aboutsummaryrefslogtreecommitdiff
path: root/mlir/lib/Conversion/LoopsToGPU/LoopsToGPU.cpp
blob: 9ba3f40d24e982182c786d1bf1ab51d1474cfcbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
//===- LoopsToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel.  The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/LoopsToGPU/LoopsToGPU.h"

#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Dialect/AffineOps/AffineOps.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/GPU/ParallelLoopMapper.h"
#include "mlir/Dialect/LoopOps/LoopOps.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/LoopUtils.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Debug.h"

#define DEBUG_TYPE "loops-to-gpu"

using namespace mlir;
using namespace mlir::loop;

using llvm::seq;

// Extract an indexed value from KernelDim3.
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
  switch (pos) {
  case 0:
    return dim3.x;
  case 1:
    return dim3.y;
  case 2:
    return dim3.z;
  default:
    llvm_unreachable("dim3 position out of bounds");
  }
  return nullptr;
}

// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
  return forOp.getLowerBoundOperands();
}
static SmallVector<Value, 1> getLowerBoundOperands(ForOp forOp) {
  SmallVector<Value, 1> bounds(1, forOp.lowerBound());
  return bounds;
}

// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
  return forOp.getUpperBoundOperands();
}
static SmallVector<Value, 1> getUpperBoundOperands(ForOp forOp) {
  SmallVector<Value, 1> bounds(1, forOp.upperBound());
  return bounds;
}

// Get a Value that corresponds to the loop step.  If the step is an attribute,
// materialize a corresponding constant using builder.
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
  return builder.create<ConstantIndexOp>(forOp.getLoc(), forOp.getStep());
}
static Value getOrCreateStep(ForOp forOp, OpBuilder &) { return forOp.step(); }

// Get a Value for the loop lower bound.  If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
  return lowerAffineLowerBound(forOp, builder);
}
static Value getOrEmitLowerBound(ForOp forOp, OpBuilder &) {
  return forOp.lowerBound();
}

// Get a Value for the loop upper bound.  If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
  return lowerAffineUpperBound(forOp, builder);
}
static Value getOrEmitUpperBound(ForOp forOp, OpBuilder &) {
  return forOp.upperBound();
}

// Check the structure of the loop nest:
//   - there are enough loops to map to numDims;
//   - the loops are perfectly nested;
//   - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
template <typename OpTy>
static LogicalResult checkLoopNestMappableImpl(OpTy forOp, unsigned numDims) {
  Region &limit = forOp.region();
  for (unsigned i = 0, e = numDims; i < e; ++i) {
    Operation *nested = &forOp.getBody()->front();
    if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
        !areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
      return forOp.emitError(
          "loops with bounds depending on other mapped loops "
          "are not supported");

    // The innermost loop can have an arbitrary body, skip the perfect nesting
    // check for it.
    if (i == e - 1)
      break;

    auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
    if (forOp.getBody()->empty() || std::next(begin, 2) != end)
      return forOp.emitError("expected perfectly nested loops in the body");

    if (!(forOp = dyn_cast<OpTy>(nested)))
      return nested->emitError("expected a nested loop");
  }
  return success();
}

template <typename OpTy>
static LogicalResult checkLoopNestMappable(OpTy forOp, unsigned numBlockDims,
                                           unsigned numThreadDims) {
  if (numBlockDims < 1 || numThreadDims < 1) {
    LLVM_DEBUG(llvm::dbgs() << "nothing to map");
    return success();
  }

  OpBuilder builder(forOp.getOperation());
  if (numBlockDims > 3) {
    return forOp.emitError("cannot map to more than 3 block dimensions");
  }
  if (numThreadDims > 3) {
    return forOp.emitError("cannot map to more than 3 thread dimensions");
  }
  return checkLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
}

template <typename OpTy>
static LogicalResult checkLoopOpMappable(OpTy forOp, unsigned numBlockDims,
                                         unsigned numThreadDims) {
  if (numBlockDims < 1 || numThreadDims < 1) {
    LLVM_DEBUG(llvm::dbgs() << "nothing to map");
    return success();
  }

  if (numBlockDims > 3) {
    return forOp.emitError("cannot map to more than 3 block dimensions");
  }
  if (numThreadDims > 3) {
    return forOp.emitError("cannot map to more than 3 thread dimensions");
  }
  if (numBlockDims != numThreadDims) {
    // TODO(ravishankarm) : This can probably be relaxed by having a one-trip
    // loop for the missing dimension, but there is not reason to handle this
    // case for now.
    return forOp.emitError(
        "mismatch in block dimensions and thread dimensions");
  }

  // Check that the forOp contains perfectly nested loops for numBlockDims
  if (failed(checkLoopNestMappableImpl(forOp, numBlockDims))) {
    return failure();
  }

  // Get to the innermost loop.
  for (auto i : seq<unsigned>(0, numBlockDims - 1)) {
    forOp = cast<OpTy>(&forOp.getBody()->front());
    (void)i;
  }

  // The forOp now points to the body of the innermost loop mapped to blocks.
  for (Operation &op : *forOp.getBody()) {
    // If the operation is a loop, check that it is mappable to workItems.
    if (auto innerLoop = dyn_cast<OpTy>(&op)) {
      if (failed(checkLoopNestMappableImpl(innerLoop, numThreadDims))) {
        return failure();
      }
      continue;
    }
    // TODO(ravishankarm) : If it is not a loop op, it is assumed that the
    // statement is executed by all threads. It might be a collective operation,
    // or some non-side effect instruction. Have to decide on "allowable"
    // statements and check for those here.
  }
  return success();
}

namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct LoopToGpuConverter {
  template <typename OpTy>
  Optional<OpTy> collectBounds(OpTy forOp, unsigned numLoops);

  template <typename OpTy>
  void createLaunch(OpTy rootForOp, OpTy innermostForOp, unsigned numBlockDims,
                    unsigned numThreadDims);

  // Ranges of the loops mapped to blocks or threads.
  SmallVector<Value, 6> dims;
  // Lower bounds of the loops mapped to blocks or threads.
  SmallVector<Value, 6> lbs;
  // Induction variables of the loops mapped to blocks or threads.
  SmallVector<Value, 6> ivs;
  // Steps of the loops mapped to blocks or threads.
  SmallVector<Value, 6> steps;
};
} // namespace

// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value value) {
  if (auto def = dyn_cast_or_null<ConstantIndexOp>(value.getDefiningOp()))
    return def.getValue() == 1;
  return false;
}

// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, llvm::None on failure.
template <typename OpTy>
Optional<OpTy> LoopToGpuConverter::collectBounds(OpTy forOp,
                                                 unsigned numLoops) {
  OpBuilder builder(forOp.getOperation());
  dims.reserve(numLoops);
  lbs.reserve(numLoops);
  ivs.reserve(numLoops);
  steps.reserve(numLoops);
  OpTy currentLoop = forOp;
  for (unsigned i = 0; i < numLoops; ++i) {
    Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
    Value upperBound = getOrEmitUpperBound(currentLoop, builder);
    if (!lowerBound || !upperBound) {
      return llvm::None;
    }

    Value range =
        builder.create<SubIOp>(currentLoop.getLoc(), upperBound, lowerBound);
    Value step = getOrCreateStep(currentLoop, builder);
    if (!isConstantOne(step))
      range = builder.create<SignedDivIOp>(currentLoop.getLoc(), range, step);
    dims.push_back(range);

    lbs.push_back(lowerBound);
    ivs.push_back(currentLoop.getInductionVar());
    steps.push_back(step);

    if (i != numLoops - 1)
      currentLoop = cast<OpTy>(&currentLoop.getBody()->front());
  }
  return currentLoop;
}

/// Given `nDims` perfectly nested loops rooted as `rootForOp`, convert them o
/// be partitioned across workgroups or workitems. The values for the
/// workgroup/workitem id along each dimension is passed in with `ids`. The
/// number of workgroups/workitems along each dimension are passed in with
/// `nids`. The innermost loop is mapped to the x-dimension, followed by the
/// next innermost loop to y-dimension, followed by z-dimension.
template <typename OpTy>
static OpTy createGPULaunchLoops(OpTy rootForOp, ArrayRef<Value> ids,
                                 ArrayRef<Value> nids) {
  auto nDims = ids.size();
  assert(nDims == nids.size());
  for (auto dim : llvm::seq<unsigned>(0, nDims)) {
    // TODO(ravishankarm): Don't always need to generate a loop here. If nids >=
    // number of iterations of the original loop, this becomes a if
    // condition. Though that does rely on how the workgroup/workitem sizes are
    // specified to begin with.
    mapLoopToProcessorIds(rootForOp, ids[dim], nids[dim]);
    if (dim != nDims - 1) {
      rootForOp = cast<OpTy>(rootForOp.getBody()->front());
    }
  }
  return rootForOp;
}

/// Utility method to convert the gpu::KernelDim3 object for representing id of
/// each workgroup/workitem and number of workgroup/workitems along a dimension
/// of the launch into a container.
static void packIdAndNumId(gpu::KernelDim3 kernelIds,
                           gpu::KernelDim3 kernelNids, unsigned nDims,
                           SmallVectorImpl<Value> &ids,
                           SmallVectorImpl<Value> &nids) {
  assert(nDims <= 3 && "invalid number of launch dimensions");
  std::array<Value, 3> allIds = {kernelIds.z, kernelIds.y, kernelIds.x};
  std::array<Value, 3> allNids = {kernelNids.z, kernelNids.y, kernelNids.x};
  ids.clear();
  ids.append(std::next(allIds.begin(), allIds.size() - nDims), allIds.end());
  nids.clear();
  nids.append(std::next(allNids.begin(), allNids.size() - nDims),
              allNids.end());
}

/// Generate the body of the launch operation.
template <typename OpTy>
static LogicalResult
createLaunchBody(OpBuilder &builder, OpTy rootForOp, gpu::LaunchOp launchOp,
                 unsigned numBlockDims, unsigned numThreadDims) {
  OpBuilder::InsertionGuard bodyInsertionGuard(builder);
  builder.setInsertionPointToEnd(&launchOp.body().front());
  auto terminatorOp = builder.create<gpu::TerminatorOp>(launchOp.getLoc());

  rootForOp.getOperation()->moveBefore(terminatorOp);
  SmallVector<Value, 3> workgroupID, numWorkGroups;
  packIdAndNumId(launchOp.getBlockIds(), launchOp.getGridSize(), numBlockDims,
                 workgroupID, numWorkGroups);

  // Partition the loop for mapping to workgroups.
  auto loopOp = createGPULaunchLoops(rootForOp, workgroupID, numWorkGroups);

  // Iterate over the body of the loopOp and get the loops to partition for
  // thread blocks.
  SmallVector<OpTy, 1> threadRootForOps;
  for (Operation &op : *loopOp.getBody()) {
    if (auto threadRootForOp = dyn_cast<OpTy>(&op)) {
      threadRootForOps.push_back(threadRootForOp);
    }
  }

  SmallVector<Value, 3> workItemID, workGroupSize;
  packIdAndNumId(launchOp.getThreadIds(), launchOp.getBlockSize(),
                 numThreadDims, workItemID, workGroupSize);
  for (auto &loopOp : threadRootForOps) {
    builder.setInsertionPoint(loopOp);
    createGPULaunchLoops(loopOp, workItemID, workGroupSize);
  }
  return success();
}

// Convert the computation rooted at the `rootForOp`, into a GPU kernel with the
// given workgroup size and number of workgroups.
template <typename OpTy>
static LogicalResult createLaunchFromOp(OpTy rootForOp,
                                        ArrayRef<Value> numWorkGroups,
                                        ArrayRef<Value> workGroupSizes) {
  OpBuilder builder(rootForOp.getOperation());
  if (numWorkGroups.size() > 3) {
    return rootForOp.emitError("invalid ")
           << numWorkGroups.size() << "-D workgroup specification";
  }
  auto loc = rootForOp.getLoc();
  Value one = builder.create<ConstantOp>(
      loc, builder.getIntegerAttr(builder.getIndexType(), 1));
  SmallVector<Value, 3> numWorkGroups3D(3, one), workGroupSize3D(3, one);
  for (auto numWorkGroup : enumerate(numWorkGroups)) {
    numWorkGroups3D[numWorkGroup.index()] = numWorkGroup.value();
  }
  for (auto workGroupSize : enumerate(workGroupSizes)) {
    workGroupSize3D[workGroupSize.index()] = workGroupSize.value();
  }

  auto launchOp = builder.create<gpu::LaunchOp>(
      rootForOp.getLoc(), numWorkGroups3D[0], numWorkGroups3D[1],
      numWorkGroups3D[2], workGroupSize3D[0], workGroupSize3D[1],
      workGroupSize3D[2]);
  if (failed(createLaunchBody(builder, rootForOp, launchOp,
                              numWorkGroups.size(), workGroupSizes.size()))) {
    return failure();
  }

  return success();
}

// Replace the rooted at "rootForOp" with a GPU launch operation.  This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
// TODO(ravishankarm) : This method can be modified to use the
// createLaunchFromOp method, since that is a strict generalization of this
// method.
template <typename OpTy>
void LoopToGpuConverter::createLaunch(OpTy rootForOp, OpTy innermostForOp,
                                      unsigned numBlockDims,
                                      unsigned numThreadDims) {
  OpBuilder builder(rootForOp.getOperation());
  // Prepare the grid and block sizes for the launch operation.  If there is
  // no loop mapped to a specific dimension, use constant "1" as its size.
  Value constOne = (numBlockDims < 3 || numThreadDims < 3)
                       ? builder.create<ConstantIndexOp>(rootForOp.getLoc(), 1)
                       : nullptr;
  Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
  Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
  Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
  Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
  Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
  Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;

  // Create a launch op and move the body region of the innermost loop to the
  // launch op.
  auto launchOp = builder.create<gpu::LaunchOp>(
      rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
      blockSizeY, blockSizeZ);

  // Replace the loop terminator (loops contain only a single block) with the
  // gpu terminator and move the operations from the loop body block to the gpu
  // launch body block.  Do not move the entire block because of the difference
  // in block arguments.
  Operation &terminator = innermostForOp.getBody()->back();
  Location terminatorLoc = terminator.getLoc();
  terminator.erase();
  builder.setInsertionPointToEnd(innermostForOp.getBody());
  builder.create<gpu::TerminatorOp>(terminatorLoc, llvm::None);
  launchOp.body().front().getOperations().splice(
      launchOp.body().front().begin(),
      innermostForOp.getBody()->getOperations());

  // Remap the loop iterators to use block/thread identifiers instead.  Loops
  // may iterate from LB with step S whereas GPU thread/block ids always iterate
  // from 0 to N with step 1.  Therefore, loop induction variables are replaced
  // with (gpu-thread/block-id * S) + LB.
  builder.setInsertionPointToStart(&launchOp.body().front());
  auto lbArgumentIt = lbs.begin();
  auto stepArgumentIt = steps.begin();
  for (auto en : llvm::enumerate(ivs)) {
    Value id =
        en.index() < numBlockDims
            ? getDim3Value(launchOp.getBlockIds(), en.index())
            : getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
    Value step = steps[en.index()];
    if (!isConstantOne(step))
      id = builder.create<MulIOp>(rootForOp.getLoc(), step, id);

    Value ivReplacement =
        builder.create<AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
    en.value().replaceAllUsesWith(ivReplacement);
    std::advance(lbArgumentIt, 1);
    std::advance(stepArgumentIt, 1);
  }

  // We are done and can erase the original outermost loop.
  rootForOp.erase();
}

// Generic loop to GPU kernel conversion function.
template <typename OpTy>
static LogicalResult convertLoopNestToGPULaunch(OpTy forOp,
                                                unsigned numBlockDims,
                                                unsigned numThreadDims) {
  if (failed(checkLoopNestMappable(forOp, numBlockDims, numThreadDims)))
    return failure();

  LoopToGpuConverter converter;
  auto maybeInnerLoop =
      converter.collectBounds(forOp, numBlockDims + numThreadDims);
  if (!maybeInnerLoop)
    return failure();
  converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);

  return success();
}

// Generic loop to GPU kernel conversion function when loop is imperfectly
// nested. The workgroup size and num workgroups is provided as input
template <typename OpTy>
static LogicalResult convertLoopToGPULaunch(OpTy forOp,
                                            ArrayRef<Value> numWorkGroups,
                                            ArrayRef<Value> workGroupSize) {
  if (failed(checkLoopOpMappable(forOp, numWorkGroups.size(),
                                 workGroupSize.size()))) {
    return failure();
  }
  return createLaunchFromOp(forOp, numWorkGroups, workGroupSize);
}

LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
                                                     unsigned numBlockDims,
                                                     unsigned numThreadDims) {
  return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}

LogicalResult mlir::convertLoopNestToGPULaunch(ForOp forOp,
                                               unsigned numBlockDims,
                                               unsigned numThreadDims) {
  return ::convertLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}

LogicalResult mlir::convertLoopToGPULaunch(loop::ForOp forOp,
                                           ArrayRef<Value> numWorkGroups,
                                           ArrayRef<Value> workGroupSizes) {
  return ::convertLoopToGPULaunch(forOp, numWorkGroups, workGroupSizes);
}

namespace {
struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
  using OpRewritePattern<ParallelOp>::OpRewritePattern;

  PatternMatchResult matchAndRewrite(ParallelOp parallelOp,
                                     PatternRewriter &rewriter) const override;
};

struct MappingAnnotation {
  unsigned processor;
  AffineMap indexMap;
  AffineMap boundMap;
};

} // namespace

/// Extracts the mapping annotations from the provided attribute. The attribute
/// is expected to be of the form
/// { processor = <unsigned>, map = <AffineMap>, bound = <AffineMap> }
/// where the bound is optional.
static MappingAnnotation extractMappingAnnotation(Attribute attribute) {
  DictionaryAttr dict = attribute.cast<DictionaryAttr>();
  unsigned processor = dict.get(gpu::kProcessorEntryName)
                           .cast<IntegerAttr>()
                           .getValue()
                           .getSExtValue();
  AffineMap map =
      dict.get(gpu::kIndexMapEntryName).cast<AffineMapAttr>().getValue();
  AffineMapAttr boundAttr =
      dict.get(gpu::kBoundMapEntryName).dyn_cast_or_null<AffineMapAttr>();
  AffineMap bound;
  if (boundAttr)
    bound = boundAttr.getValue();
  return {processor, map, bound};
}

/// Tries to derive a static upper bound from the defining operation of
/// `upperBound`.
static Value deriveStaticUpperBound(Value upperBound,
                                    PatternRewriter &rewriter) {
  if (AffineMinOp minOp =
          dyn_cast_or_null<AffineMinOp>(upperBound.getDefiningOp())) {
    for (const AffineExpr &result : minOp.map().getResults()) {
      if (AffineConstantExpr constExpr =
              result.dyn_cast<AffineConstantExpr>()) {
        return rewriter.create<ConstantIndexOp>(minOp.getLoc(),
                                                constExpr.getValue());
      }
    }
  }
  return {};
}

/// Modifies the current transformation state to capture the effect of the given
/// `loop.parallel` operation on index substitutions and the operations to be
/// inserted.
/// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
/// this function will
/// - compute the loop index based on the hardware id and affine map from the
///   mapping and update `cloningMap` to substitute all uses.
/// - derive a new upper bound for the hardware id and augment the provided
///   `gpu.launch operation` accordingly.
/// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
///   and update the rewriter to insert into the conditional's body.
/// If the dimension is mapped to sequential,
/// - insert a for loop into the body and update the rewriter to insert into
///   the for loop's body.
/// - update the `cloningMap` to replace uses of the index with the index of
///   the new for loop.
/// In either case,
/// - append the instructions from the loops body to worklist, in reverse order.
/// To note the end of the current scope in case a loop or conditional was
/// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
/// worklist. This signals the processor of the worklist to pop the rewriter
/// one scope-level up.
static LogicalResult processParallelLoop(ParallelOp parallelOp,
                                         gpu::LaunchOp launchOp,
                                         BlockAndValueMapping &cloningMap,
                                         SmallVectorImpl<Operation *> &worklist,
                                         DenseMap<int, Value> &bounds,
                                         PatternRewriter &rewriter) {
  // TODO(herhut): Verify that this is a valid GPU mapping.
  // processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
  ArrayAttr mapping =
      parallelOp.getAttrOfType<ArrayAttr>(gpu::kMappingAttributeName);

  // TODO(herhut): Support reductions.
  if (!mapping || parallelOp.getNumResults() != 0)
    return failure();

  Location loc = parallelOp.getLoc();

  auto launchIndependent = [&launchOp](Value val) {
    return val.getParentRegion()->isAncestor(launchOp.getParentRegion());
  };

  auto ensureLaunchIndependent = [&rewriter,
                                  launchIndependent](Value val) -> Value {
    if (launchIndependent(val))
      return val;
    if (ConstantOp constOp = dyn_cast_or_null<ConstantOp>(val.getDefiningOp()))
      return rewriter.create<ConstantOp>(constOp.getLoc(), constOp.getValue());
    return {};
  };

  for (auto config : llvm::zip(mapping, parallelOp.getInductionVars(),
                               parallelOp.lowerBound(), parallelOp.upperBound(),
                               parallelOp.step())) {
    Attribute mappingAttribute;
    Value iv, lowerBound, upperBound, step;
    std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
    MappingAnnotation annotation = extractMappingAnnotation(mappingAttribute);
    Value newIndex;

    if (annotation.processor < gpu::LaunchOp::kNumConfigOperands) {
      // Use the corresponding thread/grid index as replacement for the loop iv.
      Value operand = launchOp.body().front().getArgument(annotation.processor);
      // Take the indexmap and add the lower bound and step computations in.
      // This computes operand * step + lowerBound.
      // Use an affine map here so that it composes nicely with the provided
      // annotation.
      AffineMap lowerAndStep = AffineMap::get(
          1, 2,
          rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
              rewriter.getAffineSymbolExpr(1));
      newIndex = rewriter.create<AffineApplyOp>(
          loc, annotation.indexMap.compose(lowerAndStep),
          ValueRange{operand, step, lowerBound});
      // If there was also a bound, insert that, too.
      // TODO(herhut): Check that we do not assign bounds twice.
      if (annotation.boundMap) {
        // We pass as the single opererand to the bound-map the number of
        // iterations, which is (upperBound - lowerBound) ceilDiv step. To
        // support inner loops with dynamic upper bounds (as generated by e.g.
        // tiling), try to derive a max for the bounds. If the used bound for
        // the hardware id is imprecise, wrap the contained code into a
        // conditional. If the lower-bound is constant or defined before the
        // launch, we can use it in the launch bounds. Otherwise fail.
        if (!launchIndependent(lowerBound) &&
            !isa_and_nonnull<ConstantOp>(lowerBound.getDefiningOp()))
          return failure();
        // The step must also be constant or defined outside of the loop nest.
        if (!launchIndependent(step) &&
            !isa_and_nonnull<ConstantOp>(step.getDefiningOp()))
          return failure();
        // If the upper-bound is constant or defined before the launch, we can
        // use it in the launch bounds directly. Otherwise try derive a bound.
        bool boundIsPrecise =
            launchIndependent(upperBound) ||
            isa_and_nonnull<ConstantOp>(upperBound.getDefiningOp());
        {
          PatternRewriter::InsertionGuard guard(rewriter);
          rewriter.setInsertionPoint(launchOp);
          if (!boundIsPrecise) {
            upperBound = deriveStaticUpperBound(upperBound, rewriter);
            if (!upperBound) {
              return parallelOp.emitOpError()
                     << "cannot derive loop-invariant upper bound for number "
                        "of iterations";
            }
          }
          // Compute the number of iterations needed. We compute this as an
          // affine expression ceilDiv (upperBound - lowerBound) step. We use
          // affine.apply here so that it composes nicely with the provided map.
          AffineMap stepMap =
              AffineMap::get(0, 3,
                             ((rewriter.getAffineSymbolExpr(0) -
                               rewriter.getAffineSymbolExpr(1))
                                  .ceilDiv(rewriter.getAffineSymbolExpr(2))));
          Value launchBound = rewriter.create<AffineApplyOp>(
              loc, annotation.boundMap.compose(stepMap),
              ValueRange{
                  ensureLaunchIndependent(
                      cloningMap.lookupOrDefault(upperBound)),
                  ensureLaunchIndependent(
                      cloningMap.lookupOrDefault(lowerBound)),
                  ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
          if (bounds.find(annotation.processor) != bounds.end()) {
            return parallelOp.emitOpError()
                   << "cannot redefine the bound for processor "
                   << annotation.processor;
          }
          bounds[annotation.processor] = launchBound;
        }
        if (!boundIsPrecise) {
          // We are using an approximation, create a surrounding conditional.
          Value originalBound = std::get<3>(config);
          CmpIOp pred = rewriter.create<CmpIOp>(
              loc, CmpIPredicate::slt, newIndex,
              cloningMap.lookupOrDefault(originalBound));
          loop::IfOp ifOp = rewriter.create<loop::IfOp>(loc, pred, false);
          rewriter.setInsertionPointToStart(&ifOp.thenRegion().front());
          // Put a sentinel into the worklist so we know when to pop out of the
          // if body again. We use the launchOp here, as that cannot be part of
          // the bodies instruction.
          worklist.push_back(launchOp.getOperation());
        }
      }
    } else {
      // Create a sequential for loop.
      auto loopOp = rewriter.create<loop::ForOp>(
          loc, cloningMap.lookupOrDefault(lowerBound),
          cloningMap.lookupOrDefault(upperBound),
          cloningMap.lookupOrDefault(step));
      newIndex = loopOp.getInductionVar();
      rewriter.setInsertionPointToStart(loopOp.getBody());
      // Put a sentinel into the worklist so we know when to pop out of the loop
      // body again. We use the launchOp here, as that cannot be part of the
      // bodies instruction.
      worklist.push_back(launchOp.getOperation());
    }
    cloningMap.map(iv, newIndex);
  }
  Block *body = parallelOp.getBody();
  worklist.reserve(worklist.size() + body->getOperations().size());
  for (Operation &op : llvm::reverse(body->without_terminator()))
    worklist.push_back(&op);
  return success();
}

/// Lower a `loop.parallel` operation into a corresponding `gpu.launch`
/// operation.
///
/// This essentially transforms a loop nest into a corresponding SIMT function.
/// The conversion is driven by mapping annotations on the `loop.parallel`
/// operations. The mapping is provided via a `DictionaryAttribute` named
/// `mapping`, which has three entries:
///  - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
///               thread dimensions and 6 is sequential.
///  - map : An affine map that is used to pre-process hardware ids before
///          substitution.
///  - bound : An affine map that is used to compute the bound of the hardware
///            id based on an upper bound of the number of iterations.
/// If the `loop.parallel` contains nested `loop.parallel` operations, those
/// need to be annotated, as well. Structurally, the transformation works by
/// splicing all operations from nested `loop.parallel` operations into a single
/// sequence. Indices mapped to hardware ids are substituted with those ids,
/// wheras sequential mappings result in a sequential for-loop. To have more
/// flexibility when mapping code to hardware ids, the transform supports two
/// affine maps. The first `map` is used to compute the actual index for
/// substitution from the hardware id. The second `bound` is used to compute the
/// launch dimension for the hardware id from the number of iterations the
/// mapped loop is performing. Note that the number of iterations might be
/// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
/// the hardware id might iterate over additional indices. The transformation
/// caters for this by predicating the created sequence of instructions on
/// the actual loop bound. This only works if an static upper bound for the
/// dynamic loop bound can be defived, currently via analyzing `affine.min`
/// operations.
PatternMatchResult
ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
                                             PatternRewriter &rewriter) const {
  // Create a launch operation. We start with bound one for all grid/block
  // sizes. Those will be refined later as we discover them from mappings.
  Location loc = parallelOp.getLoc();
  Value constantOne = rewriter.create<ConstantIndexOp>(parallelOp.getLoc(), 1);
  gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
      parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
      constantOne, constantOne);
  rewriter.setInsertionPointToEnd(&launchOp.body().front());
  rewriter.create<gpu::TerminatorOp>(loc);
  rewriter.setInsertionPointToStart(&launchOp.body().front());

  BlockAndValueMapping cloningMap;
  llvm::DenseMap<int, Value> launchBounds;
  SmallVector<Operation *, 16> worklist;
  if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
                                 launchBounds, rewriter)))
    return matchFailure();

  // Whether we have seen any side-effects. Reset when leaving an inner scope.
  bool seenSideeffects = false;
  // Whether we have left a nesting scope (and hence are no longer innermost).
  bool leftNestingScope = false;
  while (!worklist.empty()) {
    Operation *op = worklist.pop_back_val();
    // Now walk over the body and clone it.
    // TODO: This is only correct if there either is no further loop.parallel
    //       nested or this code is side-effect free. Otherwise we might need
    //       predication. We are overly consertaive for now and only allow
    //       side-effects in the innermost scope.
    if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
      // Before entering a nested scope, make sure there have been no
      // sideeffects until now.
      if (seenSideeffects)
        return matchFailure();
      // A nested loop.parallel needs insertion of code to compute indices.
      // Insert that now. This will also update the worklist with the loops
      // body.
      if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
                                     worklist, launchBounds, rewriter)))
        return matchFailure();
    } else if (op == launchOp.getOperation()) {
      // Found our sentinel value. We have finished the operations from one
      // nesting level, pop one level back up.
      auto parent = rewriter.getInsertionPoint()->getParentOp();
      rewriter.setInsertionPointAfter(parent);
      leftNestingScope = true;
      seenSideeffects = false;
    } else {
      // Otherwise we copy it over.
      Operation *clone = rewriter.clone(*op, cloningMap);
      cloningMap.map(op->getResults(), clone->getResults());
      // Check for side effects.
      // TODO: Handle region side effects properly.
      seenSideeffects |= !MemoryEffectOpInterface::hasNoEffect(clone) ||
                         clone->getNumRegions() != 0;
      // If we are no longer in the innermost scope, sideeffects are disallowed.
      if (seenSideeffects && leftNestingScope)
        return matchFailure();
    }
  }

  // Now that we succeeded creating the launch operation, also update the
  // bounds.
  for (auto bound : launchBounds)
    launchOp.setOperand(std::get<0>(bound), std::get<1>(bound));

  rewriter.eraseOp(parallelOp);
  return matchSuccess();
}

void mlir::populateParallelLoopToGPUPatterns(OwningRewritePatternList &patterns,
                                             MLIRContext *ctx) {
  patterns.insert<ParallelToGpuLaunchLowering>(ctx);
}