1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
//===- LoopSpecialization.cpp - scf.parallel/SCR.for specialization -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Specializes parallel loops and for loops for easier unrolling and
// vectorization.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/Transforms/Passes.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Transforms.h"
#include "mlir/Dialect/SCF/Utils/AffineCanonicalizationUtils.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
namespace mlir {
#define GEN_PASS_DEF_SCFFORLOOPPEELING
#define GEN_PASS_DEF_SCFFORLOOPSPECIALIZATION
#define GEN_PASS_DEF_SCFPARALLELLOOPSPECIALIZATION
#include "mlir/Dialect/SCF/Transforms/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::affine;
using scf::ForOp;
using scf::ParallelOp;
/// Rewrite a parallel loop with bounds defined by an affine.min with a constant
/// into 2 loops after checking if the bounds are equal to that constant. This
/// is beneficial if the loop will almost always have the constant bound and
/// that version can be fully unrolled and vectorized.
static void specializeParallelLoopForUnrolling(ParallelOp op) {
SmallVector<int64_t, 2> constantIndices;
constantIndices.reserve(op.getUpperBound().size());
for (auto bound : op.getUpperBound()) {
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = dyn_cast<AffineConstantExpr>(expr))
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
constantIndices.push_back(minConstant);
}
OpBuilder b(op);
IRMapping map;
Value cond;
for (auto bound : llvm::zip(op.getUpperBound(), constantIndices)) {
Value constant =
arith::ConstantIndexOp::create(b, op.getLoc(), std::get<1>(bound));
Value cmp = arith::CmpIOp::create(b, op.getLoc(), arith::CmpIPredicate::eq,
std::get<0>(bound), constant);
cond = cond ? arith::AndIOp::create(b, op.getLoc(), cond, cmp) : cmp;
map.map(std::get<0>(bound), constant);
}
auto ifOp = scf::IfOp::create(b, op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds defined by an affine.min with a constant into
/// 2 loops after checking if the bounds are equal to that constant. This is
/// beneficial if the loop will almost always have the constant bound and that
/// version can be fully unrolled and vectorized.
static void specializeForLoopForUnrolling(ForOp op) {
auto bound = op.getUpperBound();
auto minOp = bound.getDefiningOp<AffineMinOp>();
if (!minOp)
return;
int64_t minConstant = std::numeric_limits<int64_t>::max();
for (AffineExpr expr : minOp.getMap().getResults()) {
if (auto constantIndex = dyn_cast<AffineConstantExpr>(expr))
minConstant = std::min(minConstant, constantIndex.getValue());
}
if (minConstant == std::numeric_limits<int64_t>::max())
return;
OpBuilder b(op);
IRMapping map;
Value constant = arith::ConstantOp::create(
b, op.getLoc(),
IntegerAttr::get(op.getUpperBound().getType(), minConstant));
Value cond = arith::CmpIOp::create(b, op.getLoc(), arith::CmpIPredicate::eq,
bound, constant);
map.map(bound, constant);
auto ifOp = scf::IfOp::create(b, op.getLoc(), cond, /*withElseRegion=*/true);
ifOp.getThenBodyBuilder().clone(*op.getOperation(), map);
ifOp.getElseBodyBuilder().clone(*op.getOperation());
op.erase();
}
/// Rewrite a for loop with bounds/step that potentially do not divide evenly
/// into a for loop where the step divides the iteration space evenly, followed
/// by an scf.if for the last (partial) iteration (if any).
///
/// This function rewrites the given scf.for loop in-place and creates a new
/// scf.if operation for the last iteration. It replaces all uses of the
/// unpeeled loop with the results of the newly generated scf.if.
///
/// The newly generated scf.if operation is returned via `ifOp`. The boundary
/// at which the loop is split (new upper bound) is returned via `splitBound`.
/// The return value indicates whether the loop was rewritten or not.
static LogicalResult peelForLoop(RewriterBase &b, ForOp forOp,
ForOp &partialIteration, Value &splitBound) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// No specialization necessary if step size is 1. Also bail out in case of an
// invalid zero or negative step which might have happened during folding.
if (stepInt && *stepInt <= 1)
return failure();
// No specialization necessary if step already divides upper bound evenly.
// Fast path: lb, ub and step are constants.
if (lbInt && ubInt && stepInt && (*ubInt - *lbInt) % *stepInt == 0)
return failure();
// Slow path: Examine the ops that define lb, ub and step.
AffineExpr sym0, sym1, sym2;
bindSymbols(b.getContext(), sym0, sym1, sym2);
SmallVector<Value> operands{forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep()};
AffineMap map = AffineMap::get(0, 3, {(sym1 - sym0) % sym2});
affine::fullyComposeAffineMapAndOperands(&map, &operands);
if (auto constExpr = dyn_cast<AffineConstantExpr>(map.getResult(0)))
if (constExpr.getValue() == 0)
return failure();
// New upper bound: %ub - (%ub - %lb) mod %step
auto modMap = AffineMap::get(0, 3, {sym1 - ((sym1 - sym0) % sym2)});
b.setInsertionPoint(forOp);
auto loc = forOp.getLoc();
splitBound = b.createOrFold<AffineApplyOp>(loc, modMap,
ValueRange{forOp.getLowerBound(),
forOp.getUpperBound(),
forOp.getStep()});
if (splitBound.getType() != forOp.getLowerBound().getType())
splitBound = b.createOrFold<arith::IndexCastOp>(
loc, forOp.getLowerBound().getType(), splitBound);
// Create ForOp for partial iteration.
b.setInsertionPointAfter(forOp);
partialIteration = cast<ForOp>(b.clone(*forOp.getOperation()));
partialIteration.getLowerBoundMutable().assign(splitBound);
b.replaceAllUsesWith(forOp.getResults(), partialIteration->getResults());
partialIteration.getInitArgsMutable().assign(forOp->getResults());
// Set new upper loop bound.
b.modifyOpInPlace(forOp,
[&]() { forOp.getUpperBoundMutable().assign(splitBound); });
return success();
}
static void rewriteAffineOpAfterPeeling(RewriterBase &rewriter, ForOp forOp,
ForOp partialIteration,
Value previousUb) {
Value mainIv = forOp.getInductionVar();
Value partialIv = partialIteration.getInductionVar();
assert(forOp.getStep() == partialIteration.getStep() &&
"expected same step in main and partial loop");
Value step = forOp.getStep();
forOp.walk([&](Operation *affineOp) {
if (!isa<AffineMinOp, AffineMaxOp>(affineOp))
return WalkResult::advance();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, mainIv, previousUb,
step,
/*insideLoop=*/true);
return WalkResult::advance();
});
partialIteration.walk([&](Operation *affineOp) {
if (!isa<AffineMinOp, AffineMaxOp>(affineOp))
return WalkResult::advance();
(void)scf::rewritePeeledMinMaxOp(rewriter, affineOp, partialIv, previousUb,
step, /*insideLoop=*/false);
return WalkResult::advance();
});
}
LogicalResult mlir::scf::peelForLoopAndSimplifyBounds(RewriterBase &rewriter,
ForOp forOp,
ForOp &partialIteration) {
Value previousUb = forOp.getUpperBound();
Value splitBound;
if (failed(peelForLoop(rewriter, forOp, partialIteration, splitBound)))
return failure();
// Rewrite affine.min and affine.max ops.
rewriteAffineOpAfterPeeling(rewriter, forOp, partialIteration, previousUb);
return success();
}
/// Rewrites the original scf::ForOp as two scf::ForOp Ops, the first
/// scf::ForOp corresponds to the first iteration of the loop which can be
/// canonicalized away in the following optimizations. The second loop Op
/// contains the remaining iterations, with a lower bound updated as the
/// original lower bound plus the step (i.e. skips the first iteration).
LogicalResult mlir::scf::peelForLoopFirstIteration(RewriterBase &b, ForOp forOp,
ForOp &firstIteration) {
RewriterBase::InsertionGuard guard(b);
auto lbInt = getConstantIntValue(forOp.getLowerBound());
auto ubInt = getConstantIntValue(forOp.getUpperBound());
auto stepInt = getConstantIntValue(forOp.getStep());
// Peeling is not needed if there is one or less iteration.
if (lbInt && ubInt && stepInt && ceil(float(*ubInt - *lbInt) / *stepInt) <= 1)
return failure();
AffineExpr lbSymbol, stepSymbol;
bindSymbols(b.getContext(), lbSymbol, stepSymbol);
// New lower bound for main loop: %lb + %step
auto ubMap = AffineMap::get(0, 2, {lbSymbol + stepSymbol});
b.setInsertionPoint(forOp);
auto loc = forOp.getLoc();
Value splitBound = b.createOrFold<AffineApplyOp>(
loc, ubMap, ValueRange{forOp.getLowerBound(), forOp.getStep()});
if (splitBound.getType() != forOp.getUpperBound().getType())
splitBound = b.createOrFold<arith::IndexCastOp>(
loc, forOp.getUpperBound().getType(), splitBound);
// Peel the first iteration.
IRMapping map;
map.map(forOp.getUpperBound(), splitBound);
firstIteration = cast<ForOp>(b.clone(*forOp.getOperation(), map));
// Update main loop with new lower bound.
b.modifyOpInPlace(forOp, [&]() {
forOp.getInitArgsMutable().assign(firstIteration->getResults());
forOp.getLowerBoundMutable().assign(splitBound);
});
return success();
}
static constexpr char kPeeledLoopLabel[] = "__peeled_loop__";
static constexpr char kPartialIterationLabel[] = "__partial_iteration__";
namespace {
struct ForLoopPeelingPattern : public OpRewritePattern<ForOp> {
ForLoopPeelingPattern(MLIRContext *ctx, bool peelFront, bool skipPartial)
: OpRewritePattern<ForOp>(ctx), peelFront(peelFront),
skipPartial(skipPartial) {}
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
if (forOp.getUnsignedCmp())
return rewriter.notifyMatchFailure(forOp,
"unsigned loops are not supported");
// Do not peel already peeled loops.
if (forOp->hasAttr(kPeeledLoopLabel))
return failure();
scf::ForOp partialIteration;
// The case for peeling the first iteration of the loop.
if (peelFront) {
if (failed(
peelForLoopFirstIteration(rewriter, forOp, partialIteration))) {
return failure();
}
} else {
if (skipPartial) {
// No peeling of loops inside the partial iteration of another peeled
// loop.
Operation *op = forOp.getOperation();
while ((op = op->getParentOfType<scf::ForOp>())) {
if (op->hasAttr(kPartialIterationLabel))
return failure();
}
}
// Apply loop peeling.
if (failed(
peelForLoopAndSimplifyBounds(rewriter, forOp, partialIteration)))
return failure();
}
// Apply label, so that the same loop is not rewritten a second time.
rewriter.modifyOpInPlace(partialIteration, [&]() {
partialIteration->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
partialIteration->setAttr(kPartialIterationLabel, rewriter.getUnitAttr());
});
rewriter.modifyOpInPlace(forOp, [&]() {
forOp->setAttr(kPeeledLoopLabel, rewriter.getUnitAttr());
});
return success();
}
// If set to true, the first iteration of the loop will be peeled. Otherwise,
// the unevenly divisible loop will be peeled at the end.
bool peelFront;
/// If set to true, loops inside partial iterations of another peeled loop
/// are not peeled. This reduces the size of the generated code. Partial
/// iterations are not usually performance critical.
/// Note: Takes into account the entire chain of parent operations, not just
/// the direct parent.
bool skipPartial;
};
} // namespace
namespace {
struct ParallelLoopSpecialization
: public impl::SCFParallelLoopSpecializationBase<
ParallelLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk(
[](ParallelOp op) { specializeParallelLoopForUnrolling(op); });
}
};
struct ForLoopSpecialization
: public impl::SCFForLoopSpecializationBase<ForLoopSpecialization> {
void runOnOperation() override {
getOperation()->walk([](ForOp op) { specializeForLoopForUnrolling(op); });
}
};
struct ForLoopPeeling : public impl::SCFForLoopPeelingBase<ForLoopPeeling> {
void runOnOperation() override {
auto *parentOp = getOperation();
MLIRContext *ctx = parentOp->getContext();
RewritePatternSet patterns(ctx);
patterns.add<ForLoopPeelingPattern>(ctx, peelFront, skipPartial);
(void)applyPatternsGreedily(parentOp, std::move(patterns));
// Drop the markers.
parentOp->walk([](Operation *op) {
op->removeAttr(kPeeledLoopLabel);
op->removeAttr(kPartialIterationLabel);
});
}
};
} // namespace
std::unique_ptr<Pass> mlir::createParallelLoopSpecializationPass() {
return std::make_unique<ParallelLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopSpecializationPass() {
return std::make_unique<ForLoopSpecialization>();
}
std::unique_ptr<Pass> mlir::createForLoopPeelingPass() {
return std::make_unique<ForLoopPeeling>();
}
|