aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Dialect/GPU/TransformOps/Utils.cpp
blob: 05bd917b3e40a14759bf834b16ad66eab936dc01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
//===- Utils.cpp - Utils for GPU transform ops ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/GPU/TransformOps/Utils.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/Transform/Interfaces/TransformInterfaces.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Value.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/DebugLog.h"
#include "llvm/Support/InterleavedRange.h"

using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
using namespace mlir::transform::gpu;

#define DEBUG_TYPE "gpu-transforms"

/// Build predicates to filter execution by only the activeIds. Along each
/// dimension, 3 cases appear:
///   1. activeMappingSize > availableMappingSize: this is an unsupported case
///      as this requires additional looping. An error message is produced to
///      advise the user to tile more or to use more threads.
///   2. activeMappingSize == availableMappingSize: no predication is needed.
///   3. activeMappingSize < availableMappingSize: only a subset of threads
///      should be active and we produce the boolean `id < activeMappingSize`
///      for further use in building predicated execution.
static FailureOr<SmallVector<Value>>
buildPredicates(RewriterBase &rewriter, Location loc, ArrayRef<Value> activeIds,
                ArrayRef<int64_t> activeMappingSizes,
                ArrayRef<int64_t> availableMappingSizes,
                std::string &errorMsg) {
  LDBG() << "----activeMappingSizes: " << llvm::interleaved(activeMappingSizes);
  LDBG() << "----availableMappingSizes: "
         << llvm::interleaved(availableMappingSizes);

  SmallVector<Value> predicateOps;
  for (auto [activeId, activeMappingSize, availableMappingSize] :
       llvm::zip_equal(activeIds, activeMappingSizes, availableMappingSizes)) {
    if (activeMappingSize > availableMappingSize) {
      errorMsg = "Trying to map to fewer GPU threads than loop iterations but "
                 "overprovisioning is not yet supported. Try additional tiling "
                 "before mapping or map to more threads.";
      return failure();
    }
    if (activeMappingSize == availableMappingSize)
      continue;
    Value idx =
        arith::ConstantIndexOp::create(rewriter, loc, activeMappingSize);
    Value pred = arith::CmpIOp::create(rewriter, loc, arith::CmpIPredicate::ult,
                                       activeId, idx);
    predicateOps.push_back(pred);
  }
  return predicateOps;
}

/// Return a flattened thread id for the workgroup with given sizes.
template <typename ThreadOrBlockIdOp>
static Value buildLinearId(RewriterBase &rewriter, Location loc,
                           ArrayRef<OpFoldResult> originalBasisOfr) {
  LDBG() << "----buildLinearId with originalBasisOfr:  "
         << llvm::interleaved(originalBasisOfr);
  assert(originalBasisOfr.size() == 3 && "expected 3 sizes");
  IndexType indexType = rewriter.getIndexType();
  AffineExpr tx, ty, tz, bdx, bdy;
  bindDims(rewriter.getContext(), tx, ty, tz);
  bindSymbols(rewriter.getContext(), bdx, bdy);
  SmallVector<OpFoldResult> vals{
      ThreadOrBlockIdOp::create(rewriter, loc, indexType, Dimension::x)
          .getResult(),
      ThreadOrBlockIdOp::create(rewriter, loc, indexType, Dimension::y)
          .getResult(),
      ThreadOrBlockIdOp::create(rewriter, loc, indexType, Dimension::z)
          .getResult(),
      originalBasisOfr[0], originalBasisOfr[1]};
  OpFoldResult ofr = affine::makeComposedFoldedAffineApply(
      rewriter, loc, tx + ty * bdx + tz * bdx * bdy, vals);
  return getValueOrCreateConstantIndexOp(rewriter, loc, ofr);
}

/// Create a linear id builder that takes the `originalBasisOfr` and decompose
/// it in the basis of `forallMappingSizes`. The linear id builder returns an
/// n-D vector of ids for indexing and 1-D size + id for predicate generation.
template <typename ThreadOrBlockIdOp>
static GpuIdBuilderFnType
commonLinearIdBuilderFn(int64_t multiplicity = 1,
                        DeviceMaskingAttrInterface mask = nullptr) {
  auto res = [multiplicity, mask](RewriterBase &rewriter, Location loc,
                                  ArrayRef<int64_t> forallMappingSizes,
                                  ArrayRef<int64_t> originalBasis) {
    // 0. Early-exit mask case.
    if (mask) {
      if (computeProduct(originalBasis) >
          mask.getMaxNumPhysicalIds() * multiplicity) {
        return IdBuilderResult{
            /*errorMsg=*/std::string(
                "mask representation too short to capture all physical ids: ") +
                std::to_string(mask.getMaxNumPhysicalIds()),
            /*mappingIdOps=*/{},
            /*predicateOps=*/{}};
      }
    }

    // 1. Compute linearId.
    SmallVector<OpFoldResult> originalBasisOfr =
        getAsIndexOpFoldResult(rewriter.getContext(), originalBasis);
    Value physicalLinearId =
        buildLinearId<ThreadOrBlockIdOp>(rewriter, loc, originalBasisOfr);

    // 2. Compute scaledLinearId.
    AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
    OpFoldResult scaledLinearIdOfr = affine::makeComposedFoldedAffineApply(
        rewriter, loc, d0.floorDiv(multiplicity), {physicalLinearId});

    // 2.b. Adjust with mask if needed.
    Value scaledLinearIdI64;
    Value scaledLinearId =
        getValueOrCreateConstantIndexOp(rewriter, loc, scaledLinearIdOfr);
    if (mask) {
      scaledLinearId =
          getValueOrCreateConstantIndexOp(rewriter, loc, scaledLinearIdOfr);
      scaledLinearIdI64 = arith::IndexCastUIOp::create(
          rewriter, loc, rewriter.getI64Type(), scaledLinearId);
      Value logicalLinearIdI64 =
          mask.createLogicalLinearMappingId(rewriter, scaledLinearIdI64);
      scaledLinearId = arith::IndexCastUIOp::create(
          rewriter, loc, rewriter.getIndexType(), logicalLinearIdI64);
      LDBG() << "------adjusting linearId with mask: " << scaledLinearId;
    }

    // 3. Compute remapped indices.
    SmallVector<Value> ids;
    // Sizes in [0 .. n] -> [n .. 0] order to properly compute strides in
    // "row-major" order.
    SmallVector<int64_t> reverseBasisSizes(llvm::reverse(forallMappingSizes));
    SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
    SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
    // Reverse back to be in [0 .. n] order.
    for (AffineExpr e : llvm::reverse(delinearizingExprs)) {
      ids.push_back(
          affine::makeComposedAffineApply(rewriter, loc, e, {scaledLinearId}));
    }

    std::string errorMsg;
    SmallVector<Value> predicateOps;
    // 4. If mask present, it takes precedence to determine predication.
    if (mask) {
      Value isActiveIdPredicate =
          mask.createIsActiveIdPredicate(rewriter, scaledLinearIdI64);
      LDBG() << "------adjusting predicate with mask: " << isActiveIdPredicate;
      predicateOps.push_back(isActiveIdPredicate);
    } else {
      // 4.b. Otherwise, handle predicates using physicalLinearId.
      FailureOr<SmallVector<Value>> maybePredicateOps =
          buildPredicates(rewriter, loc, physicalLinearId,
                          computeProduct(forallMappingSizes) * multiplicity,
                          computeProduct(originalBasis), errorMsg);
      if (succeeded(maybePredicateOps))
        predicateOps = *maybePredicateOps;
    }

    return IdBuilderResult{/*errorMsg=*/errorMsg,
                           /*mappingIdOps=*/ids,
                           /*predicateOps=*/predicateOps};
  };

  return res;
}

/// Create a simple 3-D id builder that takes the `originalBasisOfr`
/// The 3-D id builder returns a 3-D vector of ids for indexing and 3-D sizes
/// + ids for predicate generation.
template <typename ThreadOrBlockIdOp>
static GpuIdBuilderFnType common3DIdBuilderFn(int64_t multiplicity = 1) {
  auto res = [multiplicity](RewriterBase &rewriter, Location loc,
                            ArrayRef<int64_t> forallMappingSizes,
                            ArrayRef<int64_t> originalBasis) {
    IndexType indexType = rewriter.getIndexType();
    SmallVector<Value> ids{
        ThreadOrBlockIdOp::create(rewriter, loc, indexType, Dimension::x),
        ThreadOrBlockIdOp::create(rewriter, loc, indexType, Dimension::y),
        ThreadOrBlockIdOp::create(rewriter, loc, indexType, Dimension::z)};
    // In the 3-D mapping case, scale the first dimension by the multiplicity.
    SmallVector<Value> scaledIds = ids;
    AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
    scaledIds[0] = cast<Value>(affine::makeComposedFoldedAffineApply(
        rewriter, loc, d0.floorDiv(multiplicity), {scaledIds[0]}));
    // In the 3-D mapping case, unscale the first dimension by the multiplicity.
    SmallVector<int64_t> forallMappingSizeInOriginalBasis(forallMappingSizes);
    forallMappingSizeInOriginalBasis[0] *= multiplicity;

    std::string errorMsg;
    SmallVector<Value> predicateOps;
    FailureOr<SmallVector<Value>> maybePredicateOps =
        buildPredicates(rewriter, loc, ids, forallMappingSizeInOriginalBasis,
                        originalBasis, errorMsg);
    if (succeeded(maybePredicateOps))
      predicateOps = *maybePredicateOps;

    return IdBuilderResult{/*errorMsg=*/errorMsg,
                           /*mappingIdOps=*/scaledIds,
                           /*predicateOps=*/predicateOps};
  };
  return res;
}

/// Create a lane id builder that takes the `originalBasis` and decompose
/// it in the basis of `forallMappingSizes`. The linear id builder returns an
/// n-D vector of ids for indexing and 1-D size + id for predicate generation.
static GpuIdBuilderFnType laneIdBuilderFn(int64_t warpSize) {
  auto res = [warpSize](RewriterBase &rewriter, Location loc,
                        ArrayRef<int64_t> forallMappingSizes,
                        ArrayRef<int64_t> originalBasis) {
    // 1. Compute linearId.
    SmallVector<OpFoldResult> originalBasisOfr =
        getAsIndexOpFoldResult(rewriter.getContext(), originalBasis);
    Value physicalLinearId =
        buildLinearId<ThreadIdOp>(rewriter, loc, originalBasisOfr);

    // 2. Compute laneId.
    AffineExpr d0 = getAffineDimExpr(0, rewriter.getContext());
    OpFoldResult laneId = affine::makeComposedFoldedAffineApply(
        rewriter, loc, d0 % warpSize, {physicalLinearId});

    // 3. Compute remapped indices.
    SmallVector<Value> ids;
    // Sizes in [0 .. n] -> [n .. 0] order to properly compute strides in
    // "row-major" order.
    SmallVector<int64_t> reverseBasisSizes(llvm::reverse(forallMappingSizes));
    SmallVector<int64_t> strides = computeStrides(reverseBasisSizes);
    SmallVector<AffineExpr> delinearizingExprs = delinearize(d0, strides);
    // Reverse back to be in [0 .. n] order.
    for (AffineExpr e : llvm::reverse(delinearizingExprs)) {
      ids.push_back(
          affine::makeComposedAffineApply(rewriter, loc, e, {laneId}));
    }

    // 4. Handle predicates using laneId.
    std::string errorMsg;
    SmallVector<Value> predicateOps;
    FailureOr<SmallVector<Value>> maybePredicateOps = buildPredicates(
        rewriter, loc, cast<Value>(laneId), computeProduct(forallMappingSizes),
        computeProduct(originalBasis), errorMsg);
    if (succeeded(maybePredicateOps))
      predicateOps = *maybePredicateOps;

    return IdBuilderResult{/*errorMsg=*/errorMsg,
                           /*mappingIdOps=*/ids,
                           /*predicateOps=*/predicateOps};
  };

  return res;
}

namespace mlir {
namespace transform {
namespace gpu {

GpuIdBuilder::GpuIdBuilder(MLIRContext *ctx, bool useLinearMapping,
                           const MappingIdBuilderFnType &fn)
    : mappingAttributes(), idBuilder() {
  if (useLinearMapping) {
    for (uint64_t d = static_cast<uint64_t>(MappingId::LinearDim0),
                  e = getMaxEnumValForMappingId();
         d <= e; ++d)
      mappingAttributes.push_back(fn(ctx, symbolizeMappingId(d).value()));
  } else {
    for (uint64_t d = static_cast<uint64_t>(MappingId::DimX),
                  e = static_cast<uint64_t>(MappingId::DimZ);
         d <= e; ++d)
      mappingAttributes.push_back(fn(ctx, symbolizeMappingId(d).value()));
  }
}

GpuBlockIdBuilder::GpuBlockIdBuilder(MLIRContext *ctx, bool useLinearMapping,
                                     DeviceMaskingAttrInterface mask)
    : GpuIdBuilder(ctx, useLinearMapping, [](MLIRContext *ctx, MappingId id) {
        return GPUBlockMappingAttr::get(ctx, id);
      }) {
  assert((!mask || useLinearMapping) && "mask requires linear mapping");
  idBuilder = useLinearMapping
                  ? commonLinearIdBuilderFn<BlockIdOp>(/*multiplicity=*/1, mask)
                  : common3DIdBuilderFn<BlockIdOp>(/*multiplicity=*/1);
}

GpuWarpgroupIdBuilder::GpuWarpgroupIdBuilder(MLIRContext *ctx, int64_t warpSize,
                                             bool useLinearMapping,
                                             DeviceMaskingAttrInterface mask)
    : GpuIdBuilder(ctx, useLinearMapping,
                   [](MLIRContext *ctx, MappingId id) {
                     return GPUWarpgroupMappingAttr::get(ctx, id);
                   }),
      warpSize(warpSize) {
  assert((!mask || useLinearMapping) && "mask requires linear mapping");
  idBuilder = useLinearMapping
                  ? commonLinearIdBuilderFn<ThreadIdOp>(
                        /*multiplicity=*/kNumWarpsPerGroup * warpSize, mask)
                  : common3DIdBuilderFn<ThreadIdOp>(
                        /*multiplicity=*/kNumWarpsPerGroup * warpSize);
}

GpuWarpIdBuilder::GpuWarpIdBuilder(MLIRContext *ctx, int64_t warpSize,
                                   bool useLinearMapping,
                                   DeviceMaskingAttrInterface mask)
    : GpuIdBuilder(ctx, useLinearMapping,
                   [](MLIRContext *ctx, MappingId id) {
                     return GPUWarpMappingAttr::get(ctx, id);
                   }),
      warpSize(warpSize) {
  assert((!mask || useLinearMapping) && "mask requires linear mapping");
  idBuilder = useLinearMapping
                  ? commonLinearIdBuilderFn<ThreadIdOp>(
                        /*multiplicity=*/warpSize, mask)
                  : common3DIdBuilderFn<ThreadIdOp>(/*multiplicity=*/warpSize);
}

GpuThreadIdBuilder::GpuThreadIdBuilder(MLIRContext *ctx, bool useLinearMapping,
                                       DeviceMaskingAttrInterface mask)
    : GpuIdBuilder(ctx, useLinearMapping, [](MLIRContext *ctx, MappingId id) {
        return GPUThreadMappingAttr::get(ctx, id);
      }) {
  idBuilder =
      useLinearMapping
          ? commonLinearIdBuilderFn<ThreadIdOp>(/*multiplicity=*/1, mask)
          : common3DIdBuilderFn<ThreadIdOp>(/*multiplicity=*/1);
}

GpuLaneIdBuilder::GpuLaneIdBuilder(MLIRContext *ctx, int64_t warpSize,
                                   bool unused, DeviceMaskingAttrInterface mask)
    : GpuIdBuilder(ctx, /*useLinearMapping=*/true,
                   [](MLIRContext *ctx, MappingId id) {
                     return GPULaneMappingAttr::get(ctx, id);
                   }),
      warpSize(warpSize) {
  assert(!mask && "mask NYI for lanes, unclear it should be at all");
  idBuilder = laneIdBuilderFn(/*periodicity=*/warpSize);
}

DiagnosedSilenceableFailure checkGpuLimits(TransformOpInterface transformOp,
                                           std::optional<int64_t> gridDimX,
                                           std::optional<int64_t> gridDimY,
                                           std::optional<int64_t> gridDimZ,
                                           std::optional<int64_t> blockDimX,
                                           std::optional<int64_t> blockDimY,
                                           std::optional<int64_t> blockDimZ) {

  // TODO: pass a configuration object to set the limits properly.

  if ((blockDimX.value_or(1) * blockDimY.value_or(1) * blockDimZ.value_or(1)) >
          kMaxTotalBlockdim ||
      (gridDimX.value_or(1) * gridDimY.value_or(1) * gridDimZ.value_or(1)) >
          kMaxTotalGriddim ||
      blockDimX.value_or(1) > kMaxBlockdimx ||
      blockDimY.value_or(1) > kMaxBlockdimy ||
      blockDimZ.value_or(1) > kMaxBlockdimz ||
      gridDimY.value_or(1) > kMaxGriddimy ||
      gridDimZ.value_or(1) > kMaxGriddimz ||
      gridDimX.value_or(1) > kMaxGriddimx) {
    return transformOp.emitSilenceableError()
           << "Trying to launch a GPU kernel with grid_dims = ("
           << gridDimX.value_or(1) << ", " << gridDimY.value_or(1) << ", "
           << gridDimZ.value_or(1) << ") block_dims = ("
           << blockDimX.value_or(1) << ", " << blockDimY.value_or(1) << ", "
           << blockDimZ.value_or(1) << "). It is larger than the limits.";
  }
  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure createGpuLaunch(
    RewriterBase &rewriter, Location loc, TransformOpInterface transformOp,
    LaunchOp &launchOp, std::optional<int64_t> gridDimX,
    std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
    std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
    std::optional<int64_t> blockDimZ) {
  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
                     blockDimY, blockDimZ);
  if (!diag.succeeded())
    return diag;

  auto createConst = [&](int dim) {
    return arith::ConstantIndexOp::create(rewriter, loc, dim);
  };
  OpBuilder::InsertionGuard guard(rewriter);
  Value one = createConst(1);
  Value gridSizeX = gridDimX.has_value() ? createConst(gridDimX.value()) : one;
  Value gridSizeY = gridDimY.has_value() ? createConst(gridDimY.value()) : one;
  Value gridSizeZ = gridDimZ.has_value() ? createConst(gridDimZ.value()) : one;
  Value blkSizeX = blockDimX.has_value() ? createConst(blockDimX.value()) : one;
  Value blkSizeY = blockDimY.has_value() ? createConst(blockDimY.value()) : one;
  Value blkSizeZ = blockDimZ.has_value() ? createConst(blockDimZ.value()) : one;
  launchOp = LaunchOp::create(rewriter, loc, gridSizeX, gridSizeY, gridSizeZ,
                              blkSizeX, blkSizeY, blkSizeZ);
  rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
  TerminatorOp::create(rewriter, loc);
  return DiagnosedSilenceableFailure::success();
}

/// Alter kernel configuration of the given kernel.
DiagnosedSilenceableFailure alterGpuLaunch(
    RewriterBase &rewriter, LaunchOp gpuLaunch,
    TransformOpInterface transformOp, std::optional<int64_t> gridDimX,
    std::optional<int64_t> gridDimY, std::optional<int64_t> gridDimZ,
    std::optional<int64_t> blockDimX, std::optional<int64_t> blockDimY,
    std::optional<int64_t> blockDimZ) {
  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, gridDimX, gridDimY, gridDimZ, blockDimX,
                     blockDimY, blockDimZ);
  if (!diag.succeeded())
    return diag;

  KernelDim3 currentBlockdim = gpuLaunch.getBlockSizeOperandValues();
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPointAfterValue(currentBlockdim.x);
  auto createConstValue = [&](int dim) {
    return arith::ConstantIndexOp::create(rewriter, currentBlockdim.x.getLoc(),
                                          dim);
  };

  if (gridDimX.has_value())
    gpuLaunch.getGridSizeXMutable().assign(createConstValue(gridDimX.value()));
  if (gridDimY.has_value())
    gpuLaunch.getGridSizeYMutable().assign(createConstValue(gridDimY.value()));
  if (gridDimZ.has_value())
    gpuLaunch.getGridSizeZMutable().assign(createConstValue(gridDimZ.value()));
  if (blockDimX.has_value())
    gpuLaunch.getBlockSizeXMutable().assign(
        createConstValue(blockDimX.value()));
  if (blockDimY.has_value())
    gpuLaunch.getBlockSizeYMutable().assign(
        createConstValue(blockDimY.value()));
  if (blockDimZ.has_value())
    gpuLaunch.getBlockSizeZMutable().assign(
        createConstValue(blockDimZ.value()));
  return DiagnosedSilenceableFailure::success();
}

} // namespace gpu
} // namespace transform
} // namespace mlir