1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
|
//===- ParallelLoopFusion.cpp - Code to perform loop fusion ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements loop fusion on parallel loops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Analysis/AliasAnalysis.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
namespace mlir {
#define GEN_PASS_DEF_SCFPARALLELLOOPFUSION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::scf;
/// Verify there are no nested ParallelOps.
static bool hasNestedParallelOp(ParallelOp ploop) {
auto walkResult =
ploop.getBody()->walk([](ParallelOp) { return WalkResult::interrupt(); });
return walkResult.wasInterrupted();
}
/// Verify equal iteration spaces.
static bool equalIterationSpaces(ParallelOp firstPloop,
ParallelOp secondPloop) {
if (firstPloop.getNumLoops() != secondPloop.getNumLoops())
return false;
auto matchOperands = [&](const OperandRange &lhs,
const OperandRange &rhs) -> bool {
// TODO: Extend this to support aliases and equal constants.
return std::equal(lhs.begin(), lhs.end(), rhs.begin());
};
return matchOperands(firstPloop.getLowerBound(),
secondPloop.getLowerBound()) &&
matchOperands(firstPloop.getUpperBound(),
secondPloop.getUpperBound()) &&
matchOperands(firstPloop.getStep(), secondPloop.getStep());
}
/// Checks if the parallel loops have mixed access to the same buffers. Returns
/// `true` if the first parallel loop writes to the same indices that the second
/// loop reads.
static bool haveNoReadsAfterWriteExceptSameIndex(
ParallelOp firstPloop, ParallelOp secondPloop,
const IRMapping &firstToSecondPloopIndices,
llvm::function_ref<bool(Value, Value)> mayAlias) {
DenseMap<Value, SmallVector<ValueRange, 1>> bufferStores;
SmallVector<Value> bufferStoresVec;
firstPloop.getBody()->walk([&](memref::StoreOp store) {
bufferStores[store.getMemRef()].push_back(store.getIndices());
bufferStoresVec.emplace_back(store.getMemRef());
});
auto walkResult = secondPloop.getBody()->walk([&](memref::LoadOp load) {
Value loadMem = load.getMemRef();
// Stop if the memref is defined in secondPloop body. Careful alias analysis
// is needed.
auto *memrefDef = loadMem.getDefiningOp();
if (memrefDef && memrefDef->getBlock() == load->getBlock())
return WalkResult::interrupt();
for (Value store : bufferStoresVec)
if (store != loadMem && mayAlias(store, loadMem))
return WalkResult::interrupt();
auto write = bufferStores.find(loadMem);
if (write == bufferStores.end())
return WalkResult::advance();
// Check that at last one store was retrieved
if (write->second.empty())
return WalkResult::interrupt();
auto storeIndices = write->second.front();
// Multiple writes to the same memref are allowed only on the same indices
for (const auto &othStoreIndices : write->second) {
if (othStoreIndices != storeIndices)
return WalkResult::interrupt();
}
// Check that the load indices of secondPloop coincide with store indices of
// firstPloop for the same memrefs.
auto loadIndices = load.getIndices();
if (storeIndices.size() != loadIndices.size())
return WalkResult::interrupt();
for (int i = 0, e = storeIndices.size(); i < e; ++i) {
if (firstToSecondPloopIndices.lookupOrDefault(storeIndices[i]) !=
loadIndices[i]) {
auto *storeIndexDefOp = storeIndices[i].getDefiningOp();
auto *loadIndexDefOp = loadIndices[i].getDefiningOp();
if (storeIndexDefOp && loadIndexDefOp) {
if (!isMemoryEffectFree(storeIndexDefOp))
return WalkResult::interrupt();
if (!isMemoryEffectFree(loadIndexDefOp))
return WalkResult::interrupt();
if (!OperationEquivalence::isEquivalentTo(
storeIndexDefOp, loadIndexDefOp,
[&](Value storeIndex, Value loadIndex) {
if (firstToSecondPloopIndices.lookupOrDefault(storeIndex) !=
firstToSecondPloopIndices.lookupOrDefault(loadIndex))
return failure();
else
return success();
},
/*markEquivalent=*/nullptr,
OperationEquivalence::Flags::IgnoreLocations)) {
return WalkResult::interrupt();
}
} else {
return WalkResult::interrupt();
}
}
}
return WalkResult::advance();
});
return !walkResult.wasInterrupted();
}
/// Analyzes dependencies in the most primitive way by checking simple read and
/// write patterns.
static LogicalResult
verifyDependencies(ParallelOp firstPloop, ParallelOp secondPloop,
const IRMapping &firstToSecondPloopIndices,
llvm::function_ref<bool(Value, Value)> mayAlias) {
if (!haveNoReadsAfterWriteExceptSameIndex(
firstPloop, secondPloop, firstToSecondPloopIndices, mayAlias))
return failure();
IRMapping secondToFirstPloopIndices;
secondToFirstPloopIndices.map(secondPloop.getBody()->getArguments(),
firstPloop.getBody()->getArguments());
return success(haveNoReadsAfterWriteExceptSameIndex(
secondPloop, firstPloop, secondToFirstPloopIndices, mayAlias));
}
static bool isFusionLegal(ParallelOp firstPloop, ParallelOp secondPloop,
const IRMapping &firstToSecondPloopIndices,
llvm::function_ref<bool(Value, Value)> mayAlias) {
return !hasNestedParallelOp(firstPloop) &&
!hasNestedParallelOp(secondPloop) &&
equalIterationSpaces(firstPloop, secondPloop) &&
succeeded(verifyDependencies(firstPloop, secondPloop,
firstToSecondPloopIndices, mayAlias));
}
/// Prepends operations of firstPloop's body into secondPloop's body.
/// Updates secondPloop with new loop.
static void fuseIfLegal(ParallelOp firstPloop, ParallelOp &secondPloop,
OpBuilder builder,
llvm::function_ref<bool(Value, Value)> mayAlias) {
Block *block1 = firstPloop.getBody();
Block *block2 = secondPloop.getBody();
IRMapping firstToSecondPloopIndices;
firstToSecondPloopIndices.map(block1->getArguments(), block2->getArguments());
if (!isFusionLegal(firstPloop, secondPloop, firstToSecondPloopIndices,
mayAlias))
return;
DominanceInfo dom;
// We are fusing first loop into second, make sure there are no users of the
// first loop results between loops.
for (Operation *user : firstPloop->getUsers())
if (!dom.properlyDominates(secondPloop, user, /*enclosingOpOk*/ false))
return;
ValueRange inits1 = firstPloop.getInitVals();
ValueRange inits2 = secondPloop.getInitVals();
SmallVector<Value> newInitVars(inits1.begin(), inits1.end());
newInitVars.append(inits2.begin(), inits2.end());
IRRewriter b(builder);
b.setInsertionPoint(secondPloop);
auto newSecondPloop = ParallelOp::create(
b, secondPloop.getLoc(), secondPloop.getLowerBound(),
secondPloop.getUpperBound(), secondPloop.getStep(), newInitVars);
Block *newBlock = newSecondPloop.getBody();
auto term1 = cast<ReduceOp>(block1->getTerminator());
auto term2 = cast<ReduceOp>(block2->getTerminator());
b.inlineBlockBefore(block2, newBlock, newBlock->begin(),
newBlock->getArguments());
b.inlineBlockBefore(block1, newBlock, newBlock->begin(),
newBlock->getArguments());
ValueRange results = newSecondPloop.getResults();
if (!results.empty()) {
b.setInsertionPointToEnd(newBlock);
ValueRange reduceArgs1 = term1.getOperands();
ValueRange reduceArgs2 = term2.getOperands();
SmallVector<Value> newReduceArgs(reduceArgs1.begin(), reduceArgs1.end());
newReduceArgs.append(reduceArgs2.begin(), reduceArgs2.end());
auto newReduceOp = scf::ReduceOp::create(b, term2.getLoc(), newReduceArgs);
for (auto &&[i, reg] : llvm::enumerate(llvm::concat<Region>(
term1.getReductions(), term2.getReductions()))) {
Block &oldRedBlock = reg.front();
Block &newRedBlock = newReduceOp.getReductions()[i].front();
b.inlineBlockBefore(&oldRedBlock, &newRedBlock, newRedBlock.begin(),
newRedBlock.getArguments());
}
firstPloop.replaceAllUsesWith(results.take_front(inits1.size()));
secondPloop.replaceAllUsesWith(results.take_back(inits2.size()));
}
term1->erase();
term2->erase();
firstPloop.erase();
secondPloop.erase();
secondPloop = newSecondPloop;
}
void mlir::scf::naivelyFuseParallelOps(
Region ®ion, llvm::function_ref<bool(Value, Value)> mayAlias) {
OpBuilder b(region);
// Consider every single block and attempt to fuse adjacent loops.
SmallVector<SmallVector<ParallelOp>, 1> ploopChains;
for (auto &block : region) {
ploopChains.clear();
ploopChains.push_back({});
// Not using `walk()` to traverse only top-level parallel loops and also
// make sure that there are no side-effecting ops between the parallel
// loops.
bool noSideEffects = true;
for (auto &op : block) {
if (auto ploop = dyn_cast<ParallelOp>(op)) {
if (noSideEffects) {
ploopChains.back().push_back(ploop);
} else {
ploopChains.push_back({ploop});
noSideEffects = true;
}
continue;
}
// TODO: Handle region side effects properly.
noSideEffects &= isMemoryEffectFree(&op) && op.getNumRegions() == 0;
}
for (MutableArrayRef<ParallelOp> ploops : ploopChains) {
for (int i = 0, e = ploops.size(); i + 1 < e; ++i)
fuseIfLegal(ploops[i], ploops[i + 1], b, mayAlias);
}
}
}
namespace {
struct ParallelLoopFusion
: public impl::SCFParallelLoopFusionBase<ParallelLoopFusion> {
void runOnOperation() override {
auto &aa = getAnalysis<AliasAnalysis>();
auto mayAlias = [&](Value val1, Value val2) -> bool {
return !aa.alias(val1, val2).isNo();
};
getOperation()->walk([&](Operation *child) {
for (Region ®ion : child->getRegions())
naivelyFuseParallelOps(region, mayAlias);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopFusionPass() {
return std::make_unique<ParallelLoopFusion>();
}
|