aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/Linalg/Transforms/TransposeConv2D.cpp
blob: 35453e2d2e1042169f4150d7aab761e5fd88ccf0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
//===- TransposeConv2D.cpp - Convolution transposition  -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/SmallVector.h"

namespace mlir {
namespace linalg {
namespace {
// clang-format off
/// Convolution converter that applies the following rewrite:
///
/// Before:
///
///   %0 = linalg.conv_2d_nhwc_fhwc {dilations = dense<1> : tensor<2xi64>,
///                                               strides = dense<2> : tensor<2xi64>}
///      ins (%input, %filter: tensor<1x4x4x6xf32>, tensor<8x2x2x6xf32>)
///     outs (%init: tensor<1x2x2x8xf32>) -> tensor<1x2x2x8xf32>
///
/// After:
///
///    %cst = arith.constant 0.000000e+00 : f32
///    %0 = tensor.empty() : tensor<2x2x6x8xf32>
///    %1 = linalg.fill ins(%cst : f32) outs(%0 : tensor<2x2x6x8xf32>) -> tensor<2x2x6x8xf32>
///    %transposed = linalg.transpose ins(%arg1 : tensor<8x2x2x6xf32>) outs(%1 : tensor<2x2x6x8xf32>)
///                  permutation = [1, 2, 3, 0]
///    %2 = linalg.conv_2d_nhwc_hwcf {dilations = dense<1> : tensor<2xi64>, strides = dense<2> : tensor<2xi64>}
///         ins(%arg0, %transposed : tensor<1x4x4x6xf32>, tensor<2x2x6x8xf32>) outs(%arg2 : tensor<1x2x2x8xf32>)
///         -> tensor<1x2x2x8xf32>
///
/// with an analogous example for the quantized case.
// clang-format on
template <typename FHWCConvOp, typename HWCFConvOp>
FailureOr<Operation *> transposeConv2DHelper(RewriterBase &rewriter,
                                             FHWCConvOp op) {
  // Construct a permutation of the filter tensor dimensions. For a 2D
  // convolution this will be known statically as [1, 2, 3, 0].
  SmallVector<int64_t> filterPerm = {1, 2, 3, 0};

  // Create the type for the transposed filter tensor.
  auto filter = op->getOperand(1);
  auto filterTy = cast<ShapedType>(filter.getType());
  SmallVector<int64_t> newFilterShape(filterPerm.size());
  std::generate(std::begin(newFilterShape), std::end(newFilterShape),
                [dim = 0, &filterTy, &filterPerm]() mutable {
                  return filterTy.getShape()[filterPerm[dim++]];
                });

  // Because linalg.transpose expects an "out" parameter we need to pass it a
  // tensor of zeros of the result type so here we construct that tensor.
  auto inputType = op->getOperand(0).getType();
  auto elementTy = cast<ShapedType>(inputType).getElementType();
  auto loc = op->getLoc();

  const auto isTensorOp = isa<TensorType>(inputType);
  Value input;
  if (isTensorOp) {

    input = tensor::EmptyOp::create(rewriter, loc, newFilterShape, elementTy)
                .getResult();
  } else {
    input = memref::AllocOp::create(rewriter, loc,
                                    MemRefType::get(newFilterShape, elementTy))
                .getResult();
  }

  // We can then construct the transposition on our filter.
  auto transpose =
      linalg::TransposeOp::create(rewriter, loc, filter, input, filterPerm);

  Value newFilter;
  if (isTensorOp) {
    newFilter = transpose.getResult()[0];
  } else {
    newFilter = input;
  }

  SmallVector<Value> newInputs{op.getInputs()};
  // The filter is always the second input argument, the other inputs can be
  // left as they are.
  newInputs[1] = newFilter;
  // It is possible the convolution doesn't define any results and its
  // out argument is just used instead.
  SmallVector<Type> resultTy;
  if (op.getNumResults()) {
    resultTy.push_back(op->getResult(0).getType());
  }
  auto newConv =
      HWCFConvOp::create(rewriter, loc, resultTy, newInputs, op.getOutputs(),
                         op.getStrides(), op.getDilations());
  rewriter.replaceOp(op, newConv);
  return newConv.getOperation();
}

template <typename FHWCConvOp, typename HWCFConvOp>
class ConvConverter : public OpRewritePattern<FHWCConvOp> {
public:
  using OpRewritePattern<FHWCConvOp>::OpRewritePattern;
  LogicalResult matchAndRewrite(FHWCConvOp op,
                                PatternRewriter &rewriter) const final {
    if (failed(transposeConv2DHelper<FHWCConvOp, HWCFConvOp>(rewriter, op))) {
      return failure();
    }
    return success();
  }
};
} // namespace

FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
                                       linalg::Conv2DNhwcFhwcOp op) {

  return transposeConv2DHelper<linalg::Conv2DNhwcFhwcOp,
                               linalg::Conv2DNhwcHwcfOp>(rewriter, op);
}

FailureOr<Operation *> transposeConv2D(RewriterBase &rewriter,
                                       linalg::Conv2DNhwcFhwcQOp op) {

  return transposeConv2DHelper<linalg::Conv2DNhwcFhwcQOp,
                               linalg::Conv2DNhwcHwcfQOp>(rewriter, op);
}

void populateTransposeConv2DPatterns(RewritePatternSet &patterns) {
  MLIRContext *context = patterns.getContext();
  patterns.insert<
      ConvConverter<linalg::Conv2DNhwcFhwcOp, linalg::Conv2DNhwcHwcfOp>,
      ConvConverter<linalg::Conv2DNhwcFhwcQOp, linalg::Conv2DNhwcHwcfQOp>>(
      context);
}
} // namespace linalg
} // namespace mlir