a consistent manner.
static LogicalResult verifyOptions(RewriterBase &rewriter, Location loc,
const scf::SCFTilingOptions &options) {
// Specifying number of threads is only supported on `scf.forall` op.
if (options.numThreadsComputationFunction &&
options.loopType != scf::SCFTilingOptions::LoopType::ForallOp) {
return rewriter.notifyMatchFailure(
loc, "number of threads can only by specified when loop type is "
"set to use `scf.forall`");
}
// If specified, check that the interchange vector is a permutation.
if (!options.interchangeVector.empty()) {
if (!isPermutationVector(options.interchangeVector)) {
return rewriter.notifyMatchFailure(
loc, "invalid interchange vector, not a permutation of the entire "
"iteration space");
}
}
return success();
}
/// Method to instantiate the tile sizes and/or number of threads specified
/// by the user.
static std::tuple<SmallVector<OpFoldResult>, SmallVector<OpFoldResult>>
getUserTileSizesAndNumThreads(RewriterBase &rewriter, TilingInterface op,
ArrayRef<Range> iterationDomain,
const scf::SCFTilingOptions &options) {
OpFoldResult zero = rewriter.getIndexAttr(0);
SmallVector<OpFoldResult> tileSizes, numThreads;
size_t numLoops = iterationDomain.size();
// Check whether the number of tiles to use is specified.
if (options.numThreadsComputationFunction) {
numThreads = options.numThreadsComputationFunction(rewriter, op);
numThreads.resize(numLoops, zero);
// If the number of tiles is also specified, use that.
if (options.tileSizeComputationFunction) {
tileSizes = options.tileSizeComputationFunction(rewriter, op);
tileSizes.resize(numLoops, zero);
return {tileSizes, numThreads};
}
// Compute the tile sizes from the iteration domain and number
// of tiles as follows
// - niters = ceilDiv(ub - lb, step)
// - tileSize = ceilDiv(niters, numThreads)
AffineExpr s0, s1, s2;
bindSymbols(rewriter.getContext(), s0, s1, s2);
// TODO: The step here is assumed to be 1.
AffineExpr numItersExpr = (s1 - s0);
AffineExpr tileSizeExpr = numItersExpr.ceilDiv(s2);
tileSizes.resize(numLoops, zero);
for (auto [index, range, nt] :
llvm::enumerate(iterationDomain, numThreads)) {
if (isZeroInteger(nt))
continue;
tileSizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), tileSizeExpr, {range.offset, range.size, nt});
}
tileSizes.resize(numLoops, zero);
return {tileSizes, numThreads};
}
// Enforce the convention that "tiling by zero"
// skips tiling a particular dimension. This convention is significantly
// simpler to handle instead of adjusting affine maps to account for missing
// dimensions.
assert(options.tileSizeComputationFunction &&
"expected tile sizes to be specified");
tileSizes = options.tileSizeComputationFunction(rewriter, op);
tileSizes.resize(numLoops, zero);
return {tileSizes, numThreads};
}
/// Checks if any of the tiled loops are not parallel.
static LogicalResult checkTileSizes(TilingInterface op,
scf::SCFTilingOptions::LoopType loopType,
ReductionTilingStrategy reductionStrategy,
ArrayRef<OpFoldResult> givenTileSizes,
ArrayRef<OpFoldResult> numThreads) {
auto iterators = op.getLoopIteratorTypes();
assert(iterators.size() == givenTileSizes.size() &&
"expected as many tile size values as number of loops");
assert((numThreads.empty() || (numThreads.size() == iterators.size())) &&
"when specified, expected number of threads to use for each loop");
bool isParallelTiling = false;
for (auto [index, iterator, givenTileSize] :
llvm::enumerate(iterators, givenTileSizes)) {
if (!isConstantIntValue(givenTileSize, 0)) {
isParallelTiling |= iterator == utils::IteratorType::parallel;
}
if (loopType == scf::SCFTilingOptions::LoopType::ForallOp &&
reductionStrategy == ReductionTilingStrategy::FullReduction) {
// If num threads is specified, check that it is greater than one only for
// parallel dimensions.
if (!numThreads.empty()) {
if (std::optional<int64_t> constNumThreads =
getConstantIntValue(numThreads[index])) {
if (constNumThreads.value() > 1 &&
iterator != utils::IteratorType::parallel) {
op.emitWarning() << "tiling is not thread safe at axis #" << index;
}
}
continue;
}
if (std::optional<int64_t> constTileSize =
getConstantIntValue(givenTileSize)) {
if (constTileSize.value() > 0 &&
iterator != utils::IteratorType::parallel) {
op.emitWarning() << "tiling is not thread safe at axis #" << index;
}
}
}
}
if (reductionStrategy != ReductionTilingStrategy::FullReduction) {
if (isParallelTiling) {
return op->emitOpError("tiling parallel dimensions is not supported with "
"partial reduction tiling strategies");
}
}
return success();
}
/// Get the reduction dims that are tiled. This accounts for reduction dims
/// that are specified as tiled, but the tile size is 0.
static SetVector<unsigned>
getSanitizedReductionDims(ArrayRef<OpFoldResult> givenTileSizes,
const scf::SCFTilingOptions &options) {
SetVector<unsigned> reductionDims;
for (auto dim : options.reductionDims) {
if (isConstantIntValue(givenTileSizes[dim], 0))
continue;
reductionDims.insert(dim);
}
return reductionDims;
}
/// Check if `stride` evenly divides the trip count `size - offset`.
static bool tileDividesIterationDomain(Range loopRange) {
std::optional<int64_t> offsetAsInt = getConstantIntValue(loopRange.offset);
if (!offsetAsInt)
return false;
std::optional<int64_t> sizeAsInt = getConstantIntValue(loopRange.size);
if (!sizeAsInt)
return false;
std::optional<int64_t> strideAsInt = getConstantIntValue(loopRange.stride);
if (!strideAsInt)
return false;
return ((sizeAsInt.value() - offsetAsInt.value()) % strideAsInt.value() == 0);
}
/// Returns the bounded tile size given the current `offset`, `loopRange` and
/// `tileSize`, i.e., `min(tileSize, range.end() - offset)`.
static OpFoldResult getBoundedTileSize(OpBuilder &b, Location loc,
Range loopRange, OpFoldResult offset,
OpFoldResult givenTileSize) {
std::optional<int64_t> ts = getConstantIntValue(givenTileSize);
if (ts && ts.value() == 1)
return givenTileSize;
if (tileDividesIterationDomain(
Range{loopRange.offset, loopRange.size, givenTileSize}))
return givenTileSize;
// The tile size to use (to avoid out of bounds access) is minimum of
// `tileSize` and `ub - iv`, where `iv` is the induction variable of the tiled
// loop.
AffineExpr s0, s1, d0;
bindDims(b.getContext(), d0);
bindSymbols(b.getContext(), s0, s1);
AffineMap minMap = AffineMap::get(1, 2, {s0 - d0, s1}, b.getContext());
Value size = getValueOrCreateConstantIndexOp(b, loc, loopRange.size);
return affine::makeComposedFoldedAffineMin(
b, loc, minMap, SmallVector<OpFoldResult>{offset, size, givenTileSize});
}
/// Returns true if the maximum tile offset `tileSize * numThreads-1` is less
/// than `iterationSize`.
static bool canOmitTileOffsetInBoundsCheck(OpFoldResult givenTileSize,
OpFoldResult numThreads,
OpFoldResult iterationSize) {
std::optional<int64_t> tileSizeConst = getConstantIntValue(givenTileSize);
std::optional<int64_t> numThreadsConst = getConstantIntValue(numThreads);
std::optional<int64_t> iterSizeConst = getConstantIntValue(iterationSize);
if (!tileSizeConst || !numThreadsConst || !iterSizeConst)
return false;
return *tileSizeConst * (*numThreadsConst - 1) < *iterSizeConst;
}
/// Compute the `OpFoldResult`s that represents the multi-dimensional
/// `offset`s and `size`s of the tile of the iteration space that the
/// innermost loop body of the generated tiled loops corresponds to.
static std::tuple<SmallVector<OpFoldResult>, SmallVector<OpFoldResult>>
getTileOffsetAndSizes(RewriterBase &rewriter, Location loc, ValueRange ivs,
ArrayRef<Range> iterationDomain,
ArrayRef<OpFoldResult> givenTileSizes) {
SmallVector<OpFoldResult> offsets, sizes;
int materializedLoopNum = 0;
for (auto [givenTileSize, loopRange] :
llvm::zip_equal(givenTileSizes, iterationDomain)) {
// Non-tiled cases, set the offset and size to the
// `loopRange.offset/size`.
if (isZeroInteger(givenTileSize)) {
offsets.push_back(loopRange.offset);
sizes.push_back(loopRange.size);
continue;
}
Value iv = ivs[materializedLoopNum++];
OpFoldResult offset = getAsOpFoldResult(iv);
offsets.push_back(offset);
OpFoldResult size =
getBoundedTileSize(rewriter, loc, loopRange, offset, givenTileSize);
sizes.push_back(size);
}
return {offsets, sizes};
}
/// Function to return the bounds of the loops to be generated.
static std::tuple<SmallVector<OpFoldResult>, SmallVector<OpFoldResult>,
SmallVector<OpFoldResult>>
getLoopBounds(RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> givenTileSizes) {
SmallVector<OpFoldResult> lbs, ubs, steps;
for (auto [loopRange, givenTileSize] :
llvm::zip_equal(loopRanges, givenTileSizes)) {
// No loop if the tile size is 0.
if (isZeroInteger(givenTileSize))
continue;
lbs.push_back(loopRange.offset);
ubs.push_back(loopRange.size);
steps.push_back(givenTileSize);
}
return {lbs, ubs, steps};
}
/// Typedef for function that allows returning additional yielded values during
/// `yieldTiledValuesAndReplace`.
/// - `ivs` induction variable for the loop.
/// - `newBbArgs` basic block arguments corresponding to newly added iter_args.
/// - `tiledValues` the tiled values to return. Must be of same size as
/// `newbbArgs`, each element of this array is inserted into the corresponding
/// element in `newbbArgs`.
/// - `resultOffsets` is of the same size as `tiledValues` and represents
/// the offsets to use when inserting corresponding element from `tiledValues`
/// into the element from `newBbArgs`.
/// - `resultSizes` is of the same size as `tiledValues` and represents
/// the size of the corresponding element from `tiledValues` inserted into
/// the element from `newBbArgs`.
/// In case the method needs to return `failure()` the method is expected
/// to clean up any inserted operations.
using YieldTiledValuesFn = std::function<LogicalResult(
RewriterBase &rewriter, Location loc, ValueRange ivs, ValueRange newBbArgs,
SmallVector<Value> &tiledValues,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)>;
/// Typedef for function that implements the body of a tiled loop.
/// - `ivs` induction variable for the loop.
/// - `tileOffsets` represents offsets for the tiled iteration space.
/// - `tileSizes` represents the sizes for the tiled iteraiton space.
/// - `outerDestinationTensors` tensor that holds the result. Is same size
/// as the destination operands of the original operations.
/// - `tiledResults` results of the tiled computation, corresponds to
/// tiles of the original operation computed by the loop body.
/// Should be same size as the `destinationTensors`
/// - `resultOffsets` is of the same size as `tiledResults` and represents
/// the offset to use when writing the corresponding element from
/// `tiledResults` into `destinationTensors`.
/// - `resultOffsets` is of the same size as `tiledResults` and represents
/// the size to use when writing the corresponding element from
/// `tiledResults` into `destinationTensors`.
/// In case the method needs to return `failure()` the method is expected
/// to clean up any inserted operations.
using GenerateTiledBodyFn = std::function<LogicalResult(
RewriterBase &rewriter, Location Loc, ValueRange ivs,
ArrayRef<OpFoldResult> tileOffsets, ArrayRef<OpFoldResult> tileSizes,
ValueRange outerDestinationTensors, SmallVector<Value> &tiledResults,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)>;
/// Clones the operation and updates the destination if the operation
/// implements the `DestinationStyleOpInterface`.
static Operation *cloneOpAndUpdateDestinationArgs(RewriterBase &rewriter,
Operation *op,
ValueRange newDestArgs) {
Operation *clonedOp = rewriter.clone(*op);
if (newDestArgs.empty())
return clonedOp;
if (auto destinationStyleOp = dyn_cast<DestinationStyleOpInterface>(clonedOp))
destinationStyleOp.getDpsInitsMutable().assign(newDestArgs);
return clonedOp;
}
/// Generate the tile-loop nest using `scf.for` operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `givenTileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `outerDestinationTensors` are the init values to use for the outer most
/// loop.
/// - `tiledBodyFn` is called to generated the loop body of the inner
/// most
/// loop.
/// Returns the generated `scf.for` loops on success.
static FailureOr<SmallVector<LoopLikeOpInterface>> generateLoopNestUsingForOp(
RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> givenTileSizes, ValueRange outerDestinationTensors,
GenerateTiledBodyFn tiledBodyFn) {
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == givenTileSizes.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(rewriter);
SmallVector<OpFoldResult> lbs, ubs, steps;
std::tie(lbs, ubs, steps) =
getLoopBounds(rewriter, loc, loopRanges, givenTileSizes);
SmallVector<Value> lbVals =
getValueOrCreateConstantIndexOp(rewriter, loc, lbs);
SmallVector<Value> ubVals =
getValueOrCreateConstantIndexOp(rewriter, loc, ubs);
SmallVector<Value> stepVals =
getValueOrCreateConstantIndexOp(rewriter, loc, steps);
SmallVector<Value> ivs;
SmallVector<LoopLikeOpInterface> loops;
ValueRange innerDestinationTensors(outerDestinationTensors);
for (auto [lb, ub, step] : llvm::zip_equal(lbVals, ubVals, stepVals)) {
auto loop =
scf::ForOp::create(rewriter, loc, lb, ub, step, innerDestinationTensors,
[](OpBuilder &bodyBuilder, Location bodyLoc,
Value iv, ValueRange /*iterArgs*/) {});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPointToEnd(loop.getBody());
innerDestinationTensors = loop.getRegionIterArgs();
}
if (loops.empty())
return success();
// Compute the `offsets` and `sizes` to use for tiling.
SmallVector<OpFoldResult> offsets, sizes;
std::tie(offsets, sizes) =
getTileOffsetAndSizes(rewriter, loc, ivs, loopRanges, givenTileSizes);
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(tiledBodyFn(rewriter, loc, ivs, offsets, sizes,
innerDestinationTensors, tiledResults, resultOffsets,
resultSizes))) {
return rewriter.notifyMatchFailure(
loc, "failed to generate inner tile loop body");
}
if (loops.empty())
return loops;
assert(tiledResults.size() == innerDestinationTensors.size() &&
"Number of results of body should be equal to number of iter args");
// 6. Yield all the results of the tiled operation.
SmallVector<Value> yieldedValues;
for (auto [tiledValue, destinationTensor, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, innerDestinationTensors, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
auto insertSlice = tensor::InsertSliceOp::create(
rewriter, loc, tiledValue, destinationTensor, resultOffset, resultSize,
resultStride);
yieldedValues.push_back(insertSlice);
}
scf::YieldOp::create(rewriter, loc, yieldedValues);
// Add the scf.yield operations for all the outer loops.
for (auto [outerLoop, innerLoop] :
llvm::zip_equal(MutableArrayRef(loops).drop_back(),
MutableArrayRef(loops).drop_front())) {
rewriter.setInsertionPointToEnd(
cast<scf::ForOp>(outerLoop.getOperation()).getBody());
scf::YieldOp::create(rewriter, outerLoop.getLoc(), innerLoop->getResults());
}
return loops;
}
/// Compute the `OpFoldResult`s that represents the multi-dimensional
/// `offset`s and `size`s of the tile of the iteration space that the
/// innermost loop body of the generated tiled loops corresponds to
/// when tiling using `forall` op. This is handle separately due to
/// the special case handling needed for when the tiling is done by
/// specifying number of threads.
static std::tuple<SmallVector<OpFoldResult>, SmallVector<OpFoldResult>>
getTileOffsetAndSizesWithForAllOp(RewriterBase &rewriter, Location loc,
ValueRange ivs,
ArrayRef<Range> iterationDomain,
ArrayRef<OpFoldResult> givenTileSizes,
ArrayRef<OpFoldResult> numThreads) {
if (numThreads.empty()) {
return getTileOffsetAndSizes(rewriter, loc, ivs, iterationDomain,
givenTileSizes);
}
SmallVector<OpFoldResult> offsets, sizes;
int materializedLoopNum = 0;
AffineExpr d0, d1, s0, s1;
AffineExpr offsetExpr, residualTileSizeExpr;
bindDims(rewriter.getContext(), d0, d1);
bindSymbols(rewriter.getContext(), s0, s1);
offsetExpr = d0 + d1 * s0;
residualTileSizeExpr = s1 - (d0 + d1 * s0);
for (auto [index, nt, givenTileSize, loopRange] :
llvm::enumerate(numThreads, givenTileSizes, iterationDomain)) {
// Non-tiled cases, set the offset and size to the
// `loopRange.offset/size`.
if (isZeroInteger(nt)) {
offsets.push_back(loopRange.offset);
sizes.push_back(loopRange.size);
continue;
}
Value iv = ivs[materializedLoopNum++];
OpFoldResult offset = affine::makeComposedFoldedAffineApply(
rewriter, loc, offsetExpr,
ArrayRef<OpFoldResult>{loopRange.offset, iv, givenTileSize});
OpFoldResult residualTileSize = affine::makeComposedFoldedAffineApply(
rewriter, loc, residualTileSizeExpr,
{loopRange.offset, nt, givenTileSize, loopRange.size});
OpFoldResult size = givenTileSize;
if (!isZeroInteger(residualTileSize)) {
OpFoldResult sizeMinusOffsetPerThread =
affine::makeComposedFoldedAffineApply(rewriter, loc, s0 - d0,
{offset, loopRange.size});
size = affine::makeComposedFoldedAffineMin(
rewriter, loc,
AffineMap::getMultiDimIdentityMap(2, rewriter.getContext()),
{sizeMinusOffsetPerThread, givenTileSize});
}
// Consider the case where the original loop was `[0, 100)`.
// If number of threads are `7`, the tile size would be computed as
// `ceilDiv(100, 7) = 15`. For the last thread (thread_id = 6)
// - `offset = 0 + 6 * 15 = 105`
// - `tileSize = min(15, 100 - 105) = -5`
// To avoid negative tile sizes, we need to do a further
// `nonNegativeTileSize = affine.max(0, tileSize)`.
// This `max` can be avoided if
// `offset + tileSize * (numThreads - 1) < (ub - lb)`
if (!canOmitTileOffsetInBoundsCheck(givenTileSize, nt, loopRange.size)) {
AffineMap maxMap =
AffineMap::getMultiDimIdentityMap(2, rewriter.getContext());
size = affine::makeComposedFoldedAffineMax(
rewriter, loc, maxMap, {rewriter.getIndexAttr(0), size});
}
offsets.push_back(offset);
sizes.push_back(size);
}
return {offsets, sizes};
}
/// Generate the tile-loop nest using `scf.forall` operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `giventileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `outerDestinationTensors` are the init values to use for the loop.
/// - `mappingVector` is the mapping attributes to use for loop construction.
/// Can be empty.
/// - `tiledBodyFn` is called to generated the loop body of the inner
/// most
/// loop.
/// Returns the generated `scf.forall` loop on success.
static FailureOr<SmallVector<LoopLikeOpInterface>>
generateLoopNestUsingForallOp(RewriterBase &rewriter, Location loc,
ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> givenTileSizes,
ArrayRef<OpFoldResult> numThreads,
ArrayRef<Attribute> mappingVector,
ValueRange outerDestinationTensors,
GenerateTiledBodyFn tiledBodyFn) {
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == givenTileSizes.size() &&
"expected as many tile sizes as loop ranges");
OpBuilder::InsertionGuard guard(rewriter);
std::optional<ArrayAttr> mappingAttr;
if (!mappingVector.empty())
mappingAttr = rewriter.getArrayAttr(mappingVector);
scf::ForallOp forallOp;
bool useNumThreads = !numThreads.empty();
SmallVector<LoopLikeOpInterface> loops;
if (useNumThreads) {
// Prune the zero numthreads.
SmallVector<OpFoldResult> nonZeroNumThreads;
for (auto nt : numThreads) {
if (isZeroInteger(nt))
continue;
nonZeroNumThreads.push_back(nt);
}
forallOp = scf::ForallOp::create(rewriter, loc, nonZeroNumThreads,
outerDestinationTensors, mappingAttr);
} else {
SmallVector<OpFoldResult> lbs, ubs, steps;
std::tie(lbs, ubs, steps) =
getLoopBounds(rewriter, loc, loopRanges, givenTileSizes);
forallOp = scf::ForallOp::create(rewriter, loc, lbs, ubs, steps,
outerDestinationTensors, mappingAttr);
}
loops.push_back(forallOp);
rewriter.setInsertionPoint(forallOp.getTerminator());
ValueRange innerDestinationTensors = forallOp.getRegionOutArgs();
SmallVector<Value> ivs = forallOp.getInductionVars();
// Compute the `offsets` and `sizes` to use for tiling.
SmallVector<OpFoldResult> offsets, sizes;
std::tie(offsets, sizes) = getTileOffsetAndSizesWithForAllOp(
rewriter, loc, ivs, loopRanges, givenTileSizes, numThreads);
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(tiledBodyFn(rewriter, loc, ivs, offsets, sizes,
innerDestinationTensors, tiledResults, resultOffsets,
resultSizes)))
return rewriter.notifyMatchFailure(loc, "failed to generate loop body");
rewriter.setInsertionPointToEnd(forallOp.getTerminator().getBody());
for (auto [tiledValue, destinationTensor, resultOffset, resultSize] :
llvm::zip_equal(tiledResults, innerDestinationTensors, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
tensor::ParallelInsertSliceOp::create(rewriter, loc, tiledValue,
destinationTensor, resultOffset,
resultSize, resultStride);
}
return loops;
}
/// Generate the tile-loop nest using custom loop operation.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `destinationTensors` are the init values to use for the outer most loop.
/// - `mappingVector` is the mapping attributes to use for loop construction.
/// Can be empty.
/// - `tiledBodyFn` is called to generated the loop body of the inner
/// most
/// loop.
/// Returns the generated `scf.forall` loop on success.
static FailureOr<SmallVector<LoopLikeOpInterface>>
generateLoopNestUsingCustomOp(
RewriterBase &rewriter, Location loc, ArrayRef<Range> loopRanges,
ArrayRef<OpFoldResult> givenTileSizes, ValueRange outerDestinationTensors,
const scf::SCFTilingOptions::GenerateLoopHeaderFn &generateLoopHeaderFn,
const scf::SCFTilingOptions::GenerateLoopTerminatorFn
&generateLoopTerminatorFn,
GenerateTiledBodyFn tiledBodyFn) {
assert(!loopRanges.empty() && "unexpected empty loop ranges");
assert(loopRanges.size() == givenTileSizes.size() &&
"expected as many tile sizes as loop ranges");
assert(generateLoopHeaderFn && generateLoopTerminatorFn &&
"expected loop header/terminator generation function");
OpBuilder::InsertionGuard guard(rewriter);
FailureOr<scf::SCFTilingOptions::CustomLoopHeaderInfo> loopHeaderInfo =
generateLoopHeaderFn(rewriter, loc, loopRanges, givenTileSizes,
outerDestinationTensors);
if (failed(loopHeaderInfo)) {
return failure();
}
SmallVector<Value> ivs;
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
if (failed(tiledBodyFn(rewriter, loc, ivs, loopHeaderInfo->tileOffset,
loopHeaderInfo->tileSizes,
loopHeaderInfo->destinationTensors, tiledResults,
resultOffsets, resultSizes))) {
return failure();
}
if (failed(generateLoopTerminatorFn(rewriter, loc, tiledResults,
resultOffsets, resultSizes,
loopHeaderInfo->destinationTensors))) {
return failure();
}
return loopHeaderInfo->loops;
}
/// Generate the tile-loop nest using the loop construct specifed in `options`.
/// - `options`: Tiling options specified.
/// - `loopRanges` specifies the lb, ub and step of the untiled iteration space.
/// - `tileSizes` is the tile sizes to use. Zero represent untiled loops.
/// - `outerDestinationTensors` are the init values to use for the outer most
/// loop.
/// - `yieldTiledValuesFn` is called to generated the loop body of the inner
/// most
/// loop.
/// Returns the generated loops on success.
static FailureOr<SmallVector<LoopLikeOpInterface>> generateLoopNest(
RewriterBase &rewriter, Location loc, const scf::SCFTilingOptions &options,
ArrayRef<Range> loopRanges, ArrayRef<OpFoldResult> givenTileSizes,
ArrayRef<OpFoldResult> numThreads, ValueRange destinationTensors,
GenerateTiledBodyFn tiledBodyFn) {
// If the tile sizes are all zero, no loops are generated. Just call the
// callback function to handle untiled case.
if (llvm::all_of(givenTileSizes, isZeroInteger)) {
SmallVector<Value> tiledResults;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
auto tileOffsets =
llvm::map_to_vector(loopRanges, [](Range r) { return r.offset; });
auto tileSizes =
llvm::map_to_vector(loopRanges, [](Range r) { return r.size; });
if (failed(tiledBodyFn(rewriter, loc, ValueRange{}, tileOffsets, tileSizes,
destinationTensors, tiledResults, resultOffsets,
resultSizes))) {
return failure();
}
return SmallVector<LoopLikeOpInterface>{};
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForOp) {
return generateLoopNestUsingForOp(rewriter, loc, loopRanges, givenTileSizes,
destinationTensors, tiledBodyFn);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::ForallOp) {
return generateLoopNestUsingForallOp(
rewriter, loc, loopRanges, givenTileSizes, numThreads,
options.mappingVector, destinationTensors, tiledBodyFn);
}
if (options.loopType == scf::SCFTilingOptions::LoopType::CustomOp) {
return generateLoopNestUsingCustomOp(
rewriter, loc, loopRanges, givenTileSizes, destinationTensors,
options.generateLoopHeaderFn, options.generateLoopTerminatorFn,
tiledBodyFn);
}
return rewriter.notifyMatchFailure(loc, "unhandled loop type");
}
static FailureOr<SmallVector<Value>> createInitialTensorsForTiling(
RewriterBase &rewriter, TilingInterface op,
ReductionTilingStrategy reductionStrategy, ArrayRef<Range> iterationDomain,
ArrayRef<OpFoldResult> numThreads, ArrayRef<OpFoldResult> givenTileSizes,
const SetVector<unsigned> &reductionDims) {
SmallVector<Value> initTensors;
Location loc = op->getLoc();
if (reductionStrategy == ReductionTilingStrategy::FullReduction) {
if (failed(tensor::getOrCreateDestinations(rewriter, loc, op, initTensors)))
return failure();
return initTensors;
}
auto redOp = dyn_cast<PartialReductionOpInterface>(op.getOperation());
if (!redOp) {
return op->emitOpError(
"PartialReductionOuterReduction tiling strategy is only supported for "
"operations implementing PartialReductionOpInterface");
}
SmallVector<OpFoldResult> sizes(iterationDomain.size());
AffineExpr s0, s1, s2;
bindSymbols(rewriter.getContext(), s0, s1, s2);
AffineExpr sizeExpr = ((s0 - s1).ceilDiv(s2));
AffineExpr divExpr = s0.ceilDiv(s1);
for (auto [index, domain, tileSize] :
llvm::enumerate(iterationDomain, givenTileSizes)) {
if (!numThreads.empty()) {
// Untiled case.
if (isConstantIntValue(numThreads[index], 0)) {
sizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), sizeExpr,
{domain.size, domain.offset, domain.stride});
continue;
}
sizes[index] = numThreads[index];
continue;
}
// Non reduction dimensions/non-tiled dimensions.
if (!reductionDims.contains(index) || isConstantIntValue(tileSize, 0)) {
sizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), sizeExpr,
{domain.size, domain.offset, domain.stride});
continue;
}
if (reductionStrategy ==
ReductionTilingStrategy::PartialReductionOuterReduction) {
sizes[index] = tileSize;
continue;
}
assert(reductionStrategy ==
ReductionTilingStrategy::PartialReductionOuterParallel);
OpFoldResult normalizedRange = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), sizeExpr,
{domain.size, domain.offset, domain.stride});
sizes[index] = affine::makeComposedFoldedAffineApply(
rewriter, op.getLoc(), divExpr, {normalizedRange, tileSize});
}
return redOp.generateInitialTensorForPartialReduction(rewriter, loc, sizes,
reductionDims);
}
/// For the case of `ReductionTilingStrategy::PartialReductionOuterParallel`
/// the `PartialReductionOpInterface` methods need the index of the parallel
/// split reduction being executed.
static SmallVector<OpFoldResult>
getSplitReductionIvs(RewriterBase &rewriter, Location loc,
ReductionTilingStrategy reductionStrategy, ValueRange ivs,
ArrayRef<OpFoldResult> numThreads,
ArrayRef<OpFoldResult> givenTileSizes,
const SetVector<unsigned> &reductionDims) {
SmallVector<OpFoldResult> splitReductionIvs;
splitReductionIvs.resize(reductionDims.size(), rewriter.getIndexAttr(0));
AffineExpr s0, s1;
bindSymbols(rewriter.getContext(), s0, s1);
AffineExpr divExpr = s0.floorDiv(s1);
int ivIndex = 0;
if (reductionStrategy ==
ReductionTilingStrategy::PartialReductionOuterParallel) {
for (auto [index, reductionDim] : llvm::enumerate(reductionDims)) {
if (!numThreads.empty()) {
splitReductionIvs[index] = ivs[ivIndex++];
continue;
}
splitReductionIvs[index] = affine::makeComposedFoldedAffineApply(
rewriter, loc, divExpr,
ArrayRef<OpFoldResult>{ivs[ivIndex++], givenTileSizes[reductionDim]});
}
}
return splitReductionIvs;
}
static FailureOr<TilingResult>
getTiledImplementation(RewriterBase &rewriter, TilingInterface op,
ReductionTilingStrategy reductionStrategy,
ValueRange regionIterArg, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes, ValueRange ivs,
ArrayRef<OpFoldResult> numThreads,
ArrayRef<OpFoldResult> givenTileSizes,
const SetVector<unsigned> &reductionDims) {
if (reductionStrategy == ReductionTilingStrategy::FullReduction) {
return op.getTiledImplementation(rewriter, offsets, sizes);
}
auto redOp = dyn_cast<PartialReductionOpInterface>(op.getOperation());
if (!redOp) {
return rewriter.notifyMatchFailure(
op, "PartialReductionOuterReduction tiling strategy is only "
"supported for operations "
"implementing PartialReductionOpInterface");
}
SmallVector<OpFoldResult> splitReductionIvs =
getSplitReductionIvs(rewriter, op.getLoc(), reductionStrategy, ivs,
numThreads, givenTileSizes, reductionDims);
return redOp.tileToPartialReduction(rewriter, op.getLoc(), reductionStrategy,
regionIterArg, offsets, sizes,
reductionDims, splitReductionIvs);
}
static LogicalResult getResultTilePosition(
RewriterBase &rewriter, ReductionTilingStrategy reductionStrategy,
int64_t index, Value tiledResult, TilingInterface op,
ArrayRef<OpFoldResult> offsets, ArrayRef<OpFoldResult> sizes,
ValueRange ivs, ArrayRef<OpFoldResult> numThreads,
ArrayRef<OpFoldResult> givenTileSizes,
const SetVector<unsigned> &reductionDims,
SmallVector<OpFoldResult> &resultOffset,
SmallVector<OpFoldResult> &resultSize) {
if (reductionStrategy == ReductionTilingStrategy::FullReduction) {
return op.getResultTilePosition(rewriter, index, offsets, sizes,
resultOffset, resultSize);
}
auto redOp = dyn_cast<PartialReductionOpInterface>(op.getOperation());
if (!redOp) {
return rewriter.notifyMatchFailure(
op, "PartialReductionOuterReduction tiling strategy is only supported"
"for operations implementing PartialReductionOpInterface");
}
SmallVector<OpFoldResult> splitReductionIvs =
getSplitReductionIvs(rewriter, op.getLoc(), reductionStrategy, ivs,
numThreads, givenTileSizes, reductionDims);
return redOp.getPartialResultTilePosition(
rewriter, index, reductionStrategy, offsets, sizes, reductionDims,
splitReductionIvs, resultOffset, resultSize);
}
static FailureOr<MergeResult>
mergeTilingResults(RewriterBase &rewriter, TilingInterface op,
ReductionTilingStrategy reductionStrategy,
const SetVector<unsigned> &reductionDims,
ValueRange partialResults) {
assert(reductionStrategy != ReductionTilingStrategy::FullReduction &&
"expected merge to be called for only partial reduction cases");
auto redOp = dyn_cast<PartialReductionOpInterface>(op.getOperation());
if (!redOp) {
return rewriter.notifyMatchFailure(
op, "PartialReductionOuterReduction tiling strategy is only "
"supported for operations "
"implementing PartialReductionOpInterface");
}
return redOp.mergeReductions(rewriter, op.getLoc(), partialResults,
reductionDims);
}
/// Append the specified additional `newInitOperands` operands to the
/// loops existing `init` operands (or similar), and replace `loopOp` with
/// the new loop that has the additional init operands. The loop body of
/// this loop is moved over to the new loop. `yieldTiledValuesFn`
/// is called to get the new tiled values returned, and the offset
/// and sizes at which the tiled value is inserted into the
/// new region iter_args that correspond to the newly added init operands.
template <typename LoopType>
FailureOr<LoopLikeOpInterface>
yieldTiledValuesAndReplaceLoop(LoopType loopOp, RewriterBase &rewriter,
ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
return rewriter.notifyMatchFailure(loopOp, "unhandled loop type");
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for `scf.for`.
template <>
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop<scf::ForOp>(
scf::ForOp loopOp, RewriterBase &rewriter, ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = loopOp.getLoc();
rewriter.setInsertionPoint(loopOp);
auto inits = llvm::to_vector(loopOp.getInitArgs());
inits.append(newInitOperands.begin(), newInitOperands.end());
auto newLoop = scf::ForOp::create(
rewriter, loc, loopOp.getLowerBound(), loopOp.getUpperBound(),
loopOp.getStep(), inits, [](OpBuilder &, Location, Value, ValueRange) {},
loopOp.getUnsignedCmp());
// Move the loop body to the new op.
Block *loopBody = loopOp.getBody();
Block *newLoopBody = newLoop.getBody();
rewriter.mergeBlocks(
loopBody, newLoopBody,
newLoopBody->getArguments().take_front(loopBody->getNumArguments()));
auto yieldOp = cast<scf::YieldOp>(newLoopBody->getTerminator());
rewriter.setInsertionPoint(yieldOp);
SmallVector<Value> tiledValues;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
ValueRange newRegionIterArgs =
newLoop.getRegionIterArgs().take_back(newInitOperands.size());
if (failed(yieldTiledValuesFn(rewriter, loc, newLoop.getInductionVar(),
newRegionIterArgs, tiledValues, resultOffsets,
resultSizes))) {
rewriter.eraseOp(newLoop);
return rewriter.notifyMatchFailure(loopOp, "failed to get tiled values");
}
SmallVector<Value> newYieldValues = llvm::to_vector(yieldOp.getOperands());
for (auto [tiledValue, regionIterArg, resultOffset, resultSize] :
llvm::zip_equal(tiledValues, newRegionIterArgs, resultOffsets,
resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
Value insert = tensor::InsertSliceOp::create(
rewriter, yieldOp->getLoc(), tiledValue, regionIterArg, resultOffset,
resultSize, resultStride);
newYieldValues.push_back(insert);
}
rewriter.replaceOpWithNewOp<scf::YieldOp>(yieldOp, newYieldValues);
rewriter.replaceOp(loopOp,
newLoop->getResults().take_front(loopOp.getNumResults()));
return cast<LoopLikeOpInterface>(newLoop.getOperation());
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for `scf.forall`
template <>
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop<scf::ForallOp>(
scf::ForallOp loopOp, RewriterBase &rewriter, ValueRange newInitOperands,
YieldTiledValuesFn yieldTiledValuesFn) {
OpBuilder::InsertionGuard g(rewriter);
Location loc = loopOp.getLoc();
rewriter.setInsertionPoint(loopOp);
auto inits = llvm::to_vector(loopOp.getOutputs());
inits.append(newInitOperands.begin(), newInitOperands.end());
auto newLoop = scf::ForallOp::create(
rewriter, loc, loopOp.getMixedLowerBound(), loopOp.getMixedUpperBound(),
loopOp.getMixedStep(), inits, loopOp.getMapping(),
[](OpBuilder &, Location, ValueRange) {});
// Move the region of the current block to the newly created op.
Block *loopBody = loopOp.getBody();
Block *newLoopBody = newLoop.getBody();
rewriter.mergeBlocks(
loopBody, newLoopBody,
newLoopBody->getArguments().take_front(loopBody->getNumArguments()));
auto terminator = cast<scf::InParallelOp>(newLoopBody->getTerminator());
rewriter.setInsertionPoint(terminator);
SmallVector<Value> tiledValues;
SmallVector<SmallVector<OpFoldResult>> resultOffsets, resultSizes;
ValueRange regionIterArgs =
newLoop.getRegionIterArgs().take_back(newInitOperands.size());
if (failed(yieldTiledValuesFn(rewriter, loc, newLoop.getInductionVars(),
regionIterArgs, tiledValues, resultOffsets,
resultSizes))) {
rewriter.eraseOp(newLoop);
return rewriter.notifyMatchFailure(loopOp,
"failed to get yielded tiled values");
}
// Update the terminator.
rewriter.setInsertionPointToEnd(terminator.getBody());
for (auto [tiledValue, iterArg, resultOffset, resultSize] : llvm::zip_equal(
tiledValues, regionIterArgs, resultOffsets, resultSizes)) {
SmallVector<OpFoldResult> resultStride(resultOffset.size(),
rewriter.getIndexAttr(1));
tensor::ParallelInsertSliceOp::create(rewriter, terminator.getLoc(),
tiledValue, iterArg, resultOffset,
resultSize, resultStride);
}
rewriter.replaceOp(loopOp,
newLoop->getResults().take_front(loopOp.getNumResults()));
return cast<LoopLikeOpInterface>(newLoop.getOperation());
}
/// Implementation of `yieldTiledValuesAndReplaceLoop` for
/// `LoopLikeOpInterface`, that just dispatches to the implementation for each
/// supported loop type.
FailureOr<LoopLikeOpInterface> yieldTiledValuesAndReplaceLoop(
LoopLikeOpInterface loopLikeOp, RewriterBase &rewriter,
ValueRange newInitOperands, YieldTiledValuesFn yieldTiledValuesFn) {
return TypeSwitch<Operation *, FailureOr<LoopLikeOpInterface>>(
loopLikeOp.getOperation())
.Case<scf::ForOp, scf::ForallOp>(
[&](auto loopOp) -> FailureOr<LoopLikeOpInterface> {
return yieldTiledValuesAndReplaceLoop(
loopOp, rewriter, newInitOperands, yieldTiledValuesFn);
})
.Default([&](auto loopOp) -> FailureOr<LoopLikeOpInterface> {
return rewriter.notifyMatchFailure(loopOp, "unhandled loop type");
});
}
/// Method to add new init values to a loop nest. Updates `loops` in-place
/// with new loops that use the `newInitValues`. The outer-loops are updated
/// to yield the new result values of the inner loop. For the innermost loop,
/// the call back `getNewYields` is invoked to get the additional values to
/// yield form the innermost loop.
static LogicalResult addInitOperandsToLoopNest(
RewriterBase &rewriter, MutableArrayRef<LoopLikeOpInterface> loops,
ValueRange newInitValues, YieldTiledValuesFn getNewTiledYieldsFn) {
if (loops.empty())
return success();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(loops.front());
SmallVector<Value> ivs;
for (auto &loop : loops.drop_back()) {
rewriter.setInsertionPoint(loop);
// if loops.size() > 1 we assume that scf.for is used for the loops.
auto forLoop = cast<scf::ForOp>(loop.getOperation());
// Create a new loop with the new init values for this loop.
SmallVector<Value> newInits = llvm::to_vector(forLoop.getInitArgs());
newInits.append(newInitValues.begin(), newInitValues.end());
auto newLoop = scf::ForOp::create(
rewriter, forLoop.getLoc(), forLoop.getLowerBound(),
forLoop.getUpperBound(), forLoop.getStep(), newInits,
[&](OpBuilder &b, Location loc, Value iv, ValueRange iterArgs) {},
forLoop.getUnsignedCmp());
// Merge the body of the new loop with the body of the old loops.
SmallVector<Value> sourceBlockArgs;
sourceBlockArgs.push_back(newLoop.getInductionVar());
auto newRegionIterArgs = newLoop.getRegionIterArgs();
sourceBlockArgs.append(
newRegionIterArgs.begin(),
std::next(newRegionIterArgs.begin(), forLoop.getNumResults()));
rewriter.mergeBlocks(forLoop.getBody(), newLoop.getBody(), sourceBlockArgs);
rewriter.replaceOp(
forLoop, newLoop.getResults().take_front(forLoop.getNumResults()));
loop = newLoop;
ivs.push_back(newLoop.getInductionVar());
newInitValues = newLoop.getRegionIterArgs().take_back(newInitValues.size());
}
// Update the loop body of the innermost loop to get new yield values.
LoopLikeOpInterface innerMostLoop = loops.back();
FailureOr<LoopLikeOpInterface> newInnerMostLoop =
yieldTiledValuesAndReplaceLoop(innerMostLoop, rewriter, newInitValues,
getNewTiledYieldsFn);
if (failed(newInnerMostLoop))
return innerMostLoop.emitOpError("failed to return additional yields");
loops.back() = newInnerMostLoop.value();
// Make all other loops except the innermost loops yield the values returned
// by the inner loop.
for (auto [outerLoop, innerLoop] :
llvm::zip_equal(loops.drop_back(), loops.drop_front())) {
// Again assume that all the outer loops are scf.for operations.
auto outerForLoop = cast<scf::ForOp>(outerLoop);
auto outerLoopYield =
cast<scf::YieldOp>(outerForLoop.getBody()->getTerminator());
SmallVector<Value> newYields =
llvm::to_vector(outerLoopYield.getOperands());
ValueRange additionalYields =
innerLoop->getResults().take_back(newInitValues.size());
newYields.append(additionalYields.begin(), additionalYields.end());
rewriter.setInsertionPoint(outerLoopYield);
rewriter.replaceOpWithNewOp<scf::YieldOp>(outerLoopYield, newYields);
}
return success();
}
/// Implementation of tiling transformation of `op` that implements the
/// `TilingInterface` using `scf.for` to iterate over the tiles.
FailureOr<scf::SCFTilingResult>
mlir::scf::tileUsingSCF(RewriterBase &rewriter, TilingInterface op,
const scf::SCFTilingOptions &options) {
if (failed(verifyOptions(rewriter, op.getLoc(), options))) {
return failure();
}
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointAfter(op);
// 1. Get the range of the loops that are represented by the operation.
SmallVector<Range> iterationDomain = op.getIterationDomain(rewriter);
// 2. Materialize the tile sizes and/or number of threads;
SmallVector<OpFoldResult> givenTileSizes, numThreads;
std::tie(givenTileSizes, numThreads) =
getUserTileSizesAndNumThreads(rewriter, op, iterationDomain, options);
// Check if it is safe to tile. This is hold over from previous iterations
// of tile to for-all. Consider dropping it.
if (failed(checkTileSizes(op, options.loopType, options.reductionStrategy,
givenTileSizes, numThreads))) {
return failure();
}
// Get the reduction dims
SetVector<unsigned> reductionDims =
getSanitizedReductionDims(givenTileSizes, options);
// 3. If there is an interchange specified, permute the iteration domain and
// the tile sizes.
SmallVector<int64_t> interchangeVector;
if (!options.interchangeVector.empty()) {
interchangeVector = fillInterchangeVector(options.interchangeVector,
iterationDomain.size());
assert(isPermutationVector(interchangeVector) &&
"expected interchange vector to be a permutation");
applyPermutationToVector(iterationDomain, interchangeVector);
applyPermutationToVector(givenTileSizes, interchangeVector);
if (!numThreads.empty())
applyPermutationToVector(numThreads, interchangeVector);
}
FailureOr<TilingResult> tilingResult;
// 4. Define the lambda function used later to generate the body of the
// innermost tiled loop.
GenerateTiledBodyFn innerYieldTiledValuesFn =
[&](RewriterBase &rewriter, Location loc, ValueRange ivs,
ArrayRef<OpFoldResult> tileOffsets, ArrayRef<OpFoldResult> tileSizes,
ValueRange regionIterArgs, SmallVector<Value> &tiledResults,
SmallVector<SmallVector<OpFoldResult>> &resultOffsets,
SmallVector<SmallVector<OpFoldResult>> &resultSizes)
-> LogicalResult {
// 4b. If interchange was provided, apply inverse of the interchange
// to get back the offsets/sizes in the order to be specified.
SmallVector<OpFoldResult> tileOffsetsVec = llvm::to_vector(tileOffsets);
SmallVector<OpFoldResult> tileSizesVec = llvm::to_vector(tileSizes);
if (!interchangeVector.empty()) {
auto inversePermutation = invertPermutationVector(interchangeVector);
applyPermutationToVector(tileOffsetsVec, inversePermutation);
applyPermutationToVector(tileSizesVec, inversePermutation);
}
// 5. Generate the tiled implementation within the inner most loop.
// 5a. Clone the operation within the loop body.
auto clonedOp = cast<TilingInterface>(
cloneOpAndUpdateDestinationArgs(rewriter, op, regionIterArgs));
// 5b. Early return cloned op if tiling is not happening. We can not
// return the original op because it could lead to `rewriter.replaceOp(op,
// op->getResults())` and users would get crash.
if (llvm::all_of(givenTileSizes, isZeroInteger)) {
tiledResults.append(clonedOp->result_begin(), clonedOp->result_end());
tilingResult =
TilingResult{/*tiledOps=*/{clonedOp}, clonedOp->getResults(),
/*generatedSlices=*/{}};
return success();
}
// 5c. Tile the cloned operation.
tilingResult =
getTiledImplementation(rewriter, clonedOp, options.reductionStrategy,
regionIterArgs, tileOffsetsVec, tileSizesVec,
ivs, numThreads, givenTileSizes, reductionDims);
if (failed(tilingResult)) {
rewriter.eraseOp(clonedOp);
return op.emitOpError("faild to tile operation");
}
// 5d. Delete the cloned operation.
rewriter.eraseOp(clonedOp);
// 5e. Compute the offsets at which the result values are to be inserted
// back into its destinations.
for (auto [index, tiledValue] :
llvm::enumerate(tilingResult->tiledValues)) {
tiledResults.push_back(tiledValue);
SmallVector<OpFoldResult> resultOffset, resultSize;
if (failed(getResultTilePosition(
rewriter, options.reductionStrategy, index, tiledValue, op,
tileOffsetsVec, tileSizesVec, ivs, numThreads, givenTileSizes,
reductionDims, resultOffset, resultSize))) {
for (auto op : tilingResult->tiledOps) {
rewriter.eraseOp(op);
}
return rewriter.notifyMatchFailure(
op, "failed to get slice of result produced");
}
resultOffsets.emplace_back(std::move(resultOffset));
resultSizes.emplace_back(std::move(resultSize));
}
return success();
};
// 6. Find the destination tensors to use for the operation.
FailureOr<SmallVector<Value>> maybeInits = createInitialTensorsForTiling(
rewriter, op, options.reductionStrategy, iterationDomain, numThreads,
givenTileSizes, reductionDims);
if (failed(maybeInits)) {
return rewriter.notifyMatchFailure(
op, "unable to create initial tensors for tiling");
}
SmallVector<Value> &initTensors = maybeInits.value();
// 7. Generate the tiled loops nest using the callback defined above.
SmallVector<LoopLikeOpInterface> loops;
{
FailureOr<SmallVector<LoopLikeOpInterface>> loopsOr = generateLoopNest(
rewriter, op.getLoc(), options, iterationDomain, givenTileSizes,
numThreads, initTensors, innerYieldTiledValuesFn);
if (failed(loopsOr))
return op.emitOpError("failed to generate tiling loops");
assert(succeeded(tilingResult) &&
"expected tiling result to be computed after loop generation");
std::swap(loops, loopsOr.value());
}
if (loops.empty()) {
// If loops are empty, the tiled op is used as the replacement for the
// untiled op.
return scf::SCFTilingResult{tilingResult->tiledOps,
initTensors,
loops,
tilingResult->tiledValues,
tilingResult->generatedSlices,
{}};
}
auto loopResults = llvm::map_to_vector(loops.front()->getResults(),
[](OpResult r) -> Value { return r; });
// For the full reduction case, there is nothing more to do.
if (options.reductionStrategy == ReductionTilingStrategy::FullReduction) {
return scf::SCFTilingResult{
tilingResult->tiledOps, initTensors, loops, loopResults,
tilingResult->generatedSlices, {}};
}
// The results of the loop needs to be merged.
FailureOr<MergeResult> mergeResult = mergeTilingResults(
rewriter, op, options.reductionStrategy, reductionDims, loopResults);
if (failed(mergeResult)) {
return rewriter.notifyMatchFailure(
op, "Failed to merge partial results from tiling");
}
return scf::SCFTilingResult{tilingResult->tiledOps,
initTensors,
loops,
mergeResult->replacements,
tilingResult->generatedSlices,
mergeResult->mergeOps};
}
FailureOr<scf::SCFTilingResult>
mlir::scf::tileReductionUsingScf(RewriterBase &b,
PartialReductionOpInterface op,
ArrayRef<OpFoldResult> tileSize) {
scf::SCFTilingOptions options;
options.setLoopType(scf::SCFTilingOptions::LoopType::ForOp);
options.setReductionTilingStrategy(
ReductionTilingStrategy::PartialReductionOuterReduction);
options.setTileSizes(tileSize);
SmallVector<unsigned> reductionDims;
for (auto [index, iteratorType] : llvm::enumerate(op.getLoopIteratorTypes()))
if (iteratorType == utils::IteratorType::reduction)
reductionDims.push_back(index);
options.setReductionDims(reductionDims);
return tileUsingSCF(b, op, options);
}
//===----------------------------------------------------------------------===//
// tileConsumerAndFuseProducersUsingSCF implementation.
//===----------------------------------------------------------------------===//
/// Return the untiled producer whose slice is used in a tiled consumer. The
/// method traverses the tile loop nest (`loops`) if needed, and returns the
/// `iter_args` of the outer most that is encountered. Traversing the
/// iter_args indicates that this is a destination operand of the consumer. If
/// there was no loop traversal needed, the second value of the returned tuple
/// is empty.
static std::tuple<OpResult, std::optional<OpOperand *>>
getUntiledProducerFromSliceSource(OpOperand *source,
ArrayRef<LoopLikeOpInterface> loops) {
std::optional<OpOperand *> destinationIterArg;
assert(!loops.empty() && "expected non empty loops container");
auto loopIt = loops.rbegin();
while (loopIt != loops.rend() && isa<BlockArgument>(source->get())) {
auto iterArg = cast<BlockArgument>(source->get());
auto loop = *loopIt;
if (iterArg.getOwner()->getParentOp() != loop)
break;
source = loop.getTiedLoopInit(iterArg);
loopIt++;
}
if (loopIt == loops.rend())
destinationIterArg = source;
return {dyn_cast<OpResult>(source->get()), destinationIterArg};
}
/// Implementation of fusing producer of a single slice by computing the
/// slice of the producer in-place.
std::optional<scf::SCFFuseProducerOfSliceResult>
mlir::scf::tileAndFuseProducerOfSlice(
RewriterBase &rewriter, tensor::ExtractSliceOp candidateSliceOp,
MutableArrayRef<LoopLikeOpInterface> loops) {
// 1. Get the producer of the source (potentially walking through
// `iter_args` of nested `scf.for`)
auto [fusableProducer, destinationInitArg] =
getUntiledProducerFromSliceSource(&candidateSliceOp.getSourceMutable(),
loops);
if (!fusableProducer)
return std::nullopt;
unsigned resultNumber = fusableProducer.getResultNumber();
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(candidateSliceOp);
// 2. Clone the fused producer
// 2a. Compute the destination operands to use for the cloned operation.
SmallVector<Value> origDestinationTensors, clonedOpDestinationTensors;
Operation *fusableProducerOp = fusableProducer.getOwner();
if (isa<DestinationStyleOpInterface>(fusableProducerOp) &&
failed(tensor::getOrCreateDestinations(
rewriter, fusableProducerOp->getLoc(), fusableProducerOp,
origDestinationTensors)))
return std::nullopt;
clonedOpDestinationTensors = origDestinationTensors;
if (destinationInitArg &&
isa<DestinationStyleOpInterface>(fusableProducerOp)) {
// 2b. If the producer is also destination style, then to maintain the
// destination passing style, update the destination of the producer to be
// the source of the slice.
clonedOpDestinationTensors[resultNumber] = candidateSliceOp.getSource();
}
// 2c. Clone the fused producer.
Operation *clonedProducerOp = cloneOpAndUpdateDestinationArgs(
rewriter, fusableProducerOp, clonedOpDestinationTensors);
// 2d. Update the source of the candidateSlice to be the cloned producer.
// Easier to just clone the slice with different source since
// replacements and DCE of cloned ops becomes easier
SmallVector<Value> candidateSliceOpOperands =
llvm::to_vector(candidateSliceOp->getOperands());
candidateSliceOpOperands[0] = clonedProducerOp->getResult(resultNumber);
tensor::ExtractSliceOp clonedCandidateSliceOp =
mlir::clone(rewriter, candidateSliceOp,
candidateSliceOp->getResultTypes(), candidateSliceOpOperands);
// 3. Generate the tiled implementation of the producer of the source
FailureOr<TilingResult> tileAndFuseResult =
tensor::replaceExtractSliceWithTiledProducer(
rewriter, clonedCandidateSliceOp,
clonedProducerOp->getResult(resultNumber));
if (failed(tileAndFuseResult))
return std::nullopt;
// Note: Do not delete the candidateSliceOp, since its passed in from the
// caller.
rewriter.replaceAllUsesWith(candidateSliceOp,
tileAndFuseResult->tiledValues[0]);
rewriter.eraseOp(clonedCandidateSliceOp);
rewriter.eraseOp(clonedProducerOp);
// 3. If the slice is for a destination operand, for example,
//
// ```mlir
// %0 = linalg.init
// %1 = linalg.fill .. outs(%0 : )
// %2 = scf.for .. iter_args(%arg0 = %1) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1 [..]
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
//
// the IR is currently
//
// ```
// %0 = linalg.init
// %1 = linalg.fill
// %2 = scf.for .. iter_args(%arg0 = %1 /* incorrect value */ ) {
// %3 = scf.for .. iter_args(%arg1 = %arg0) {
// %4 = tensor.extract_slice %arg1[..]
// %5 = linalg.fill .. outs(%4 : )
// .. = linalg.matmul .. outs(%5 : )
// }
// }
// ```
//
// The untiled `linalg.fill` is still used as the `init_value` since it
// was originally a destination operand of the untiled `linalg.matmul`.
// When fusing an operand that is a destination operand, the iter_arg of
// the outer most loop should be changed to use the destination of the
// fused operation. With this the IR will be.
//
// ```
// %0 = linalg.init
// %1 = scf.for .. iter_args(%arg0 = %0 /* corrected value */ ) {
// %2 = scf.for .. iter_args(%arg1 = %arg0) {
// %3 = tensor.extract_slice %arg1[..]
// %4 = linalg.fill .. outs(%3 : )
// .. = linalg.matmul .. outs(%4 : )
// }
// }
// ```
if (destinationInitArg &&
isa<DestinationStyleOpInterface>(fusableProducerOp) && !loops.empty()) {
loops.front()
->getOpOperands()[destinationInitArg.value()->getOperandNumber()]
.set(origDestinationTensors[resultNumber]);
}
return scf::SCFFuseProducerOfSliceResult{
fusableProducer, tileAndFuseResult->tiledValues[0],
tileAndFuseResult->tiledOps, tileAndFuseResult->generatedSlices};
}
/// Reconstruct the fused producer from within the tiled-and-fused code.
FailureOr<SmallVector<Operation *>> mlir::scf::yieldReplacementForFusedProducer(
RewriterBase &rewriter, tensor::ExtractSliceOp sliceOp,
scf::SCFFuseProducerOfSliceResult fusedProducerInfo,
MutableArrayRef<LoopLikeOpInterface> loops,
ArrayRef<unsigned> yieldResultNumber) {
if (loops.empty())
return success();
Operation *originalOwner = fusedProducerInfo.origProducer.getOwner(),
*tiledOwner = fusedProducerInfo.tiledOps[0];
Location loc = originalOwner->getLoc();
// a. collect all init Value to be appended
SmallVector<unsigned> initNumberList =
yieldResultNumber.empty() ? llvm::to_vector(llvm::seq<unsigned>(
0, originalOwner->getNumResults()))
: llvm::to_vector(yieldResultNumber);
SmallVector<Value> initValueList;
for (const auto &resultNumber : initNumberList) {
FailureOr<Value> initValue = tensor::getOrCreateDestination(
rewriter, loc, originalOwner->getResult(resultNumber));
if (succeeded(initValue)) {
initValueList.push_back(initValue.value());
} else {
return failure();
}
}
SmallVector<Operation *> generatedSlices;
YieldTiledValuesFn newYieldValuesFn =
[&](RewriterBase &innerRewriter, Location loc, ValueRange /*ivs*/,
ValueRange newRegionIterArgs, SmallVector<Value> &tiledResult,
SmallVector<SmallVector<OpFoldResult>> &tiledOffset,
SmallVector<SmallVector<OpFoldResult>> &tiledSizes) -> LogicalResult {
OpBuilder::InsertionGuard g(innerRewriter);
// get sliceOp tile information
SmallVector<OpFoldResult> sliceOffset = sliceOp.getMixedOffsets(),
sliceSizes = sliceOp.getMixedSizes();
// expect all strides of sliceOp being 1
if (!llvm::all_of(sliceOp.getMixedStrides(), isOneInteger))
return failure();
unsigned sliceResultNumber =
fusedProducerInfo.origProducer.getResultNumber();
auto tilableOp = cast<TilingInterface>(originalOwner);
// b. get iterDomain Offset and Sizes based on sliceOp tile
SmallVector<OpFoldResult> iterDomainOffset, iterDomainSizes;
// skip tensor.pack/unpack/pad, which expects single opResult
if (tilableOp->getNumResults() > 1 &&
failed(tilableOp.getIterationDomainTileFromResultTile(
rewriter, sliceResultNumber, sliceOffset, sliceSizes,
iterDomainOffset, iterDomainSizes))) {
// In theory, it is unnecessary to raise an error here. Actually
// although it fails to reconstruct the result tensor, it should not
// broke current fusion anyway. The reason why we must return failure
// currently is that the callback function `newYieldValuesFn` will be
// called after new init operand(s) has already been appended. It will
// take more refactoring to make sure the init operands are added
// consistently in the future. For more details, please refer to:
// https://github.com/llvm/llvm-project/pull/93144#discussion_r1643760814
return failure();
}
// c. calculate offsets and sizes info of all OpResults respectively based
// on iteration Domain Tile
SmallVector<SmallVector<OpFoldResult>> offsetList, sizesList;
for (const auto &resultNumber : initNumberList) {
if (resultNumber == sliceResultNumber) {
offsetList.push_back(sliceOffset);
sizesList.push_back(sliceSizes);
} else {
assert(!iterDomainOffset.empty() && !iterDomainSizes.empty());
// infer result tile according to the iteration domain tile
SmallVector<OpFoldResult> offset, sizes;
if (failed(tilableOp.getResultTilePosition(
rewriter, resultNumber, iterDomainOffset, iterDomainSizes,
offset, sizes))) {
return failure();
}
offsetList.push_back(offset);
sizesList.push_back(sizes);
}
}
// d. create `extract_slice` for `iter_args` for DPS operation if
// necessary
if (auto tiledDestStyleOp =
dyn_cast<DestinationStyleOpInterface>(tiledOwner)) {
rewriter.setInsertionPoint(tiledDestStyleOp);
for (const auto &&[index, newRegionArg] :
llvm::enumerate(newRegionIterArgs)) {
auto destSlice = tensor::ExtractSliceOp::create(
rewriter, loc, newRegionArg, offsetList[index], sizesList[index],
SmallVector<OpFoldResult>(offsetList[index].size(),
rewriter.getIndexAttr(1)));
generatedSlices.push_back(destSlice);
unsigned resultNumber = initNumberList[index];
rewriter.modifyOpInPlace(tiledDestStyleOp, [&]() {
tiledDestStyleOp.getDpsInitsMutable()[resultNumber].set(destSlice);
});
}
}
// e. prepare tiled offset and sizes for later `insert_slice` creation by
// caller
Block *block = rewriter.getInsertionPoint()->getBlock();
rewriter.setInsertionPoint(block->getTerminator());
for (const auto &&[index, resultNumber] : llvm::enumerate(initNumberList)) {
tiledResult.push_back(tiledOwner->getResult(resultNumber));
tiledOffset.emplace_back(offsetList[index]);
tiledSizes.emplace_back(sizesList[index]);
}
return success();
};
if (failed(addInitOperandsToLoopNest(rewriter, loops, initValueList,
newYieldValuesFn))) {
return failure();
}
return generatedSlices;
}
namespace {
//===----------------------------------------------------------------------===//
// SliceTrackingListener
//===----------------------------------------------------------------------===//
/// This class is a listener for tracking the insertion and removal of
/// `tensor.extract_slice` ops in a worklist. This can be used in a greedy
/// fusion algorithm to apply cleanup patterns in between fusion steps.
class SliceTrackingListener : public RewriterBase::Listener {
public:
explicit SliceTrackingListener(
std::optional<FrozenRewritePatternSet> patterns);
SliceTrackingListener() = default;
/// Adds the given list of operations to the worklist, and if present,
/// applies the list of `patterns` to the newly added operations. This only
/// processes the given operations and any newly inserted ones by the
/// pattern set.
LogicalResult insertAndApplyPatterns(ArrayRef<Operation *> newOps);
/// Add to the new operation worklist if it is an extract_slice.
void notifyOperationInserted(Operation *op,
OpBuilder::InsertPoint previous) override;
/// Shared helper for operation removal from the worklist.
void removeOp(Operation *op);
/// Remove the operation from the worklist.
void notifyOperationErased(Operation *op) override;
/// Remove the operation from the worklist.
void notifyOperationReplaced(Operation *op, ValueRange replacement) override;
/// The worklist for this transformation keeps track of the slices to visit
/// next for fusion.
std::deque<tensor::ExtractSliceOp> worklist;
private:
/// Optional pattern set to apply when adding new operations to the
/// worklist.
std::optional<FrozenRewritePatternSet> patterns = std::nullopt;
};
SliceTrackingListener::SliceTrackingListener(
std::optional<FrozenRewritePatternSet> p) {
patterns = std::move(p);
}
LogicalResult
SliceTrackingListener::insertAndApplyPatterns(ArrayRef<Operation *> ops) {
for (Operation *op : ops) {
if (auto slice = dyn_cast<tensor::ExtractSliceOp>(op))
worklist.push_back(slice);
}
if (!patterns)
return success();
return applyOpPatternsGreedily(
ops, patterns.value(),
GreedyRewriteConfig().setListener(this).setStrictness(
GreedyRewriteStrictness::ExistingAndNewOps));
}
void SliceTrackingListener::notifyOperationInserted(
Operation *op, OpBuilder::InsertPoint previous) {
auto slice = dyn_cast<tensor::ExtractSliceOp>(op);
if (!slice)
return;
worklist.push_back(slice);
}
// Scan the worklist for the given op and remove it if present. The
// expectation is for the worklist to be small and for removal to be
// relatively rare.
void SliceTrackingListener::removeOp(Operation *op) {
if (!isa<tensor::ExtractSliceOp>(op))
return;
auto iter = worklist.begin();
while (iter != worklist.end()) {
if (*iter == op)
break;
iter++;
}
if (iter == worklist.end())
return;
worklist.erase(iter);
}
void SliceTrackingListener::notifyOperationErased(Operation *op) {
removeOp(op);
}
void SliceTrackingListener::notifyOperationReplaced(Operation *op,
ValueRange replacement) {
removeOp(op);
}
//===----------------------------------------------------------------------===//
// ReplacementListener
//===----------------------------------------------------------------------===//
/// Listener that tracks updates replacements for values which can be mutated.
/// This listener runs on top of the existing listener for the rewriter,
/// to make sure external users can still run listeners.
class ReplacementListener : public RewriterBase::ForwardingListener {
public:
ReplacementListener(DenseMap<Value, Value> &replacements,
OpBuilder::Listener *listener)
: ForwardingListener(listener), replacements(replacements) {}
void updateReplacementValues(ValueRange origValues,
ValueRange replaceValues) {
// This can probably be written better, but just iterates over the map
// and the new replacements for now.
for (auto &[key, val] : replacements) {
for (auto [orig, replace] : llvm::zip_equal(origValues, replaceValues)) {
if (val == orig) {
val = replace;
}
}
}
}
void notifyOperationReplaced(Operation *op, Operation *newOp) override {
ForwardingListener::notifyOperationReplaced(op, newOp);
updateReplacementValues(op->getResults(), newOp->getResults());
}
void notifyOperationReplaced(Operation *op, ValueRange values) override {
ForwardingListener::notifyOperationReplaced(op, values);
updateReplacementValues(op->getResults(), values);
}
private:
DenseMap<Value, Value> &replacements;
};
} // namespace
/// Implementation of tile consumer and fuse producer greedily.
FailureOr<scf::SCFTileAndFuseResult>
mlir::scf::tileConsumerAndFuseProducersUsingSCF(
RewriterBase &rewriter, TilingInterface consumer,
const scf::SCFTileAndFuseOptions &options) {
// This transformation is only valid for ops that return values (i.e. not
// valid to use with operations that have memref operands).
if (!consumer->getNumResults()) {
return rewriter.notifyMatchFailure(
consumer, "invalid pattern for op with no results");
}
// 1. First tile the consumer.
SetVector<Operation *> fusedProducers, tiledAndFusedOps;
FailureOr<scf::SCFTilingResult> tilingResult =
tileUsingSCF(rewriter, consumer, options.tilingOptions);
if (failed(tilingResult))
return rewriter.notifyMatchFailure(consumer, "failed to tile consumer");
tiledAndFusedOps.insert_range(tilingResult->tiledOps);
DenseMap<Value, Value> replacements;
for (auto [origVal, replacement] :
llvm::zip_equal(consumer->getResults(), tilingResult->replacements)) {
replacements[origVal] = replacement;
}
// If there are no loops generated, fusion is immaterial.
auto &loops = tilingResult->loops;
if (loops.empty()) {
return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, loops,
replacements};
}
// Since the loop gets potentially replaced during fusion, we need to track
// the mutation of replacement values. To do this, we attach a listener to
// update the replacements as they happen.
OpBuilder::Listener *previousListener = rewriter.getListener();
auto resetListener =
llvm::make_scope_exit([&]() { rewriter.setListener(previousListener); });
ReplacementListener replaceListener(replacements, previousListener);
rewriter.setListener(&replaceListener);
// 2. Typically, the operands of the tiled operation are slices of the
// operands of the untiled operation. These are expressed in IR using
// `tensor.extract_slice` operations with source being the operands of
// the untiled operation. Create a worklist of these
// `tensor.extract_slice` operations. If the producers of the source of
// the `tensor.extract_slice` can be tiled such that the tiled value is
// generated in-place, that effectively tiles + fuses the operations.
struct WorklistItem {
tensor::ExtractSliceOp candidateSlice;
SCFTileAndFuseOptions::ControlFnResult controlFnResult;
};
SliceTrackingListener sliceTracker =
SliceTrackingListener(options.cleanupPatterns);
if (failed(
sliceTracker.insertAndApplyPatterns(tilingResult->generatedSlices))) {
return rewriter.notifyMatchFailure(consumer, "cleanup patterns failed");
}
OpBuilder::InsertionGuard g(rewriter);
while (!sliceTracker.worklist.empty()) {
auto candidateSlice = sliceTracker.worklist.front();
sliceTracker.worklist.pop_front();
auto [fusableProducer, destinationInitArg] =
getUntiledProducerFromSliceSource(&candidateSlice.getSourceMutable(),
loops);
if (!fusableProducer)
continue;
std::optional<SCFTileAndFuseOptions::ControlFnResult> controlFnResult =
options.fusionControlFn(candidateSlice, fusableProducer,
destinationInitArg.has_value());
if (!controlFnResult)
continue;
WorklistItem worklistItem = {candidateSlice, controlFnResult.value()};
// The operands of the fused producer might themselved be slices of
// values produced by operations that implement the `TilingInterface`.
// Add these operations to the worklist.
std::optional<scf::SCFFuseProducerOfSliceResult> fusedResult =
tileAndFuseProducerOfSlice(rewriter, worklistItem.candidateSlice,
loops);
if (!fusedResult)
continue;
SmallVector<Operation *> worklistCandidates = fusedResult->generatedSlices;
if (worklistItem.controlFnResult.yieldProducerReplacement) {
// Reconstruct and yield all opResult of fusableProducerOp by default.
// The caller can specific which one to yield by designating optional
// argument named `yieldResultNumber` of
// `yieldReplacementForFusedProducer`.
Operation *fusableProducerOp = fusedResult->origProducer.getOwner();
FailureOr<SmallVector<Operation *>> newSlices =
yieldReplacementForFusedProducer(rewriter,
worklistItem.candidateSlice,
fusedResult.value(), loops);
if (failed(newSlices)) {
return rewriter.notifyMatchFailure(
fusableProducerOp, "failed to replacement value for this "
"operation from within the tiled loop");
}
worklistCandidates.append(newSlices.value());
for (auto [index, result] :
llvm::enumerate(fusableProducerOp->getResults())) {
replacements[result] = loops.front()->getResult(
loops.front()->getNumResults() -
fusableProducerOp->getNumResults() + index);
}
}
if (Operation *tiledAndFusedOp =
fusedResult->tiledAndFusedProducer.getDefiningOp()) {
fusedProducers.insert(fusedResult->origProducer.getDefiningOp());
tiledAndFusedOps.insert(tiledAndFusedOp);
}
if (failed(sliceTracker.insertAndApplyPatterns(worklistCandidates))) {
return rewriter.notifyMatchFailure(consumer, "cleanup patterns failed");
}
}
return scf::SCFTileAndFuseResult{fusedProducers, tiledAndFusedOps, loops,
replacements};
}
//===----------------------------------------------------------------------===//
// tileAndFuseConsumerUsingSCF implementation.
//===----------------------------------------------------------------------===//
/// A utility function that checks whether the only use of the result of a
/// tensor.insert_slice op is in a scf.yield op.
static LogicalResult
checkAssumptionForFusingConsumer(tensor::InsertSliceOp candidateSliceOp) {
Value result = candidateSliceOp.getResult();
Value::use_range uses = result.getUses();
if (!llvm::hasSingleElement(uses)) {
LLVM_DEBUG(llvm::dbgs() << "Too many uses of the candidate slice op\n");
return failure();
}
OpOperand &operandUse = (*uses.begin());
Operation *userOp = operandUse.getOwner();
if (!isa<scf::YieldOp>(userOp)) {
LLVM_DEBUG(llvm::dbgs()
<< "Expected scf.yield to be the only user, but got -> "
<< (*userOp));
return failure();
}
if (result.getDefiningOp()->getBlock() != userOp->getBlock()) {
LLVM_DEBUG(llvm::dbgs() << "Expected tensor.insert_slice and scf.yield to "
"be in the same block\n");
return failure();
}
return success();
}
/// An utility to get the first user of the given loopOp. If any of user stay
/// in different block of loopOp, return failure.
static FailureOr<Operation *> getFirstUserOfLoop(Operation *loopOp) {
if (!isa<LoopLikeOpInterface>(loopOp))
return failure();
Operation *firstUserOfLoop = nullptr;
for (Operation *userOp : loopOp->getUsers()) {
// `ParallelInsertSlice` located inside `InParallelOp` has no same parent
// block with any other types of operation. Thus, just redirecting to its
// parent `InParallelOp`. E.g.
//
// ```
// %1 = scf.for {
// ...
// }
// %2 = consumerOp ins(%1, ...)
// scf.forall.in_parallel {
// tensor.parallel_insert_slice %1
// }
// ```
// where `InParallelOp` but not `ParallelInsertSlice` stays in the same
// same block with `consumerOp`.
if (isa<tensor::ParallelInsertSliceOp>(userOp))
userOp = userOp->getParentOfType<scf::InParallelOp>();
if (loopOp->getBlock() != userOp->getBlock())
return failure();
if (!firstUserOfLoop || userOp->isBeforeInBlock(firstUserOfLoop))
firstUserOfLoop = userOp;
}
return firstUserOfLoop;
}
/// This utility currently checks whether the first userOp of loop is NOT
/// before the last defineOp of consumer operand. Because that we need to move
/// the whole loop structure right before the `firstUserOfLoop`. This utility
/// thus helps ensuring that no invalid IR is formed, i.e. no backward slice
/// of consumerOp is dominated by the `firstUserOfLoop`. Saying that:
///
/// ```
/// %0 = scf.for() {
/// ...
/// }
/// ...
/// %1 = firstUserOfLoop(%0)
/// ...
/// %2 = lastDefOfConsumerOperand
/// ...
/// %3 = consumerOp(%2)
/// ```
///
/// If the `firstUserOfLoop` is before `lastDefOfConsumerOperand`, then it
/// would be invalid to move the `loopOp` right before the `firstUserOfLoop`,
/// a.k.a. use-def chain violation:
///
/// ```
/// %0:2 = scf.for() {
/// // use before define error
/// %3 = tiledConsumerOp(%2)
/// }
/// %1 = firstUserOfLoop(%0)
/// ...
/// %2 = lastDefOfConsumerOperand
/// ```
///
/// @param loopOp: loop operation
/// @param consumerOp: consumer operation
/// @param reorderOperations: the flag controls whether to reorder the
/// backward slice w.r.t. the defineOp of `consumerOp` operands.
/// @return: computed backward slice of consumerOp, but excluding those
/// already dominates `firstUserOfLoop`.
static FailureOr<llvm::SetVector<Operation *>>
checkAssumptionForLoop(Operation *loopOp, Operation *consumerOp,
bool reorderOperations) {
FailureOr<Operation *> firstUserOfLoop = getFirstUserOfLoop(loopOp);
if (failed(firstUserOfLoop))
return failure();
BackwardSliceOptions options;
DominanceInfo dominanceInfo;
options.inclusive = true;
options.omitBlockArguments = true;
bool includeLoopOp = false;
options.filter = [&](Operation *op) {
if (op == loopOp) {
includeLoopOp = true;
return false;
}
// Cut off the slice to not include any operation that already dominates
// firstUserOfLoop.
return !dominanceInfo.properlyDominates(op, *firstUserOfLoop);
};
llvm::SetVector<Operation *> slice;
for (auto operand : consumerOp->getOperands()) {
LogicalResult result = getBackwardSlice(operand, &slice, options);
assert(result.succeeded() && "expected a backward slice");
(void)result;
}
if (!slice.empty()) {
// If consumerOp has one producer, which is also the user of loopOp.
// E.g.
// ```
// %0 = %loopOp
// %1 = consumerOp1 ins(%0)
// %2 = consumerOp2 ins(%0, %1)
// ```
// We can not fuse consumerOp2 into loopOp due to UD chain, unless
// consumerOp1 has already been fused into loopOp before.
if (includeLoopOp || !reorderOperations)
return failure();
}
return slice;
}
/// Fetches the OpOperand of the first valid user (and use) of the value `val`
/// which implements `TilingInterface` and `DestinationStyleOpInterface`.
/// Returns failure otherwise.
static FailureOr<OpOperand *> getConsumerFromLoopUses(RewriterBase &rewriter,
Operation *loopOp,
unsigned resultNumber) {
if (!isa<LoopLikeOpInterface>(loopOp))
return failure();
Value val = loopOp->getResult(resultNumber);
Block *loopBlock = loopOp->getBlock();
for (OpOperand &opOperand : val.getUses()) {
Operation *consumerOp = opOperand.getOwner();
// Step 1. Check if the user is tilable.
if (!isa<TilingInterface>(consumerOp) ||
!isa<DestinationStyleOpInterface>(consumerOp)) {
// TODO: We have to init result of consumer before scf.for, use
// DestinationStyleOpInterface to get result shape from init for now.
// Add support for other op such as op has InferTypeOpInterface.
continue;
}
// Step 2. Check if user stay in the same block.
if (loopBlock != consumerOp->getBlock())
continue;
// Step 3. Check if user has succeeding user. Otherwise, it usually
// represents already tiled.
if (consumerOp->use_empty())
continue;
// Step 4. Check assumption for loop with `reorderOperations` enabled.
FailureOr<llvm::SetVector<Operation *>> slice =
checkAssumptionForLoop(loopOp, consumerOp, true);
if (failed(slice))
continue;
// Step 5. If backward sice is not empty, move them before
// firstUserOfLoop.
if (!slice->empty()) {
mlir::topologicalSort(*slice);
FailureOr<Operation *> firstUserOfLoop = getFirstUserOfLoop(loopOp);
assert(succeeded(firstUserOfLoop) && "First user of loop is not found");
for (auto op : *slice) {
rewriter.moveOpBefore(op, *firstUserOfLoop);
}
}
return &opOperand;
}
return failure();
}
/// Fetch the untiled consumer of the outermost scf.for's result which is
/// yielded by a tensor.insert_slice from the innermost scf.for. This function
/// makes the following assumptions :
/// 1. tensor.insert_slice has scf.yield as its only user.
/// 2. scf.for's corresponding result has only one use.
/// 3. The `loops` passed in are perfectly nested `scf.for` operations.
static FailureOr<OpOperand *>
getUntiledConsumerFromSlice(RewriterBase &rewriter,
tensor::InsertSliceOp candidateSliceOp,
MutableArrayRef<LoopLikeOpInterface> loops) {
assert(!loops.empty() && "unexpected loops to be empty");
// 1. Expect slice to be part of the body of the inner most loop.
Operation *containingOp = candidateSliceOp->getParentOp();
if (containingOp != loops.back()) {
return rewriter.notifyMatchFailure(
candidateSliceOp,
"expected slice to be within body of inner-most loop");
}
// 2. Check that the loop is perfectly nested.
if (!isPerfectlyNestedForLoops(loops)) {
return rewriter.notifyMatchFailure(
candidateSliceOp, "expected passed loops to be perfectly nested.");
}
if (failed(checkAssumptionForFusingConsumer(candidateSliceOp)))
return failure();
Value sliceResult = candidateSliceOp.getResult();
// 3. Fetch the corresponding output.
OpOperand &yieldOpOperand = (*sliceResult.getUses().begin());
unsigned resultNumber = yieldOpOperand.getOperandNumber();
scf::ForOp topLevelForOp = cast<scf::ForOp>(loops.front().getOperation());
return getConsumerFromLoopUses(rewriter, topLevelForOp, resultNumber);
}
/// Fetch the first untiled consumer of a scf.forall's result which is yielded
/// by a tensor.parallel_insert_slice.
static FailureOr<OpOperand *>
getUntiledConsumerFromSlice(RewriterBase &rewriter,
tensor::ParallelInsertSliceOp candidateSliceOp,
MutableArrayRef<LoopLikeOpInterface> loops) {
assert(!loops.empty() && "unexpected loops to be empty");
// 1. Check that the surrounding loop is a single scf.forall loop.
if (loops.size() != 1) {
return rewriter.notifyMatchFailure(
candidateSliceOp, "expected single surrounding scf.forall");
}
auto forallOp = dyn_cast<scf::ForallOp>(loops.front().getOperation());
if (!forallOp) {
return rewriter.notifyMatchFailure(
candidateSliceOp, "expected single surrounding scf.forall");
}
// 2. Fetch the corresponding output
Value sliceDest = candidateSliceOp.getDest();
auto iterArg = dyn_cast<BlockArgument>(sliceDest);
if (!iterArg)
return failure();
if (iterArg.getOwner()->getParentOp() != forallOp)
return failure();
unsigned resultNumber =
forallOp.getTiedOpResult(forallOp.getTiedOpOperand(iterArg))
.getResultNumber();
return getConsumerFromLoopUses(rewriter, forallOp, resultNumber);
}
/// A utility to fetch an untiled consumer of
/// tensor.insert_slice/tensor.parallel_insert_slice.
static FailureOr<SmallVector<OpOperand *>> getUntiledConsumerOperandsFromSlices(
RewriterBase &rewriter, ArrayRef<Operation *> sliceOps,
MutableArrayRef<LoopLikeOpInterface> loops) {
assert(!loops.empty() && "unexpected empty loops");
assert(!sliceOps.empty() && "unexpected empty list of candidate slices");
SmallVector<OpOperand *> fusedOperands;
for (auto sliceOp : sliceOps) {
FailureOr<OpOperand *> fusedOperand =
TypeSwitch<Operation *, FailureOr<OpOperand *>>(sliceOp)
.Case<tensor::InsertSliceOp, tensor::ParallelInsertSliceOp>(
[&](auto op) {
return getUntiledConsumerFromSlice(rewriter, op, loops);
})
.Default([&](Operation *op) {
return rewriter.notifyMatchFailure(op, "unhandled slice type");
});
if (failed(fusedOperand)) {
return failure();
}
if (!fusedOperands.empty() &&
fusedOperand.value()->getOwner() != fusedOperands.front()->getOwner()) {
return rewriter.notifyMatchFailure(
fusedOperand.value()->getOwner(),
"all candidate slices must be to the same consumer");
}
fusedOperands.push_back(fusedOperand.value());
}
return fusedOperands;
}
template <typename InsertSliceOpTy>
static tensor::InsertSliceOp cloneAsInsertSlice(RewriterBase &rewriter,
InsertSliceOpTy sliceOp);
template <>
tensor::InsertSliceOp
cloneAsInsertSlice<tensor::InsertSliceOp>(RewriterBase &rewriter,
tensor::InsertSliceOp insertSliceOp) {
return cast<tensor::InsertSliceOp>(
rewriter.clone(*insertSliceOp.getOperation()));
}
template <>
tensor::InsertSliceOp cloneAsInsertSlice<tensor::ParallelInsertSliceOp>(
RewriterBase &rewriter, tensor::ParallelInsertSliceOp insertSliceOp) {
return tensor::InsertSliceOp::create(
rewriter, insertSliceOp->getLoc(), insertSliceOp.getSource(),
insertSliceOp.getDest(), insertSliceOp.getMixedOffsets(),
insertSliceOp.getMixedSizes(), insertSliceOp.getMixedStrides());
}
static SmallVector<tensor::InsertSliceOp>
cloneAsInsertSlices(RewriterBase &rewriter,
ArrayRef<Operation *> candidateSlices) {
assert(!candidateSlices.empty() &&
"unexpected empty list of slices to clone");
SmallVector<tensor::InsertSliceOp> clonedSlices;
for (auto sliceOp : candidateSlices) {
TypeSwitch<Operation *>(sliceOp)
.Case<tensor::InsertSliceOp, tensor::ParallelInsertSliceOp>(
[&](auto op) {
auto clonedOp = cloneAsInsertSlice(rewriter, op);
clonedSlices.push_back(clonedOp);
})
.Default([&](Operation *op) {
// Assert here assuming this has already been checked.
assert(0 && "unexpected slice type while cloning as insert slice");
});
}
return clonedSlices;
}
/// Implementation of fusing consumer of a single slice by computing the
/// slice of the consumer in-place for scf loop.
FailureOr<scf::SCFFuseConsumerOfSliceResult>
mlir::scf::tileAndFuseConsumerOfSlices(
RewriterBase &rewriter, ArrayRef<Operation *> candidateSlices,
MutableArrayRef<LoopLikeOpInterface> loops) {
if (candidateSlices.empty()) {
return rewriter.notifyMatchFailure(
rewriter.getUnknownLoc(),
"no candidate slices provided for consumer fusion");
}
// Return if `loops` is empty, return an error for now. Caller is expected
// to handle this case.
if (loops.empty()) {
return rewriter.notifyMatchFailure(
candidateSlices.front(),
"cannot call tile and fuse consumer with an empty loop nest");
}
if (!(llvm::all_of(candidateSlices, llvm::IsaPred<tensor::InsertSliceOp>) ||
llvm::all_of(candidateSlices,
llvm::IsaPred<tensor::ParallelInsertSliceOp>))) {
return rewriter.notifyMatchFailure(
candidateSlices.front(),
"candidates slices need to be all `tensor.extract_slice`s or "
"`tensor.parallel_insert_slice`s");
}
// 1. Get the consumer of scf.for for the result yielded by
// tensor.insert_slice/parallel_insert_slice.
SmallVector<OpOperand *> consumerOpOperands;
Operation *consumerOp;
{
FailureOr<SmallVector<OpOperand *>> maybeConsumerOpOperand =
getUntiledConsumerOperandsFromSlices(rewriter, candidateSlices, loops);
if (failed(maybeConsumerOpOperand)) {
return rewriter.notifyMatchFailure(candidateSlices.front(),
"could not fetch consumer to fuse");
}
std::swap(consumerOpOperands, maybeConsumerOpOperand.value());
consumerOp = consumerOpOperands.front()->getOwner();
}
LoopLikeOpInterface outerMostLoop = loops.front();
LoopLikeOpInterface innerMostLoop = loops.back();
// Check assumption for loop with `reorderOperations` disabled.
if (failed(checkAssumptionForLoop(outerMostLoop, consumerOp, false))) {
return rewriter.notifyMatchFailure(
outerMostLoop, "the first user of loop should not dominate any define "
"of consumer operand(s)");
}
OpBuilder::InsertionGuard g(rewriter);
// 2. Check consumer is not using scf loop's output as init.
auto dstOp = dyn_cast<DestinationStyleOpInterface>(consumerOp);
if (!dstOp)
return rewriter.notifyMatchFailure(consumerOp,
"consumer op is not DPS operation");
if (llvm::any_of(consumerOpOperands, [&](OpOperand *opOperand) {
return dstOp.isDpsInit(opOperand);
})) {
return rewriter.notifyMatchFailure(
consumerOp,
"consumer op taking the result of scf.for as init is not supported");
}
SmallVector<Value> newInits = llvm::to_vector(dstOp.getDpsInits());
// 3. Move the whole loop structure right before firstUserOfLoop, the
// dominance should be already ensured by `checkAssumptionForLoop`.
FailureOr<Operation *> firstUserOfLoop = getFirstUserOfLoop(outerMostLoop);
if (failed(firstUserOfLoop)) {
return rewriter.notifyMatchFailure(
outerMostLoop, "could not find the first user of outer most loop");
}
rewriter.moveOpBefore(outerMostLoop, *firstUserOfLoop);
// 4. Set insertion point before terminator op of the loop and create a new
// tensor.insert_slice. In the scf.for case this is a clone of the
// candidateSliceOp whereas in the scf.forall case this is created from the
// operands of tensor.parallel_insert_slice.
if (auto sliceOp =
dyn_cast<tensor::ParallelInsertSliceOp>(candidateSlices.front())) {
auto newForallOp = cast<scf::ForallOp>(innerMostLoop.getOperation());
rewriter.setInsertionPoint(newForallOp.getTerminator());
} else {
rewriter.setInsertionPoint(candidateSlices.front());
}
// 5.a. Clone all the candidate slices as equivalent insert slice ops.
SmallVector<tensor::InsertSliceOp> clonedInsertSlices =
cloneAsInsertSlices(rewriter, candidateSlices);
// 5.b. Clone consumer op.
auto clonedConsumerOp = cast<TilingInterface>(rewriter.clone(*consumerOp));
SmallVector<unsigned> operandNumbers =
llvm::map_to_vector(consumerOpOperands, [](OpOperand *opOperand) {
return opOperand->getOperandNumber();
});
SmallVector<OpOperand *> clonedOpFusedOperandsList =
llvm::map_to_vector(operandNumbers, [&](unsigned operandNum) {
return &clonedConsumerOp->getOpOperand(operandNum);
});
// 5.c. Replace all uses of the loop result with the result of the cloned
// tensor.insert_slice.
rewriter.modifyOpInPlace(clonedConsumerOp, [&]() {
for (auto [operandToReplace, clonedSliceOp] :
llvm::zip_equal(clonedOpFusedOperandsList, clonedInsertSlices)) {
operandToReplace->set(clonedSliceOp.getResult());
}
});
// 6. Perform tiling of the cloned consumer and replace the operand at
// `operandNumber` with the source of the cloned tensor.insert_slice op.
FailureOr<TilingResult> tileAndFuseResult =
tensor::replaceInsertSlicesWithTiledConsumer(rewriter, clonedInsertSlices,
clonedOpFusedOperandsList);
if (failed(tileAndFuseResult)) {
return failure();
}
auto tiledConsumerOp = cast<TilingInterface>(tileAndFuseResult->tiledOps[0]);
for (auto [operandNum, clonedSliceOp] :
llvm::zip_equal(operandNumbers, clonedInsertSlices)) {
rewriter.replaceAllUsesWith(tiledConsumerOp->getOperand(operandNum),
clonedSliceOp.getSource());
}
// 7. Reconstruct [nested] loop with new inits.
YieldTiledValuesFn newYieldValuesFn =
[&](RewriterBase &innerRewriter, Location loc, ValueRange /*ivs*/,
ValueRange newRegionIterArgs, SmallVector<Value> &tiledResult,
SmallVector<SmallVector<OpFoldResult>> &tiledOffset,
SmallVector<SmallVector<OpFoldResult>> &tiledSizes) -> LogicalResult {
OpBuilder::InsertionGuard g(innerRewriter);
// 8. Set inner insertPoint right before tiled consumer op.
innerRewriter.setInsertionPoint(tiledConsumerOp);
SmallVector<SmallVector<OpFoldResult>> allOffsets, allSizes;
for (auto candidateSliceOp : clonedInsertSlices) {
SmallVector<OpFoldResult> offsets = candidateSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> sizes = candidateSliceOp.getMixedSizes();
SmallVector<OpFoldResult> strides = candidateSliceOp.getMixedStrides();
// 9. Check all insert stride is 1.
if (!llvm::all_of(strides, isOneInteger)) {
return rewriter.notifyMatchFailure(
candidateSliceOp, "containingOp's result yield with stride");
}
allOffsets.emplace_back(std::move(offsets));
allSizes.emplace_back(std::move(sizes));
}
// 10. Try to get iter domain position from input position. Use
// clonedConsumerOp instead of tiledConsumerOp, because the iteration
// domain may require index computation based on the result size. The
// sizes and offsets should be the same either way, but using
// tiledConsumerOp could lead to some chained unnecessary extra index
// computation.
SmallVector<OpFoldResult> iterDomainOffsets, iterDomainSizes;
if (failed(clonedConsumerOp.getIterationDomainTileFromOperandTiles(
rewriter, operandNumbers, allOffsets, allSizes, iterDomainOffsets,
iterDomainSizes))) {
return rewriter.notifyMatchFailure(
clonedConsumerOp,
"can't get iter domain position from input position");
}
// 11. Try to fetch the offset and size for all results of the cloned
// consumer. This would then be used to form the corresponding
// tensor.insert_slice/parallel_insert_slice later.
unsigned totalNumResultsOfConsumer = tiledConsumerOp->getNumResults();
SmallVector<SmallVector<OpFoldResult>> resultOffsets(
totalNumResultsOfConsumer);
SmallVector<SmallVector<OpFoldResult>> resultSizes(
totalNumResultsOfConsumer);
for (auto [idx, v] : llvm::enumerate(tiledConsumerOp->getResults())) {
if (failed(tiledConsumerOp.getResultTilePosition(
rewriter, idx, iterDomainOffsets, iterDomainSizes,
resultOffsets[idx], resultSizes[idx]))) {
return rewriter.notifyMatchFailure(
tiledConsumerOp,
"can't get result domain position from iter domain position");
}
}
// 12. Create `extract_slice` for `iter_args` for DPS operation if
// necessary.
if (auto tiledDestStyleOp = dyn_cast<DestinationStyleOpInterface>(
tiledConsumerOp.getOperation())) {
rewriter.setInsertionPoint(tiledDestStyleOp);
for (const auto &&[index, newRegionArg] :
llvm::enumerate(newRegionIterArgs)) {
auto destSlice = tensor::ExtractSliceOp::create(
rewriter, loc, newRegionArg, resultOffsets[index],
resultSizes[index],
SmallVector<OpFoldResult>(resultOffsets[index].size(),
rewriter.getIndexAttr(1)));
// Make a copy of index to avoid a capturing structured binding, which
// is a C++20 extension.
auto dstNumber = index;
rewriter.modifyOpInPlace(tiledDestStyleOp, [&]() {
tiledDestStyleOp.getDpsInitsMutable()[dstNumber].set(destSlice);
});
}
}
// 13. Prepare tiled offset and sizes for later `insert_slice` creation by
// caller.
Block *block = rewriter.getInsertionPoint()->getBlock();
rewriter.setInsertionPoint(block->getTerminator());
for (const auto &&[index, result] :
llvm::enumerate(tiledConsumerOp->getResults())) {
tiledResult.push_back(result);
tiledOffset.emplace_back(resultOffsets[index]);
tiledSizes.emplace_back(resultSizes[index]);
}
return success();
};
// 14. Add new inits to [nested] loops.
if (failed(addInitOperandsToLoopNest(rewriter, loops, newInits,
newYieldValuesFn))) {
return rewriter.notifyMatchFailure(tiledConsumerOp,
"unable to add new inits to nest loop");
}
// 15. Replace the result of scf loop and consumer op with new loop's
// results.
for (auto &&[oldResult, newResult] :
llvm::zip(consumerOp->getResults(),
loops.front()->getResults().take_back(newInits.size()))) {
rewriter.replaceAllUsesWith(oldResult, newResult);
}
// 16. Need to erase the old scf loop and the cloned consumer op.
rewriter.eraseOp(clonedConsumerOp);
SmallVector<OpOperand *> tiledAndFusedOpOperands =
llvm::map_to_vector(operandNumbers, [&](unsigned operandNum) {
return &tileAndFuseResult->tiledOps[0]->getOpOperand(operandNum);
});
return scf::SCFFuseConsumerOfSliceResult{
std::move(consumerOpOperands), std::move(tiledAndFusedOpOperands),
std::move(tileAndFuseResult->tiledOps)};
}
//===----------------------------------------------------------------------===//
// lowerToLoopsUsingSCFForOp implementation.
//===----------------------------------------------------------------------===//
FailureOr<SmallVector<scf::ForOp>>
mlir::scf::lowerToLoopsUsingSCFForOp(RewriterBase &rewriter,
TilingInterface op) {
// TODO: Handle cases where the op has results if needed.
if (op->getNumResults() > 0) {
return rewriter.notifyMatchFailure(
op, "unable to lower to loops operations with return values");
}
SmallVector<Range> domain = op.getIterationDomain(rewriter);
SmallVector<Value> ivs;
SmallVector<scf::ForOp> loops;
Location loc = op.getLoc();
for (auto loopRange : domain) {
Value offsetVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.offset);
Value sizeVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.size);
Value strideVal =
getValueOrCreateConstantIndexOp(rewriter, loc, loopRange.stride);
auto loop = scf::ForOp::create(rewriter, op.getLoc(), offsetVal, sizeVal,
strideVal, ValueRange{});
loops.push_back(loop);
ivs.push_back(loop.getInductionVar());
rewriter.setInsertionPoint(loop.getBody()->getTerminator());
}
if (failed(op.generateScalarImplementation(rewriter, op.getLoc(), ivs))) {
return failure();
}
return loops;
}
|