1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
|
//===- VectorToXeGPU.cpp - Convert vector to XeGPU dialect ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of vector operations to XeGPU dialect ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToXeGPU/VectorToXeGPU.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/XeGPU/IR/XeGPU.h"
#include "mlir/Dialect/XeGPU/Utils/XeGPUUtils.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/TypeSwitch.h"
#include <algorithm>
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTVECTORTOXEGPU
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
// Return true if value represents a zero constant.
static bool isZeroConstant(Value val) {
auto constant = val.getDefiningOp<arith::ConstantOp>();
if (!constant)
return false;
return TypeSwitch<Attribute, bool>(constant.getValue())
.Case<FloatAttr>(
[](auto floatAttr) { return floatAttr.getValue().isZero(); })
.Case<IntegerAttr>(
[](auto intAttr) { return intAttr.getValue().isZero(); })
.Default([](auto) { return false; });
}
static LogicalResult storeLoadPreconditions(PatternRewriter &rewriter,
Operation *op, VectorType vecTy) {
// Validate only vector as the basic vector store and load ops guarantee
// XeGPU-compatible memref source.
unsigned vecRank = vecTy.getRank();
if (!(vecRank == 1 || vecRank == 2))
return rewriter.notifyMatchFailure(op, "Expects 1D or 2D vector");
return success();
}
static LogicalResult transferPreconditions(PatternRewriter &rewriter,
VectorTransferOpInterface xferOp) {
if (xferOp.getMask())
return rewriter.notifyMatchFailure(xferOp,
"Masked transfer is not supported");
auto srcTy = dyn_cast<MemRefType>(xferOp.getShapedType());
if (!srcTy)
return rewriter.notifyMatchFailure(xferOp, "Expects memref source");
// Validate further transfer op semantics.
SmallVector<int64_t> strides;
int64_t offset;
if (failed(srcTy.getStridesAndOffset(strides, offset)) || strides.back() != 1)
return rewriter.notifyMatchFailure(
xferOp, "Buffer must be contiguous in the innermost dimension");
VectorType vecTy = xferOp.getVectorType();
unsigned vecRank = vecTy.getRank();
if (xferOp.hasOutOfBoundsDim() && vecRank < 2)
return rewriter.notifyMatchFailure(
xferOp, "Boundary check is available only for block instructions.");
AffineMap map = xferOp.getPermutationMap();
if (!map.isProjectedPermutation(/*allowZeroInResults=*/false))
return rewriter.notifyMatchFailure(xferOp, "Unsupported permutation map");
unsigned numInputDims = map.getNumInputs();
for (AffineExpr expr : map.getResults().take_back(vecRank)) {
auto dim = dyn_cast<AffineDimExpr>(expr);
if (dim.getPosition() < (numInputDims - vecRank))
return rewriter.notifyMatchFailure(
xferOp, "Only the innermost dimensions can be accessed");
}
return success();
}
static xegpu::CreateNdDescOp
createNdDescriptor(PatternRewriter &rewriter, Location loc,
xegpu::TensorDescType descType, TypedValue<MemRefType> src,
Operation::operand_range offsets) {
MemRefType srcTy = src.getType();
auto [strides, offset] = srcTy.getStridesAndOffset();
xegpu::CreateNdDescOp ndDesc;
if (srcTy.hasStaticShape()) {
ndDesc = xegpu::CreateNdDescOp::create(rewriter, loc, descType, src,
getAsOpFoldResult(offsets));
} else {
// In case of any dynamic shapes, source's shape and strides have to be
// explicitly provided.
SmallVector<Value> sourceDims;
unsigned srcRank = srcTy.getRank();
for (unsigned i = 0; i < srcRank; ++i)
sourceDims.push_back(memref::DimOp::create(rewriter, loc, src, i));
SmallVector<int64_t> constOffsets;
SmallVector<Value> dynOffsets;
for (Value offset : offsets) {
std::optional<int64_t> staticVal = getConstantIntValue(offset);
if (!staticVal)
dynOffsets.push_back(offset);
constOffsets.push_back(staticVal.value_or(ShapedType::kDynamic));
}
SmallVector<Value> dynShapes;
for (auto [idx, shape] : llvm::enumerate(srcTy.getShape())) {
if (shape == ShapedType::kDynamic)
dynShapes.push_back(sourceDims[idx]);
}
// Compute strides in reverse order.
SmallVector<Value> dynStrides;
Value accStride = arith::ConstantIndexOp::create(rewriter, loc, 1);
// Last stride is guaranteed to be static and unit.
for (int i = static_cast<int>(strides.size()) - 2; i >= 0; --i) {
accStride =
arith::MulIOp::create(rewriter, loc, accStride, sourceDims[i + 1]);
if (strides[i] == ShapedType::kDynamic)
dynStrides.push_back(accStride);
}
std::reverse(dynStrides.begin(), dynStrides.end());
ndDesc = xegpu::CreateNdDescOp::create(
rewriter, loc, descType, src, dynOffsets, dynShapes, dynStrides,
DenseI64ArrayAttr::get(rewriter.getContext(), constOffsets),
DenseI64ArrayAttr::get(rewriter.getContext(), srcTy.getShape()),
DenseI64ArrayAttr::get(rewriter.getContext(), strides));
}
return ndDesc;
}
// Adjusts the strides of a memref according to a given permutation map for
// vector operations.
//
// This function updates the innermost strides in the `strides` array to
// reflect the permutation specified by `permMap`. The permutation is computed
// using the inverse and broadcasting-aware version of the permutation map,
// and is applied to the relevant strides. This ensures that memory accesses
// are consistent with the logical permutation of vector elements.
//
// Example:
// Suppose we have a memref of rank 4 with strides `[s0, s1, s2, s3]`.
// If the permutation map swaps the last two dimensions (e.g., [0, 1] -> [1,
// 0]), then after calling this function, the last two strides will be
// swapped:
// Original strides: [s0, s1, s2, s3]
// After permutation: [s0, s1, s3, s2]
//
static void adjustStridesForPermutation(AffineMap permMap,
SmallVectorImpl<Value> &strides) {
AffineMap invMap = inverseAndBroadcastProjectedPermutation(permMap);
SmallVector<unsigned> perms;
invMap.isPermutationOfMinorIdentityWithBroadcasting(perms);
SmallVector<int64_t> perms64(perms.begin(), perms.end());
strides = applyPermutation(strides, perms64);
}
// Computes memory strides and a memref offset for vector transfer operations,
// handling both static and dynamic memrefs while applying permutation
// transformations for XeGPU lowering.
template <
typename OpType,
typename = std::enable_if_t<llvm::is_one_of<
std::decay_t<OpType>, vector::TransferReadOp, vector::TransferWriteOp,
vector::GatherOp, vector::ScatterOp>::value>>
static std::pair<SmallVector<Value>, Value>
computeMemrefMeta(OpType xferOp, PatternRewriter &rewriter) {
SmallVector<Value> strides;
Value baseMemref = xferOp.getBase();
MemRefType memrefType = dyn_cast<MemRefType>(baseMemref.getType());
Location loc = xferOp.getLoc();
Value offsetVal = nullptr;
if (memrefType.hasStaticShape()) {
int64_t offset;
SmallVector<int64_t> intStrides;
if (failed(memrefType.getStridesAndOffset(intStrides, offset)))
return {{}, offsetVal};
bool hasDynamicStrides = llvm::any_of(intStrides, [](int64_t strideVal) {
return ShapedType::isDynamic(strideVal);
});
if (!hasDynamicStrides)
for (int64_t s : intStrides)
strides.push_back(arith::ConstantIndexOp::create(rewriter, loc, s));
if (!ShapedType::isDynamic(offset))
offsetVal = arith::ConstantIndexOp::create(rewriter, loc, offset);
}
if (strides.empty() || !offsetVal) {
// For dynamic shape memref, use memref.extract_strided_metadata to get
// stride values
unsigned rank = memrefType.getRank();
Type indexType = rewriter.getIndexType();
// Result types: [base_memref, offset, stride0, stride1, ..., strideN-1,
// size0, size1, ..., sizeN-1]
SmallVector<Type> resultTypes;
resultTypes.push_back(MemRefType::get(
{}, memrefType.getElementType())); // base memref (unranked)
resultTypes.push_back(indexType); // offset
for (unsigned i = 0; i < rank; ++i)
resultTypes.push_back(indexType); // strides
for (unsigned i = 0; i < rank; ++i)
resultTypes.push_back(indexType); // sizes
auto meta = memref::ExtractStridedMetadataOp::create(
rewriter, loc, resultTypes, baseMemref);
if (strides.empty())
strides.append(meta.getStrides().begin(), meta.getStrides().end());
if (!offsetVal)
offsetVal = meta.getOffset();
}
if constexpr (llvm::is_one_of<std::decay_t<OpType>, vector::TransferReadOp,
vector::TransferWriteOp>::value) {
AffineMap permMap = xferOp.getPermutationMap();
// Adjust strides according to the permutation map (e.g., for transpose)
adjustStridesForPermutation(permMap, strides);
}
return {strides, offsetVal};
}
// This function compute the vectors of localOffsets for scattered load/stores.
// It is used in the lowering of vector.transfer_read/write to
// load_gather/store_scatter Example:
// %0 = vector.transfer_read %expand_shape[%block_id_y, %c0, %c0, %c0, %c0],
// %cst {in_bounds = [true, true, true, true]}>} :
// memref<8x4x2x6x32xbf16>, vector<4x2x6x32xbf16>
//
// %6 = vector.step: vector<4xindex>
// %7 = vector.step: vector<2xindex>
// %8 = vector.step: vector<6xindex>
// %9 = vector.step: vector<32xindex>
// %10 = arith.mul %6, 384
// %11 = arith.mul %7, 192
// %12 = arith.mul %8, 32
// %13 = arith.mul %9, 1
// %14 = vector.shape_cast %10: vector<4xindex> -> vector<4x1x1x1xbf16>
// %15 = vector.shape_cast %11: vector<2xindex> -> vector<1x2x1x1xbf16>
// %16 = vector.shape_cast %12: vector<6xindex> -> vector<1x1x6x1xbf16>
// %17 = vector.shape_cast %13: vector<32xindex> -> vector<1x1x1x32xbf16>
// %18 = vector.broadcast %14: vector<4x1x1x1xbf16> -> vector<4x2x6x32xindex>
// %19 = vector.broadcast %15: vector<1x2x1x1xbf16> -> vector<4x2x6x32xindex>
// %20 = vector.broadcast %16: vector<1x1x6x1xbf16> -> vector<4x2x6x32xindex>
// %21 = vector.broadcast %17: vector<1x1x1x32xbf16> -> vector<4x2x6x32xindex>
// %22 = arith.add %18, %19
// %23 = arith.add %20, %21
// %local_offsets = arith.add %22, %23
// %orig_offset = %block_id_y * 4x2x6x32 // consider using affine map
// %offsets = memref_offset + orig_offset + local_offsets
static Value computeOffsets(VectorTransferOpInterface xferOp,
PatternRewriter &rewriter, ArrayRef<Value> strides,
Value baseOffset) {
Location loc = xferOp.getLoc();
VectorType vectorType = xferOp.getVectorType();
SmallVector<Value> indices(xferOp.getIndices().begin(),
xferOp.getIndices().end());
ArrayRef<int64_t> vectorShape = vectorType.getShape();
// Create vector.step operations for each dimension
SmallVector<Value> stepVectors;
llvm::map_to_vector(vectorShape, [&](int64_t dim) {
auto stepType = VectorType::get({dim}, rewriter.getIndexType());
auto stepOp = vector::StepOp::create(rewriter, loc, stepType);
stepVectors.push_back(stepOp);
return stepOp;
});
// Multiply step vectors by corresponding strides
size_t memrefRank = strides.size();
size_t vectorRank = vectorShape.size();
SmallVector<Value> strideMultiplied;
for (size_t i = 0; i < vectorRank; ++i) {
size_t memrefDim = memrefRank - vectorRank + i;
Value strideValue = strides[memrefDim];
auto mulType = dyn_cast<VectorType>(stepVectors[i].getType());
auto bcastOp =
vector::BroadcastOp::create(rewriter, loc, mulType, strideValue);
auto mulOp = arith::MulIOp::create(rewriter, loc, stepVectors[i], bcastOp);
strideMultiplied.push_back(mulOp);
}
// Shape cast each multiplied vector to add singleton dimensions
SmallVector<Value> shapeCasted;
for (size_t i = 0; i < vectorRank; ++i) {
SmallVector<int64_t> newShape(vectorRank, 1);
newShape[i] = vectorShape[i];
auto newType = VectorType::get(newShape, rewriter.getIndexType());
auto castOp = vector::ShapeCastOp::create(rewriter, loc, newType,
strideMultiplied[i]);
shapeCasted.push_back(castOp);
}
// Broadcast each shape-casted vector to full vector shape
SmallVector<Value> broadcasted;
auto fullIndexVectorType =
VectorType::get(vectorShape, rewriter.getIndexType());
for (Value shapeCastVal : shapeCasted) {
auto broadcastOp = vector::BroadcastOp::create(
rewriter, loc, fullIndexVectorType, shapeCastVal);
broadcasted.push_back(broadcastOp);
}
// Add all broadcasted vectors together to compute local offsets
Value localOffsets = broadcasted[0];
for (size_t i = 1; i < broadcasted.size(); ++i)
localOffsets =
arith::AddIOp::create(rewriter, loc, localOffsets, broadcasted[i]);
// Compute base offset from transfer read indices
for (size_t i = 0; i < indices.size(); ++i) {
Value strideVal = strides[i];
Value offsetContrib =
arith::MulIOp::create(rewriter, loc, indices[i], strideVal);
baseOffset =
arith::AddIOp::create(rewriter, loc, baseOffset, offsetContrib);
}
// Broadcast base offset to match vector shape
Value bcastBase = vector::BroadcastOp::create(
rewriter, loc, fullIndexVectorType, baseOffset);
localOffsets = arith::AddIOp::create(rewriter, loc, bcastBase, localOffsets);
return localOffsets;
}
// Compute the element-wise offsets for vector.gather or vector.scatter ops.
//
// This function linearizes the base offsets of the gather/scatter operation
// and combines them with the per-element indices to produce a final vector of
// memory offsets.
template <
typename OpType,
typename = std::enable_if_t<llvm::is_one_of<
std::decay_t<OpType>, vector::GatherOp, vector::ScatterOp>::value>>
static Value computeOffsets(PatternRewriter &rewriter, OpType gatScatOp,
ArrayRef<Value> strides, Value baseOffset) {
Location loc = gatScatOp.getLoc();
SmallVector<Value> offsets = gatScatOp.getOffsets();
for (size_t i = 0; i < offsets.size(); ++i) {
Value offsetContrib =
arith::MulIOp::create(rewriter, loc, offsets[i], strides[i]);
baseOffset =
arith::AddIOp::create(rewriter, loc, baseOffset, offsetContrib);
}
Value indices = gatScatOp.getIndices();
VectorType vecType = cast<VectorType>(indices.getType());
Value strideVector =
vector::BroadcastOp::create(rewriter, loc, vecType, strides.back())
.getResult();
Value stridedIndices =
arith::MulIOp::create(rewriter, loc, strideVector, indices).getResult();
Value baseVector =
vector::BroadcastOp::create(
rewriter, loc,
VectorType::get(vecType.getShape(), rewriter.getIndexType()),
baseOffset)
.getResult();
return arith::AddIOp::create(rewriter, loc, baseVector, stridedIndices)
.getResult();
}
template <
typename OpType,
typename = std::enable_if_t<llvm::is_one_of<
std::decay_t<OpType>, vector::TransferReadOp, vector::TransferWriteOp,
vector::GatherOp, vector::ScatterOp>::value>>
// Convert memref to i64 base pointer
static Value memrefToIndexPtr(OpType xferOp, PatternRewriter &rewriter) {
Location loc = xferOp.getLoc();
auto indexPtr = memref::ExtractAlignedPointerAsIndexOp::create(
rewriter, loc, xferOp.getBase())
.getResult();
return arith::IndexCastOp::create(rewriter, loc, rewriter.getI64Type(),
indexPtr)
.getResult();
}
static LogicalResult lowerToScatteredLoadOp(vector::TransferReadOp readOp,
PatternRewriter &rewriter) {
Location loc = readOp.getLoc();
VectorType vectorType = readOp.getVectorType();
ArrayRef<int64_t> vectorShape = vectorType.getShape();
auto memrefType = dyn_cast<MemRefType>(readOp.getShapedType());
if (!memrefType)
return rewriter.notifyMatchFailure(readOp, "Expected memref source");
auto meta = computeMemrefMeta(readOp, rewriter);
if (meta.first.empty())
return rewriter.notifyMatchFailure(readOp, "Failed to compute strides");
Value localOffsets =
computeOffsets(readOp, rewriter, meta.first, meta.second);
Value flatMemref = memrefToIndexPtr(readOp, rewriter);
Value mask = vector::ConstantMaskOp::create(
rewriter, loc, VectorType::get(vectorShape, rewriter.getI1Type()),
vectorShape);
auto gatherOp = xegpu::LoadGatherOp::create(
rewriter, loc, vectorType, flatMemref, localOffsets, mask,
/*chunk_size=*/IntegerAttr{},
/*l1_hint=*/xegpu::CachePolicyAttr{},
/*l2_hint=*/xegpu::CachePolicyAttr{},
/*l3_hint=*/xegpu::CachePolicyAttr{});
rewriter.replaceOp(readOp, gatherOp.getResult());
return success();
}
static LogicalResult lowerToScatteredStoreOp(vector::TransferWriteOp writeOp,
PatternRewriter &rewriter) {
Location loc = writeOp.getLoc();
VectorType vectorType = writeOp.getVectorType();
ArrayRef<int64_t> vectorShape = vectorType.getShape();
auto memrefType = dyn_cast<MemRefType>(writeOp.getShapedType());
if (!memrefType)
return rewriter.notifyMatchFailure(writeOp, "Expected memref source");
auto meta = computeMemrefMeta(writeOp, rewriter);
if (meta.first.empty())
return rewriter.notifyMatchFailure(writeOp, "Failed to compute strides");
Value localOffsets =
computeOffsets(writeOp, rewriter, meta.first, meta.second);
Value flatMemref = memrefToIndexPtr(writeOp, rewriter);
Value mask = vector::ConstantMaskOp::create(
rewriter, loc, VectorType::get(vectorShape, rewriter.getI1Type()),
vectorShape);
xegpu::StoreScatterOp::create(rewriter, loc, writeOp.getVector(), flatMemref,
localOffsets, mask,
/*chunk_size=*/IntegerAttr{},
/*l1_hint=*/xegpu::CachePolicyAttr{},
/*l2_hint=*/xegpu::CachePolicyAttr{},
/*l3_hint=*/xegpu::CachePolicyAttr{});
rewriter.eraseOp(writeOp);
return success();
}
struct TransferReadLowering : public OpRewritePattern<vector::TransferReadOp> {
using OpRewritePattern<vector::TransferReadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferReadOp readOp,
PatternRewriter &rewriter) const override {
Location loc = readOp.getLoc();
if (failed(transferPreconditions(rewriter, readOp)))
return failure();
// TODO:This check needs to be replaced with proper uArch capability check
auto chip = xegpu::getChipStr(readOp);
if (chip != "pvc" && chip != "bmg") {
// lower to scattered load Op if the target HW doesn't have 2d block load
// support
// TODO: add support for OutOfBound access
if (readOp.hasOutOfBoundsDim())
return failure();
return lowerToScatteredLoadOp(readOp, rewriter);
}
// Perform common data transfer checks.
VectorType vecTy = readOp.getVectorType();
if (failed(storeLoadPreconditions(rewriter, readOp, vecTy)))
return failure();
bool isOutOfBounds = readOp.hasOutOfBoundsDim();
if (isOutOfBounds && !isZeroConstant(readOp.getPadding()))
return rewriter.notifyMatchFailure(
readOp, "Unsupported non-zero padded out-of-bounds read");
AffineMap readMap = readOp.getPermutationMap();
bool isTransposeLoad = !readMap.isMinorIdentity();
Type elementType = vecTy.getElementType();
unsigned minTransposeBitWidth = 32;
if (isTransposeLoad &&
elementType.getIntOrFloatBitWidth() < minTransposeBitWidth)
return rewriter.notifyMatchFailure(
readOp, "Unsupported data type for transposition");
// If load is transposed, get the base shape for the tensor descriptor.
SmallVector<int64_t> descShape(vecTy.getShape());
if (isTransposeLoad)
std::reverse(descShape.begin(), descShape.end());
auto descType = xegpu::TensorDescType::get(
descShape, elementType, /*array_length=*/1,
/*boundary_check=*/isOutOfBounds, xegpu::MemorySpace::Global);
xegpu::CreateNdDescOp ndDesc =
createNdDescriptor(rewriter, loc, descType,
dyn_cast<TypedValue<MemRefType>>(readOp.getBase()),
readOp.getIndices());
DenseI64ArrayAttr transposeAttr =
!isTransposeLoad ? nullptr
: DenseI64ArrayAttr::get(rewriter.getContext(),
ArrayRef<int64_t>{1, 0});
// By default, no specific caching policy is assigned.
xegpu::CachePolicyAttr hint = nullptr;
auto loadOp = xegpu::LoadNdOp::create(rewriter, loc, vecTy, ndDesc,
/*packed=*/nullptr, transposeAttr,
/*l1_hint=*/hint,
/*l2_hint=*/hint, /*l3_hint=*/hint);
rewriter.replaceOp(readOp, loadOp);
return success();
}
};
struct TransferWriteLowering
: public OpRewritePattern<vector::TransferWriteOp> {
using OpRewritePattern<vector::TransferWriteOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransferWriteOp writeOp,
PatternRewriter &rewriter) const override {
Location loc = writeOp.getLoc();
if (failed(transferPreconditions(rewriter, writeOp)))
return failure();
// TODO:This check needs to be replaced with proper uArch capability check
auto chip = xegpu::getChipStr(writeOp);
if (chip != "pvc" && chip != "bmg") {
// lower to scattered store Op if the target HW doesn't have 2d block
// store support
// TODO: add support for OutOfBound access
if (writeOp.hasOutOfBoundsDim())
return failure();
return lowerToScatteredStoreOp(writeOp, rewriter);
}
// Perform common data transfer checks.
VectorType vecTy = writeOp.getVectorType();
if (failed(storeLoadPreconditions(rewriter, writeOp, vecTy)))
return failure();
AffineMap map = writeOp.getPermutationMap();
if (!map.isMinorIdentity())
return rewriter.notifyMatchFailure(writeOp, "Expects identity map");
auto descType = xegpu::TensorDescType::get(
vecTy.getShape(), vecTy.getElementType(),
/*array_length=*/1, /*boundary_check=*/writeOp.hasOutOfBoundsDim(),
xegpu::MemorySpace::Global);
xegpu::CreateNdDescOp ndDesc =
createNdDescriptor(rewriter, loc, descType,
dyn_cast<TypedValue<MemRefType>>(writeOp.getBase()),
writeOp.getIndices());
// By default, no specific caching policy is assigned.
xegpu::CachePolicyAttr hint = nullptr;
auto storeOp =
xegpu::StoreNdOp::create(rewriter, loc, writeOp.getVector(), ndDesc,
/*l1_hint=*/hint,
/*l2_hint=*/hint, /*l3_hint=*/hint);
rewriter.replaceOp(writeOp, storeOp);
return success();
}
};
struct GatherLowering : public OpRewritePattern<vector::GatherOp> {
using OpRewritePattern<vector::GatherOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::GatherOp gatherOp,
PatternRewriter &rewriter) const override {
auto srcTy = dyn_cast<MemRefType>(gatherOp.getBase().getType());
if (!srcTy)
return rewriter.notifyMatchFailure(gatherOp, "Expects memref source");
Location loc = gatherOp.getLoc();
VectorType vectorType = gatherOp.getVectorType();
auto meta = computeMemrefMeta(gatherOp, rewriter);
if (meta.first.empty())
return rewriter.notifyMatchFailure(gatherOp, "Failed to compute strides");
Value localOffsets =
computeOffsets(rewriter, gatherOp, meta.first, meta.second);
Value flatMemref = memrefToIndexPtr(gatherOp, rewriter);
auto xeGatherOp = xegpu::LoadGatherOp::create(
rewriter, loc, vectorType, flatMemref, localOffsets, gatherOp.getMask(),
/*chunk_size=*/IntegerAttr{},
/*l1_hint=*/xegpu::CachePolicyAttr{},
/*l2_hint=*/xegpu::CachePolicyAttr{},
/*l3_hint=*/xegpu::CachePolicyAttr{});
auto selectOp =
arith::SelectOp::create(rewriter, loc, gatherOp.getMask(),
xeGatherOp.getResult(), gatherOp.getPassThru());
rewriter.replaceOp(gatherOp, selectOp.getResult());
return success();
}
};
struct ScatterLowering : public OpRewritePattern<vector::ScatterOp> {
using OpRewritePattern<vector::ScatterOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ScatterOp scatterOp,
PatternRewriter &rewriter) const override {
auto srcTy = dyn_cast<MemRefType>(scatterOp.getBase().getType());
if (!srcTy)
return rewriter.notifyMatchFailure(scatterOp, "Expects memref source");
Location loc = scatterOp.getLoc();
auto meta = computeMemrefMeta(scatterOp, rewriter);
if (meta.first.empty())
return rewriter.notifyMatchFailure(scatterOp,
"Failed to compute strides");
Value localOffsets =
computeOffsets(rewriter, scatterOp, meta.first, meta.second);
Value flatMemref = memrefToIndexPtr(scatterOp, rewriter);
xegpu::StoreScatterOp::create(rewriter, loc, scatterOp.getValueToStore(),
flatMemref, localOffsets, scatterOp.getMask(),
/*chunk_size=*/IntegerAttr{},
/*l1_hint=*/xegpu::CachePolicyAttr{},
/*l2_hint=*/xegpu::CachePolicyAttr{},
/*l3_hint=*/xegpu::CachePolicyAttr{});
rewriter.eraseOp(scatterOp);
return success();
}
};
struct LoadLowering : public OpRewritePattern<vector::LoadOp> {
using OpRewritePattern<vector::LoadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::LoadOp loadOp,
PatternRewriter &rewriter) const override {
Location loc = loadOp.getLoc();
VectorType vecTy = loadOp.getResult().getType();
if (failed(storeLoadPreconditions(rewriter, loadOp, vecTy)))
return failure();
// Boundary check is available only for block instructions.
bool boundaryCheck = vecTy.getRank() > 1;
auto descType = xegpu::TensorDescType::get(
vecTy.getShape(), vecTy.getElementType(), /*array_length=*/1,
boundaryCheck, xegpu::MemorySpace::Global);
xegpu::CreateNdDescOp ndDesc = createNdDescriptor(
rewriter, loc, descType, loadOp.getBase(), loadOp.getIndices());
// By default, no specific caching policy is assigned.
xegpu::CachePolicyAttr hint = nullptr;
auto loadNdOp = xegpu::LoadNdOp::create(
rewriter, loc, vecTy, ndDesc, /*packed=*/nullptr, /*transpose=*/nullptr,
/*l1_hint=*/hint,
/*l2_hint=*/hint, /*l3_hint=*/hint);
rewriter.replaceOp(loadOp, loadNdOp);
return success();
}
};
struct StoreLowering : public OpRewritePattern<vector::StoreOp> {
using OpRewritePattern<vector::StoreOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::StoreOp storeOp,
PatternRewriter &rewriter) const override {
Location loc = storeOp.getLoc();
TypedValue<VectorType> vector = storeOp.getValueToStore();
VectorType vecTy = vector.getType();
if (failed(storeLoadPreconditions(rewriter, storeOp, vecTy)))
return failure();
// Boundary check is available only for block instructions.
bool boundaryCheck = vecTy.getRank() > 1;
auto descType = xegpu::TensorDescType::get(
vecTy.getShape(), vecTy.getElementType(),
/*array_length=*/1, boundaryCheck, xegpu::MemorySpace::Global);
xegpu::CreateNdDescOp ndDesc = createNdDescriptor(
rewriter, loc, descType, storeOp.getBase(), storeOp.getIndices());
// By default, no specific caching policy is assigned.
xegpu::CachePolicyAttr hint = nullptr;
auto storeNdOp =
xegpu::StoreNdOp::create(rewriter, loc, vector, ndDesc,
/*l1_hint=*/hint,
/*l2_hint=*/hint, /*l3_hint=*/hint);
rewriter.replaceOp(storeOp, storeNdOp);
return success();
}
};
struct ContractionLowering : public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp contractOp,
PatternRewriter &rewriter) const override {
Location loc = contractOp.getLoc();
if (contractOp.getKind() != vector::CombiningKind::ADD)
return rewriter.notifyMatchFailure(contractOp,
"Expects add combining kind");
TypedValue<Type> acc = contractOp.getAcc();
VectorType accType = dyn_cast<VectorType>(acc.getType());
if (!accType || accType.getRank() != 2)
return rewriter.notifyMatchFailure(contractOp, "Expects acc 2D vector");
// Accept only plain 2D data layout.
// VNNI packing is applied to DPAS as a separate lowering step.
TypedValue<VectorType> lhs = contractOp.getLhs();
TypedValue<VectorType> rhs = contractOp.getRhs();
if (lhs.getType().getRank() != 2 || rhs.getType().getRank() != 2)
return rewriter.notifyMatchFailure(contractOp,
"Expects lhs and rhs 2D vectors");
if (!isRowMajorMatmul(contractOp.getIndexingMapsAttr()))
return rewriter.notifyMatchFailure(contractOp, "Invalid indexing maps");
auto dpasOp = xegpu::DpasOp::create(rewriter, loc,
TypeRange{contractOp.getResultType()},
ValueRange{lhs, rhs, acc});
rewriter.replaceOp(contractOp, dpasOp);
return success();
}
};
struct ConvertVectorToXeGPUPass
: public impl::ConvertVectorToXeGPUBase<ConvertVectorToXeGPUPass> {
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populateVectorToXeGPUConversionPatterns(patterns);
if (failed(applyPatternsGreedily(getOperation(), std::move(patterns))))
return signalPassFailure();
}
};
} // namespace
void mlir::populateVectorToXeGPUConversionPatterns(
RewritePatternSet &patterns) {
patterns
.add<TransferReadLowering, TransferWriteLowering, LoadLowering,
ScatterLowering, GatherLowering, StoreLowering, ContractionLowering>(
patterns.getContext());
}
|