aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/XeGPUToXeVM/XeGPUToXeVM.cpp
blob: ddcbc44f2652ae78675196d06ce2e286dbb24274 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
//===-- XeGPUToXeVM.cpp - XeGPU to XeVM dialect conversion ------*- C++ -*-===//
//
// This file is licensed under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/XeGPUToXeVM/XeGPUToXeVM.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/LLVMIR/XeVMDialect.h"

#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/Index/IR/IndexDialect.h"
#include "mlir/Dialect/Index/IR/IndexOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/SCF/Transforms/Patterns.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/FormatVariadic.h"

#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Types.h"

#include "llvm/ADT/TypeSwitch.h"

#include <numeric>

namespace mlir {
#define GEN_PASS_DEF_CONVERTXEGPUTOXEVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {

// TODO: Below are uArch dependent values, should move away from hardcoding
static constexpr int32_t systolicDepth{8};
static constexpr int32_t executionSize{16};

// Offsets to individual fields of the 8xi32 layout nd tensor descriptor.
enum class NdTdescOffset : uint32_t {
  BasePtr = 0,       // Base pointer (i64)
  BaseShapeW = 2,    // Base shape width (i32)
  BaseShapeH = 3,    // Base shape height (i32)
  TensorOffsetW = 4, // Tensor offset W (i32)
  TensorOffsetH = 5  // Tensor offset H (i32)
};

static int32_t getNumericXeVMAddrSpace(xegpu::MemorySpace xeGpuMemspace) {
  switch (xeGpuMemspace) {
  case xegpu::MemorySpace::Global:
    return static_cast<int>(xevm::AddrSpace::GLOBAL);
  case xegpu::MemorySpace::SLM:
    return static_cast<int>(xevm::AddrSpace::SHARED);
  }
}

// Get same bitwidth flat vector type of new element type.
static VectorType encodeVectorTypeTo(VectorType currentVecType,
                                     Type toElemType) {
  auto elemType = currentVecType.getElementType();
  auto currentBitWidth = elemType.getIntOrFloatBitWidth();
  auto newBitWidth = toElemType.getIntOrFloatBitWidth();
  const int size =
      currentVecType.getNumElements() * currentBitWidth / newBitWidth;
  return VectorType::get(size, toElemType);
}

static xevm::LoadCacheControl
translateLoadXeGPUCacheHint(std::optional<xegpu::CachePolicy> L1hint,
                            std::optional<xegpu::CachePolicy> L3hint) {
  auto L1hintVal = L1hint.value_or(xegpu::CachePolicy::UNCACHED);
  auto L3hintVal = L3hint.value_or(xegpu::CachePolicy::UNCACHED);
  switch (L1hintVal) {
  case xegpu::CachePolicy::CACHED:
    if (L3hintVal == xegpu::CachePolicy::CACHED)
      return xevm::LoadCacheControl::L1C_L2UC_L3C;
    else if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::LoadCacheControl::L1C_L2UC_L3UC;
    else
      llvm_unreachable("Unsupported cache control.");
  case xegpu::CachePolicy::UNCACHED:
    if (L3hintVal == xegpu::CachePolicy::CACHED)
      return xevm::LoadCacheControl::L1UC_L2UC_L3C;
    else if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::LoadCacheControl::L1UC_L2UC_L3UC;
    else
      llvm_unreachable("Unsupported cache control.");
  case xegpu::CachePolicy::STREAMING:
    if (L3hintVal == xegpu::CachePolicy::CACHED)
      return xevm::LoadCacheControl::L1S_L2UC_L3C;
    else if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::LoadCacheControl::L1S_L2UC_L3UC;
    else
      llvm_unreachable("Unsupported cache control.");
  case xegpu::CachePolicy::READ_INVALIDATE:
    return xevm::LoadCacheControl::INVALIDATE_READ;
  default:
    llvm_unreachable("Unsupported cache control.");
  }
}

static xevm::StoreCacheControl
translateStoreXeGPUCacheHint(std::optional<xegpu::CachePolicy> L1hint,
                             std::optional<xegpu::CachePolicy> L3hint) {
  auto L1hintVal = L1hint.value_or(xegpu::CachePolicy::UNCACHED);
  auto L3hintVal = L3hint.value_or(xegpu::CachePolicy::UNCACHED);
  switch (L1hintVal) {
  case xegpu::CachePolicy::UNCACHED:
    if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::StoreCacheControl::L1UC_L2UC_L3UC;
    else if (L3hintVal == xegpu::CachePolicy::WRITE_BACK)
      return xevm::StoreCacheControl::L1UC_L2UC_L3WB;
    else
      llvm_unreachable("Unsupported cache control.");
  case xegpu::CachePolicy::STREAMING:
    if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::StoreCacheControl::L1S_L2UC_L3UC;
    else if (L3hintVal == xegpu::CachePolicy::WRITE_BACK)
      return xevm::StoreCacheControl::L1S_L2UC_L3WB;
    else
      llvm_unreachable("Unsupported cache control.");
  case xegpu::CachePolicy::WRITE_BACK:
    if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::StoreCacheControl::L1WB_L2UC_L3UC;
    else if (L3hintVal == xegpu::CachePolicy::WRITE_BACK)
      return xevm::StoreCacheControl::L1WB_L2UC_L3WB;
    else
      llvm_unreachable("Unsupported cache control.");
  case xegpu::CachePolicy::WRITE_THROUGH:
    if (L3hintVal == xegpu::CachePolicy::UNCACHED)
      return xevm::StoreCacheControl::L1WT_L2UC_L3UC;
    else if (L3hintVal == xegpu::CachePolicy::WRITE_BACK)
      return xevm::StoreCacheControl::L1WT_L2UC_L3WB;
    else
      llvm_unreachable("Unsupported cache control.");
  default:
    llvm_unreachable("Unsupported cache control.");
  }
}

class CreateNdDescToXeVMPattern
    : public OpConversionPattern<xegpu::CreateNdDescOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(xegpu::CreateNdDescOp op,
                  xegpu::CreateNdDescOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    SmallVector<OpFoldResult> mixedOffsets = op.getMixedOffsets();
    if (mixedOffsets.size() != 0)
      return rewriter.notifyMatchFailure(op, "Offsets not supported.");
    auto loc = op.getLoc();
    auto source = op.getSource();
    // Op is lowered to a code sequence that populates payload.
    // Payload is a 8xi32 vector. Offset to individual fields are defined in
    // NdTdescOffset enum.
    Type payloadElemTy = rewriter.getI32Type();
    VectorType payloadTy = VectorType::get(8, payloadElemTy);
    Type i64Ty = rewriter.getI64Type();
    // 4xi64 view is used for inserting the base pointer.
    VectorType payloadI64Ty = VectorType::get(4, i64Ty);
    // Initialize payload to zero.
    Value payload = arith::ConstantOp::create(
        rewriter, loc,
        DenseElementsAttr::get(payloadTy, IntegerAttr::get(payloadElemTy, 0)));

    Value baseAddr;
    Value baseShapeW;
    Value baseShapeH;
    Value offsetW;
    Value offsetH;

    // Source can be a memref or a pointer (ui64, ui32, i64 or i32).
    SmallVector<OpFoldResult> mixedSizes = op.getMixedSizes();
    // Descriptor shape is expected to be 2D.
    int64_t rank = mixedSizes.size();
    if (rank != 2)
      return rewriter.notifyMatchFailure(op, "Expected 2D shape.");
    auto sourceTy = source.getType();
    auto sourceMemrefTy = dyn_cast<MemRefType>(sourceTy);
    // If source is a memref, we need to extract the aligned pointer as index.
    // Pointer type is passed as i32 or i64 by type converter.
    if (sourceMemrefTy) {
      if (!sourceMemrefTy.hasStaticShape()) {
        return rewriter.notifyMatchFailure(op, "Expected static memref shape.");
      }
      baseAddr =
          memref::ExtractAlignedPointerAsIndexOp::create(rewriter, loc, source);
    } else {
      baseAddr = adaptor.getSource();
    }
    // Utility for creating offset values from op fold result.
    auto createOffset = [&](SmallVector<OpFoldResult> &ofrVec,
                            unsigned idx) -> Value {
      Value val = getValueOrCreateConstantIntOp(rewriter, loc, ofrVec[idx]);
      val = getValueOrCreateCastToIndexLike(rewriter, loc, payloadElemTy, val);
      return val;
    };
    // Offsets are not supported (0 is used).
    offsetW = arith::ConstantIntOp::create(rewriter, loc, payloadElemTy, 0);
    offsetH = arith::ConstantIntOp::create(rewriter, loc, payloadElemTy, 0);
    // Get shape values from op fold results.
    baseShapeW = createOffset(mixedSizes, 1);
    baseShapeH = createOffset(mixedSizes, 0);
    if (sourceMemrefTy) {
      // Cast index to i64.
      baseAddr = arith::IndexCastUIOp::create(rewriter, loc, i64Ty, baseAddr);
    } else if (baseAddr.getType() != i64Ty) {
      // Pointer type may be i32. Cast to i64 if needed.
      baseAddr = arith::ExtUIOp::create(rewriter, loc, i64Ty, baseAddr);
    }
    // Populate payload.
    Value payLoadAsI64 =
        vector::BitCastOp::create(rewriter, loc, payloadI64Ty, payload);
    payLoadAsI64 =
        vector::InsertOp::create(rewriter, loc, baseAddr, payLoadAsI64,
                                 static_cast<int>(NdTdescOffset::BasePtr));
    payload = vector::BitCastOp::create(rewriter, loc, payloadTy, payLoadAsI64);
    payload =
        vector::InsertOp::create(rewriter, loc, baseShapeW, payload,
                                 static_cast<int>(NdTdescOffset::BaseShapeW));
    payload =
        vector::InsertOp::create(rewriter, loc, baseShapeH, payload,
                                 static_cast<int>(NdTdescOffset::BaseShapeH));
    payload = vector::InsertOp::create(
        rewriter, loc, offsetW, payload,
        static_cast<int>(NdTdescOffset::TensorOffsetW));
    payload = vector::InsertOp::create(
        rewriter, loc, offsetH, payload,
        static_cast<int>(NdTdescOffset::TensorOffsetH));
    rewriter.replaceOp(op, payload);
    return success();
  }
};

template <
    typename OpType,
    typename = std::enable_if_t<llvm::is_one_of<
        OpType, xegpu::LoadNdOp, xegpu::StoreNdOp, xegpu::PrefetchNdOp>::value>>
class LoadStorePrefetchNdToXeVMPattern : public OpConversionPattern<OpType> {
  using OpConversionPattern<OpType>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(OpType op, typename OpType::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto mixedOffsets = op.getMixedOffsets();
    int64_t opOffsetsSize = mixedOffsets.size();
    if (opOffsetsSize != 2)
      return rewriter.notifyMatchFailure(op, "Expected 2D offsets.");
    auto loc = op.getLoc();
    auto ctxt = rewriter.getContext();

    auto tdesc = adaptor.getTensorDesc();
    auto tdescTy = op.getTensorDescType();
    if (tdescTy.getRank() != 2)
      return rewriter.notifyMatchFailure(op, "Expected 2D tensor descriptor.");
    auto elemType = tdescTy.getElementType();
    auto elemBitSize = elemType.getIntOrFloatBitWidth();
    if (elemBitSize % 8 != 0)
      return rewriter.notifyMatchFailure(
          op, "Expected element type bit width to be multiple of 8.");

    VectorType payloadI64Ty = VectorType::get(4, rewriter.getI64Type());
    Value payLoadAsI64 =
        vector::BitCastOp::create(rewriter, loc, payloadI64Ty, tdesc);
    Value basePtr = vector::ExtractOp::create(
        rewriter, loc, payLoadAsI64, static_cast<int>(NdTdescOffset::BasePtr));
    Value baseShapeW = vector::ExtractOp::create(
        rewriter, loc, tdesc, static_cast<int>(NdTdescOffset::BaseShapeW));
    Value baseShapeH = vector::ExtractOp::create(
        rewriter, loc, tdesc, static_cast<int>(NdTdescOffset::BaseShapeH));
    // Offsets are provided by the op.
    // convert them to i32.
    Value offsetW =
        getValueOrCreateConstantIntOp(rewriter, loc, mixedOffsets[1]);
    offsetW = getValueOrCreateCastToIndexLike(rewriter, loc,
                                              rewriter.getI32Type(), offsetW);
    Value offsetH =
        getValueOrCreateConstantIntOp(rewriter, loc, mixedOffsets[0]);
    offsetH = getValueOrCreateCastToIndexLike(rewriter, loc,
                                              rewriter.getI32Type(), offsetH);
    // Get address space from tensor descriptor memory space.
    auto ptrTypeLLVM = LLVM::LLVMPointerType::get(
        ctxt, getNumericXeVMAddrSpace(tdescTy.getMemorySpace()));
    // Convert base pointer (i64) to LLVM pointer type.
    Value basePtrLLVM =
        LLVM::IntToPtrOp::create(rewriter, loc, ptrTypeLLVM, basePtr);
    // Compute element byte size and surface width in bytes.
    Value elemByteSize = arith::ConstantIntOp::create(
        rewriter, loc, rewriter.getI32Type(), elemBitSize / 8);
    Value surfaceW =
        arith::MulIOp::create(rewriter, loc, baseShapeW, elemByteSize);

    // Get tile sizes and vblocks from the tensor descriptor type.
    auto tileW = tdescTy.getDimSize(1);
    auto tileH = tdescTy.getDimSize(0);
    int32_t vblocks = tdescTy.getArrayLength();
    if constexpr (std::is_same_v<OpType, xegpu::StoreNdOp>) {
      Value src = adaptor.getValue();
      // If store value is a scalar, get value from op instead of adaptor.
      // Adaptor might have optimized away single element vector
      if (src.getType().isIntOrFloat()) {
        src = op.getValue();
      }
      VectorType srcVecTy = dyn_cast<VectorType>(src.getType());
      if (!srcVecTy)
        return rewriter.notifyMatchFailure(
            op, "Expected store value to be a vector type.");
      // Get flat vector type of integer type with matching element bit size.
      VectorType newSrcVecTy =
          encodeVectorTypeTo(srcVecTy, rewriter.getIntegerType(elemBitSize));
      if (srcVecTy != newSrcVecTy)
        src = vector::BitCastOp::create(rewriter, loc, newSrcVecTy, src);
      auto storeCacheControl =
          translateStoreXeGPUCacheHint(op.getL1Hint(), op.getL3Hint());
      xevm::BlockStore2dOp::create(
          rewriter, loc, basePtrLLVM, surfaceW, baseShapeH, surfaceW, offsetW,
          offsetH, elemBitSize, tileW, tileH, src,
          xevm::StoreCacheControlAttr::get(ctxt, storeCacheControl));
      rewriter.eraseOp(op);
    } else {
      auto loadCacheControl =
          translateLoadXeGPUCacheHint(op.getL1Hint(), op.getL3Hint());
      if constexpr (std::is_same_v<OpType, xegpu::PrefetchNdOp>) {
        xevm::BlockPrefetch2dOp::create(
            rewriter, loc, basePtrLLVM, surfaceW, baseShapeH, surfaceW, offsetW,
            offsetH, elemBitSize, tileW, tileH, vblocks,
            xevm::LoadCacheControlAttr::get(ctxt, loadCacheControl));
        rewriter.eraseOp(op);
      } else {
        VectorType dstVecTy = cast<VectorType>(op.getValue().getType());
        const bool vnni = op.getPacked().value_or(false);
        auto transposeValue = op.getTranspose();
        bool transpose =
            transposeValue.has_value() && transposeValue.value()[0] == 1;
        VectorType loadedTy = encodeVectorTypeTo(
            dstVecTy, vnni ? rewriter.getI32Type()
                           : rewriter.getIntegerType(elemBitSize));

        Value resultFlatVec = xevm::BlockLoad2dOp::create(
            rewriter, loc, loadedTy, basePtrLLVM, surfaceW, baseShapeH,
            surfaceW, offsetW, offsetH, elemBitSize, tileW, tileH, vblocks,
            transpose, vnni,
            xevm::LoadCacheControlAttr::get(ctxt, loadCacheControl));
        resultFlatVec = vector::BitCastOp::create(
            rewriter, loc,
            encodeVectorTypeTo(loadedTy, dstVecTy.getElementType()),
            resultFlatVec);
        rewriter.replaceOp(op, resultFlatVec);
      }
    }
    return success();
  }
};

// Add a builder that creates
// offset * elemByteSize + baseAddr
static Value addOffset(ConversionPatternRewriter &rewriter, Location loc,
                       Value baseAddr, Value offset, int64_t elemByteSize) {
  Value byteSize = arith::ConstantIntOp::create(
      rewriter, loc, rewriter.getI64Type(), elemByteSize);
  Value byteOffset = arith::MulIOp::create(rewriter, loc, offset, byteSize);
  Value newAddr = arith::AddIOp::create(rewriter, loc, baseAddr, byteOffset);
  return newAddr;
}

template <typename OpType,
          typename = std::enable_if_t<llvm::is_one_of<
              OpType, xegpu::LoadGatherOp, xegpu::StoreScatterOp>::value>>
class LoadStoreToXeVMPattern : public OpConversionPattern<OpType> {
  using OpConversionPattern<OpType>::OpConversionPattern;
  LogicalResult
  matchAndRewrite(OpType op, typename OpType::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value offset = adaptor.getOffsets();
    if (!offset)
      return rewriter.notifyMatchFailure(op, "Expected offset to be provided.");
    auto loc = op.getLoc();
    auto ctxt = rewriter.getContext();
    auto tdescTy = op.getTensorDescType();
    Value basePtrI64;
    // Load result or Store valye Type can be vector or scalar.
    Type valOrResTy;
    if constexpr (std::is_same_v<OpType, xegpu::LoadGatherOp>)
      valOrResTy =
          this->getTypeConverter()->convertType(op.getResult().getType());
    else
      valOrResTy = adaptor.getValue().getType();
    VectorType valOrResVecTy = dyn_cast<VectorType>(valOrResTy);
    bool hasScalarVal = !valOrResVecTy;
    int64_t elemBitWidth =
        hasScalarVal ? valOrResTy.getIntOrFloatBitWidth()
                     : valOrResVecTy.getElementType().getIntOrFloatBitWidth();
    // Element type must be multiple of 8 bits.
    if (elemBitWidth % 8 != 0)
      return rewriter.notifyMatchFailure(
          op, "Expected element type bit width to be multiple of 8.");
    int64_t elemByteSize = elemBitWidth / 8;
    // Default memory space is global.
    LLVM::LLVMPointerType ptrTypeLLVM = LLVM::LLVMPointerType::get(
        ctxt, getNumericXeVMAddrSpace(xegpu::MemorySpace::Global));
    // If tensor descriptor is available, we use its memory space.
    if (tdescTy)
      ptrTypeLLVM = LLVM::LLVMPointerType::get(
          ctxt, getNumericXeVMAddrSpace(tdescTy.getMemorySpace()));
    // Base pointer can come from source (load) or dest (store).
    // If they are memrefs, we use their memory space.
    if constexpr (std::is_same_v<OpType, xegpu::LoadGatherOp>) {
      basePtrI64 = adaptor.getSource();
      if (auto memRefTy = dyn_cast<MemRefType>(op.getSource().getType())) {
        auto addrSpace = memRefTy.getMemorySpaceAsInt();
        if (addrSpace != 0)
          ptrTypeLLVM = LLVM::LLVMPointerType::get(ctxt, addrSpace);
      }
    } else {
      basePtrI64 = adaptor.getDest();
      if (auto memRefTy = dyn_cast<MemRefType>(op.getDest().getType())) {
        auto addrSpace = memRefTy.getMemorySpaceAsInt();
        if (addrSpace != 0)
          ptrTypeLLVM = LLVM::LLVMPointerType::get(ctxt, addrSpace);
      }
    }
    // Base pointer is passed as i32 or i64 by adaptor, cast to i64 if needed.
    if (basePtrI64.getType() != rewriter.getI64Type()) {
      basePtrI64 = arith::ExtUIOp::create(rewriter, loc, rewriter.getI64Type(),
                                          basePtrI64);
    }
    Value mask = adaptor.getMask();
    if (dyn_cast<VectorType>(offset.getType())) {
      // Offset needs be scalar. Single element vector is converted to scalar
      // by type converter.
      return rewriter.notifyMatchFailure(op, "Expected offset to be a scalar.");
    } else {
      // If offset is provided, we add them to the base pointer.
      // Offset is in number of elements, we need to multiply by
      // element byte size.
      basePtrI64 = addOffset(rewriter, loc, basePtrI64, offset, elemByteSize);
    }
    // Convert base pointer (i64) to LLVM pointer type.
    Value basePtrLLVM =
        LLVM::IntToPtrOp::create(rewriter, loc, ptrTypeLLVM, basePtrI64);

    Value maskForLane;
    VectorType maskVecTy = dyn_cast<VectorType>(mask.getType());
    if (maskVecTy) {
      // Mask needs be scalar. Single element vector is converted to scalar by
      // type converter.
      return rewriter.notifyMatchFailure(op, "Expected mask to be a scalar.");
    } else
      maskForLane = mask;
    if constexpr (std::is_same_v<OpType, xegpu::LoadGatherOp>) {
      scf::IfOp ifOp = scf::IfOp::create(rewriter, loc, {valOrResTy},
                                         maskForLane, true, true);
      // If mask is true,- then clause - load from memory and yield.
      rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
      if (!hasScalarVal)
        valOrResTy = VectorType::get({valOrResVecTy.getNumElements()},
                                     valOrResVecTy.getElementType());
      Value loaded =
          LLVM::LoadOp::create(rewriter, loc, valOrResTy, basePtrLLVM);
      // Set cache control attribute on the load operation.
      loaded.getDefiningOp()->setAttr(
          "cache_control", xevm::LoadCacheControlAttr::get(
                               ctxt, translateLoadXeGPUCacheHint(
                                         op.getL1Hint(), op.getL3Hint())));
      scf::YieldOp::create(rewriter, loc, ValueRange{loaded});
      rewriter.setInsertionPointToStart(&ifOp.getElseRegion().front());
      // If mask is false - else clause -yield a vector of zeros.
      auto eTy = hasScalarVal ? valOrResTy : valOrResVecTy.getElementType();
      TypedAttr eVal;
      if (eTy.isFloat())
        eVal = FloatAttr::get(eTy, 0.0);
      else
        eVal = IntegerAttr::get(eTy, 0);
      if (hasScalarVal)
        loaded = arith::ConstantOp::create(rewriter, loc, eVal);
      else
        loaded = arith::ConstantOp::create(
            rewriter, loc, DenseElementsAttr::get(valOrResVecTy, eVal));
      scf::YieldOp::create(rewriter, loc, ValueRange{loaded});
      rewriter.replaceOp(op, ifOp.getResult(0));
    } else {
      // If mask is true, perform the store.
      scf::IfOp ifOp = scf::IfOp::create(rewriter, loc, maskForLane, false);
      auto body = ifOp.getBody();
      rewriter.setInsertionPointToStart(body);
      auto storeOp =
          LLVM::StoreOp::create(rewriter, loc, adaptor.getValue(), basePtrLLVM);
      // Set cache control attribute on the store operation.
      storeOp.getOperation()->setAttr(
          "cache_control", xevm::StoreCacheControlAttr::get(
                               ctxt, translateStoreXeGPUCacheHint(
                                         op.getL1Hint(), op.getL3Hint())));
      rewriter.eraseOp(op);
    }
    return success();
  }
};

class PrefetchToXeVMPattern : public OpConversionPattern<xegpu::PrefetchOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(xegpu::PrefetchOp op, xegpu::PrefetchOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto ctxt = rewriter.getContext();
    auto tdescTy = op.getTensorDescType();
    Value basePtrI64 = adaptor.getSource();
    // Base pointer is passed as i32 or i64 by adaptor, cast to i64 if needed.
    if (basePtrI64.getType() != rewriter.getI64Type())
      basePtrI64 = arith::ExtUIOp::create(rewriter, loc, rewriter.getI64Type(),
                                          basePtrI64);
    Value offsets = adaptor.getOffsets();
    if (offsets) {
      VectorType offsetsVecTy = dyn_cast<VectorType>(offsets.getType());
      if (offsetsVecTy) {
        // Offset needs be scalar.
        return rewriter.notifyMatchFailure(op,
                                           "Expected offsets to be a scalar.");
      } else {
        int64_t elemBitWidth{0};
        int64_t elemByteSize;
        // Element byte size can come from three sources:
        if (tdescTy) {
          // If tensor descriptor is available, we use its element type to
          // determine element byte size.
          elemBitWidth = tdescTy.getElementType().getIntOrFloatBitWidth();
        } else if (auto memRefTy = dyn_cast<MemRefType>(op.getSourceType())) {
          // If memref is available, we use its element type to
          // determine element byte size.
          elemBitWidth = memRefTy.getElementType().getIntOrFloatBitWidth();
        } else {
          // Otherwise, we use the provided offset byte alignment.
          elemByteSize = *op.getOffsetAlignByte();
        }
        if (elemBitWidth != 0) {
          if (elemBitWidth % 8 != 0)
            return rewriter.notifyMatchFailure(
                op, "Expected element type bit width to be multiple of 8.");
          elemByteSize = elemBitWidth / 8;
        }
        basePtrI64 =
            addOffset(rewriter, loc, basePtrI64, offsets, elemByteSize);
      }
    }
    // Default memory space is global.
    LLVM::LLVMPointerType ptrTypeLLVM = LLVM::LLVMPointerType::get(
        ctxt, getNumericXeVMAddrSpace(xegpu::MemorySpace::Global));
    // If tensor descriptor is available, we use its memory space.
    if (tdescTy)
      ptrTypeLLVM = LLVM::LLVMPointerType::get(
          ctxt, getNumericXeVMAddrSpace(tdescTy.getMemorySpace()));
    // If source is a memref, we use its memory space.
    if (auto memRefTy = dyn_cast<MemRefType>(op.getSource().getType())) {
      auto addrSpace = memRefTy.getMemorySpaceAsInt();
      if (addrSpace != 0)
        ptrTypeLLVM = LLVM::LLVMPointerType::get(ctxt, addrSpace);
    }
    // Convert base pointer (i64) to LLVM pointer type.
    Value ptrLLVM =
        LLVM::IntToPtrOp::create(rewriter, loc, ptrTypeLLVM, basePtrI64);
    // Create the prefetch op with cache control attribute.
    xevm::PrefetchOp::create(
        rewriter, loc, ptrLLVM,
        xevm::LoadCacheControlAttr::get(
            ctxt, translateLoadXeGPUCacheHint(op.getL1Hint(), op.getL3Hint())));
    rewriter.eraseOp(op);
    return success();
  }
};

class FenceToXeVMPattern : public OpConversionPattern<xegpu::FenceOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(xegpu::FenceOp op, xegpu::FenceOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    xevm::MemScope memScope{xevm::MemScope::WORKGROUP};
    switch (op.getFenceScope()) {
    case xegpu::FenceScope::Workgroup:
      memScope = xevm::MemScope::WORKGROUP;
      break;
    case xegpu::FenceScope::GPU:
      memScope = xevm::MemScope::DEVICE;
      break;
    }
    xevm::AddrSpace addrSpace{xevm::AddrSpace::GLOBAL};
    switch (op.getMemoryKind()) {
    case xegpu::MemorySpace::Global:
      addrSpace = xevm::AddrSpace::GLOBAL;
      break;
    case xegpu::MemorySpace::SLM:
      addrSpace = xevm::AddrSpace::SHARED;
      break;
    }
    xevm::MemfenceOp::create(rewriter, loc, memScope, addrSpace);
    rewriter.eraseOp(op);
    return success();
  }
};

class DpasToXeVMPattern : public OpConversionPattern<xegpu::DpasOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(xegpu::DpasOp op, xegpu::DpasOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto ctxt = rewriter.getContext();
    auto aTy = cast<VectorType>(op.getLhs().getType());
    auto bTy = cast<VectorType>(op.getRhs().getType());
    auto resultType = cast<VectorType>(op.getResultType());

    auto encodePrecision = [&](Type type) -> xevm::ElemType {
      if (type == rewriter.getBF16Type())
        return xevm::ElemType::BF16;
      else if (type == rewriter.getF16Type())
        return xevm::ElemType::F16;
      else if (type == rewriter.getTF32Type())
        return xevm::ElemType::TF32;
      else if (type.isInteger(8)) {
        if (type.isUnsignedInteger())
          return xevm::ElemType::U8;
        return xevm::ElemType::S8;
      } else if (type == rewriter.getF32Type())
        return xevm::ElemType::F32;
      else if (type.isInteger(32))
        return xevm::ElemType::S32;
      llvm_unreachable("add more support for ElemType");
    };
    xevm::ElemType precATy = encodePrecision(aTy.getElementType());
    xevm::ElemType precBTy = encodePrecision(bTy.getElementType());
    Value c = op.getAcc();
    if (!c) {
      auto elementTy = resultType.getElementType();
      Attribute initValueAttr;
      if (isa<FloatType>(elementTy))
        initValueAttr = FloatAttr::get(elementTy, 0.0);
      else
        initValueAttr = IntegerAttr::get(elementTy, 0);
      c = arith::ConstantOp::create(
          rewriter, loc, DenseElementsAttr::get(resultType, initValueAttr));
    }

    Value aVec = op.getLhs();
    Value bVec = op.getRhs();
    auto cvecty = cast<VectorType>(c.getType());
    xevm::ElemType precCTy = encodePrecision(cvecty.getElementType());
    xevm::ElemType precDTy = encodePrecision(resultType.getElementType());
    VectorType cNty =
        VectorType::get(cvecty.getNumElements(), cvecty.getElementType());
    if (cvecty != cNty)
      c = vector::ShapeCastOp::create(rewriter, loc, cNty, c);
    Value dpasRes = xevm::MMAOp::create(
        rewriter, loc, cNty, aVec, bVec, c,
        xevm::MMAShapeAttr::get(ctxt, cvecty.getNumElements(), executionSize,
                                systolicDepth *
                                    getNumOperandsPerDword(precATy)),
        xevm::MMATypesAttr::get(ctxt, precDTy, precATy, precBTy, precCTy));
    if (cvecty != cNty)
      dpasRes = vector::ShapeCastOp::create(rewriter, loc, resultType, dpasRes);
    rewriter.replaceOp(op, dpasRes);
    return success();
  }

private:
  static unsigned getNumOperandsPerDword(xevm::ElemType pTy) {
    switch (pTy) {
    case xevm::ElemType::TF32:
      return 1;
    case xevm::ElemType::BF16:
    case xevm::ElemType::F16:
      return 2;
    case xevm::ElemType::U8:
    case xevm::ElemType::S8:
      return 4;
    default:
      llvm_unreachable("unsupported xevm::ElemType");
    }
  }
};

static std::optional<LLVM::AtomicBinOp>
matchSimpleAtomicOp(arith::AtomicRMWKind arithKind) {
  switch (arithKind) {
  case arith::AtomicRMWKind::addf:
    return LLVM::AtomicBinOp::fadd;
  case arith::AtomicRMWKind::addi:
    return LLVM::AtomicBinOp::add;
  case arith::AtomicRMWKind::assign:
    return LLVM::AtomicBinOp::xchg;
  case arith::AtomicRMWKind::maximumf:
    return LLVM::AtomicBinOp::fmax;
  case arith::AtomicRMWKind::maxs:
    return LLVM::AtomicBinOp::max;
  case arith::AtomicRMWKind::maxu:
    return LLVM::AtomicBinOp::umax;
  case arith::AtomicRMWKind::minimumf:
    return LLVM::AtomicBinOp::fmin;
  case arith::AtomicRMWKind::mins:
    return LLVM::AtomicBinOp::min;
  case arith::AtomicRMWKind::minu:
    return LLVM::AtomicBinOp::umin;
  case arith::AtomicRMWKind::ori:
    return LLVM::AtomicBinOp::_or;
  case arith::AtomicRMWKind::andi:
    return LLVM::AtomicBinOp::_and;
  default:
    return std::nullopt;
  }
}

class AtomicRMWToXeVMPattern : public OpConversionPattern<xegpu::AtomicRMWOp> {
  using OpConversionPattern::OpConversionPattern;
  LogicalResult
  matchAndRewrite(xegpu::AtomicRMWOp op, xegpu::AtomicRMWOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = op.getLoc();
    auto ctxt = rewriter.getContext();
    auto tdesc = op.getTensorDesc().getType();
    auto ptrTypeLLVM = LLVM::LLVMPointerType::get(
        ctxt, getNumericXeVMAddrSpace(tdesc.getMemorySpace()));
    Value basePtrI64 = arith::IndexCastOp::create(
        rewriter, loc, rewriter.getI64Type(), adaptor.getTensorDesc());
    Value basePtrLLVM =
        LLVM::IntToPtrOp::create(rewriter, loc, ptrTypeLLVM, basePtrI64);
    VectorType srcOrDstVecTy = cast<VectorType>(op.getValue().getType());
    VectorType srcOrDstFlatVecTy = VectorType::get(
        srcOrDstVecTy.getNumElements(), srcOrDstVecTy.getElementType());
    Value srcFlatVec = vector::ShapeCastOp::create(
        rewriter, loc, srcOrDstFlatVecTy, op.getValue());
    auto atomicKind = matchSimpleAtomicOp(op.getKind());
    assert(atomicKind.has_value());
    Value resVec = srcFlatVec;
    for (int i = 0; i < srcOrDstVecTy.getNumElements(); i++) {
      auto val = vector::ExtractOp::create(rewriter, loc, resVec, i);
      Value idx = LLVM::ConstantOp::create(rewriter, loc, rewriter.getI64Type(),
                                           rewriter.getIndexAttr(i));
      Value currPtr =
          LLVM::GEPOp::create(rewriter, loc, ptrTypeLLVM,
                              srcOrDstVecTy.getElementType(), basePtrLLVM, idx);
      Value newVal =
          LLVM::AtomicRMWOp::create(rewriter, loc, atomicKind.value(), currPtr,
                                    val, LLVM::AtomicOrdering::seq_cst);
      resVec = vector::InsertOp::create(rewriter, loc, newVal, resVec, i);
    }
    rewriter.replaceOp(op, resVec);
    return success();
  }
};

//===----------------------------------------------------------------------===//
// Pass Definition
//===----------------------------------------------------------------------===//

struct ConvertXeGPUToXeVMPass
    : public impl::ConvertXeGPUToXeVMPassBase<ConvertXeGPUToXeVMPass> {
  using Base::Base;

  void runOnOperation() override {
    LLVMTypeConverter typeConverter(&getContext());
    typeConverter.addConversion([&](VectorType type) -> Type {
      unsigned rank = type.getRank();
      auto elemType = type.getElementType();
      // If the element type is index, convert it to i64.
      if (llvm::isa<IndexType>(elemType))
        elemType = IntegerType::get(&getContext(), 64);
      // If the vector is a scalar or has a single element, return the element
      if (rank < 1 || type.getNumElements() == 1)
        return elemType;
      // Otherwise, convert the vector to a flat vector type.
      int64_t sum = llvm::product_of(type.getShape());
      return VectorType::get(sum, elemType);
    });
    typeConverter.addConversion([&](xegpu::TensorDescType type) -> Type {
      if (type.isScattered())
        return IntegerType::get(&getContext(), 64);
      auto i32Type = IntegerType::get(&getContext(), 32);
      return VectorType::get(8, i32Type);
    });
    typeConverter.addConversion([&](MemRefType type) -> Type {
      // Convert MemRefType to i64 type.
      return IntegerType::get(&getContext(), 64);
    });

    // LLVM type converter puts unrealized casts for the following cases:
    // add materialization casts to handle them.

    // Materialization to convert memref to i64
    auto memrefMaterializationCast = [](OpBuilder &builder, Type type,
                                        ValueRange inputs,
                                        Location loc) -> Value {
      if (inputs.size() != 1)
        return {};
      auto input = inputs.front();
      if (auto memrefTy = dyn_cast<MemRefType>(input.getType())) {

        Value addr =
            memref::ExtractAlignedPointerAsIndexOp::create(builder, loc, input);
        return arith::IndexCastUIOp::create(builder, loc, type, addr)
            .getResult();
      }
      return {};
    };

    // Materialization to convert ui64 to i64
    auto ui64MaterializationCast = [](OpBuilder &builder, Type type,
                                      ValueRange inputs,
                                      Location loc) -> Value {
      if (inputs.size() != 1)
        return {};
      auto input = inputs.front();
      if (input.getType() == builder.getIntegerType(64, false)) {
        Value cast =
            index::CastUOp::create(builder, loc, builder.getIndexType(), input)
                .getResult();
        return arith::IndexCastUIOp::create(builder, loc, type, cast)
            .getResult();
      }
      return {};
    };

    // Materialization to convert ui32 to i32
    auto ui32MaterializationCast = [](OpBuilder &builder, Type type,
                                      ValueRange inputs,
                                      Location loc) -> Value {
      if (inputs.size() != 1)
        return {};
      auto input = inputs.front();
      if (input.getType() == builder.getIntegerType(32, false)) {
        Value cast =
            index::CastUOp::create(builder, loc, builder.getIndexType(), input)
                .getResult();
        return arith::IndexCastUIOp::create(builder, loc, type, cast)
            .getResult();
      }
      return {};
    };

    // Materialization to convert
    //   - single element 1D vector to scalar
    //   - bitcast vector of same rank
    //   - shape vector of different rank but same element type
    auto vectorMaterializationCast = [](OpBuilder &builder, Type type,
                                        ValueRange inputs,
                                        Location loc) -> Value {
      if (inputs.size() != 1)
        return {};
      auto input = inputs.front();
      if (auto vecTy = dyn_cast<VectorType>(input.getType())) {
        if (vecTy.getNumElements() == 1) {
          // If the vector has a single element, return the element type.
          Value cast =
              vector::ExtractOp::create(builder, loc, input, 0).getResult();
          if (vecTy.getElementType() == builder.getIndexType())
            cast = arith::IndexCastUIOp::create(builder, loc, type, cast)
                       .getResult();
          return cast;
        } else if (auto targetVecTy = dyn_cast<VectorType>(type)) {
          // If the target type is a vector of same rank,
          //   bitcast to the target type.
          if (targetVecTy.getRank() == vecTy.getRank())
            return vector::BitCastOp::create(builder, loc, targetVecTy, input)
                .getResult();
          else if (targetVecTy.getElementType() == vecTy.getElementType()) {
            // If the target type is a vector of different rank but same element
            // type, reshape to the target type.
            return vector::ShapeCastOp::create(builder, loc, targetVecTy, input)
                .getResult();
          }
        }
      }
      return {};
    };

    // If result type of original op is single element vector and lowered type
    // is scalar. This materialization cast creates a single element vector by
    // broadcasting the scalar value.
    auto singleElementVectorMaterializationCast =
        [](OpBuilder &builder, Type type, ValueRange inputs,
           Location loc) -> Value {
      if (inputs.size() != 1)
        return {};
      auto input = inputs.front();
      if (input.getType().isIntOrIndexOrFloat()) {
        // If the input is a scalar, and the target type is a vector of single
        // element, create a single element vector by broadcasting.
        if (auto vecTy = dyn_cast<VectorType>(type)) {
          if (vecTy.getNumElements() == 1) {
            return vector::BroadcastOp::create(builder, loc, vecTy, input)
                .getResult();
          }
        }
      }
      return {};
    };
    typeConverter.addSourceMaterialization(
        singleElementVectorMaterializationCast);
    typeConverter.addTargetMaterialization(memrefMaterializationCast);
    typeConverter.addTargetMaterialization(ui32MaterializationCast);
    typeConverter.addTargetMaterialization(ui64MaterializationCast);
    typeConverter.addTargetMaterialization(vectorMaterializationCast);
    ConversionTarget target(getContext());
    target.addLegalDialect<xevm::XeVMDialect, LLVM::LLVMDialect,
                           vector::VectorDialect, arith::ArithDialect,
                           memref::MemRefDialect, gpu::GPUDialect,
                           index::IndexDialect>();
    target.addIllegalDialect<xegpu::XeGPUDialect>();

    RewritePatternSet patterns(&getContext());
    populateXeGPUToXeVMConversionPatterns(typeConverter, patterns);
    scf::populateSCFStructuralTypeConversionsAndLegality(typeConverter,
                                                         patterns, target);
    if (failed(applyPartialConversion(getOperation(), target,
                                      std::move(patterns))))
      signalPassFailure();
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// Pattern Population
//===----------------------------------------------------------------------===//
void mlir::populateXeGPUToXeVMConversionPatterns(
    const LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
  patterns.add<CreateNdDescToXeVMPattern,
               LoadStorePrefetchNdToXeVMPattern<xegpu::LoadNdOp>,
               LoadStorePrefetchNdToXeVMPattern<xegpu::StoreNdOp>,
               LoadStorePrefetchNdToXeVMPattern<xegpu::PrefetchNdOp>>(
      typeConverter, patterns.getContext());
  patterns.add<AtomicRMWToXeVMPattern, PrefetchToXeVMPattern,
               LoadStoreToXeVMPattern<xegpu::LoadGatherOp>,
               LoadStoreToXeVMPattern<xegpu::StoreScatterOp>>(
      typeConverter, patterns.getContext());
  patterns.add<FenceToXeVMPattern, DpasToXeVMPattern>(typeConverter,
                                                      patterns.getContext());
}