1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
//===- MIR2VecTest.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MIR2Vec.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/TargetParser/Triple.h"
#include "gtest/gtest.h"
using namespace llvm;
using namespace mir2vec;
using VocabMap = std::map<std::string, ir2vec::Embedding>;
namespace {
TEST(MIR2VecTest, RegexExtraction) {
// Test simple instruction names
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("NOP"), "NOP");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("RET"), "RET");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("ADD16ri"), "ADD");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("ADD32rr"), "ADD");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("ADD64rm"), "ADD");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("MOV8ri"), "MOV");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("MOV32mr"), "MOV");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("PUSH64r"), "PUSH");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("POP64r"), "POP");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("JMP_4"), "JMP");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("CALL64pcrel32"), "CALL");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("SOME_INSTR_123"),
"SOME_INSTR");
EXPECT_EQ(MIRVocabulary::extractBaseOpcodeName("123ADD"), "ADD");
EXPECT_FALSE(MIRVocabulary::extractBaseOpcodeName("123").empty());
}
class MIR2VecVocabTestFixture : public ::testing::Test {
protected:
std::unique_ptr<LLVMContext> Ctx;
std::unique_ptr<Module> M;
std::unique_ptr<TargetMachine> TM;
const TargetInstrInfo *TII;
static void SetUpTestCase() {
InitializeAllTargets();
InitializeAllTargetMCs();
}
void SetUp() override {
Triple TargetTriple("x86_64-unknown-linux-gnu");
std::string Error;
const Target *T = TargetRegistry::lookupTarget("", TargetTriple, Error);
if (!T) {
GTEST_SKIP() << "x86_64-unknown-linux-gnu target triple not available; "
"Skipping test";
return;
}
Ctx = std::make_unique<LLVMContext>();
M = std::make_unique<Module>("test", *Ctx);
M->setTargetTriple(TargetTriple);
TargetOptions Options;
TM = std::unique_ptr<TargetMachine>(
T->createTargetMachine(TargetTriple, "", "", Options, std::nullopt));
if (!TM) {
GTEST_SKIP() << "Failed to create X86 target machine; Skipping test";
return;
}
// Create a dummy function to get subtarget info
FunctionType *FT = FunctionType::get(Type::getVoidTy(*Ctx), false);
Function *F =
Function::Create(FT, Function::ExternalLinkage, "test", M.get());
// Get the target instruction info
TII = TM->getSubtargetImpl(*F)->getInstrInfo();
if (!TII) {
GTEST_SKIP() << "Failed to get target instruction info; Skipping test";
return;
}
}
};
// Function to find an opcode by name
static int findOpcodeByName(const TargetInstrInfo *TII, StringRef Name) {
for (unsigned Opcode = 1; Opcode < TII->getNumOpcodes(); ++Opcode) {
if (TII->getName(Opcode) == Name)
return Opcode;
}
return -1; // Not found
}
TEST_F(MIR2VecVocabTestFixture, CanonicalOpcodeMappingTest) {
// Test that same base opcodes get same canonical indices
std::string BaseName1 = MIRVocabulary::extractBaseOpcodeName("ADD16ri");
std::string BaseName2 = MIRVocabulary::extractBaseOpcodeName("ADD32rr");
std::string BaseName3 = MIRVocabulary::extractBaseOpcodeName("ADD64rm");
EXPECT_EQ(BaseName1, BaseName2);
EXPECT_EQ(BaseName2, BaseName3);
// Create a MIRVocabulary instance to test the mapping
// Use a minimal MIRVocabulary to trigger canonical mapping construction
VocabMap VMap;
Embedding Val = Embedding(64, 1.0f);
VMap["ADD"] = Val;
MIRVocabulary TestVocab(std::move(VMap), TII);
unsigned Index1 = TestVocab.getCanonicalIndexForBaseName(BaseName1);
unsigned Index2 = TestVocab.getCanonicalIndexForBaseName(BaseName2);
unsigned Index3 = TestVocab.getCanonicalIndexForBaseName(BaseName3);
EXPECT_EQ(Index1, Index2);
EXPECT_EQ(Index2, Index3);
// Test that different base opcodes get different canonical indices
std::string AddBase = MIRVocabulary::extractBaseOpcodeName("ADD32rr");
std::string SubBase = MIRVocabulary::extractBaseOpcodeName("SUB32rr");
std::string MovBase = MIRVocabulary::extractBaseOpcodeName("MOV32rr");
unsigned AddIndex = TestVocab.getCanonicalIndexForBaseName(AddBase);
unsigned SubIndex = TestVocab.getCanonicalIndexForBaseName(SubBase);
unsigned MovIndex = TestVocab.getCanonicalIndexForBaseName(MovBase);
EXPECT_NE(AddIndex, SubIndex);
EXPECT_NE(SubIndex, MovIndex);
EXPECT_NE(AddIndex, MovIndex);
// Even though we only added "ADD" to the vocab, the canonical mapping
// should assign unique indices to all the base opcodes of the target
// Ideally, we would check against the exact number of unique base opcodes
// for X86, but that would make the test brittle. So we just check that
// the number is reasonably closer to the expected number (>6880) and not just
// opcodes that we added.
EXPECT_GT(TestVocab.getCanonicalSize(),
6880u); // X86 has >6880 unique base opcodes
// Check that the embeddings for opcodes not in the vocab are zero vectors
int Add32rrOpcode = findOpcodeByName(TII, "ADD32rr");
ASSERT_NE(Add32rrOpcode, -1) << "ADD32rr opcode not found";
EXPECT_TRUE(TestVocab[Add32rrOpcode].approximatelyEquals(Val));
int Sub32rrOpcode = findOpcodeByName(TII, "SUB32rr");
ASSERT_NE(Sub32rrOpcode, -1) << "SUB32rr opcode not found";
EXPECT_TRUE(
TestVocab[Sub32rrOpcode].approximatelyEquals(Embedding(64, 0.0f)));
int Mov32rrOpcode = findOpcodeByName(TII, "MOV32rr");
ASSERT_NE(Mov32rrOpcode, -1) << "MOV32rr opcode not found";
EXPECT_TRUE(
TestVocab[Mov32rrOpcode].approximatelyEquals(Embedding(64, 0.0f)));
}
// Test deterministic mapping
TEST_F(MIR2VecVocabTestFixture, DeterministicMapping) {
// Test that the same base name always maps to the same canonical index
std::string BaseName = "ADD";
// Create a MIRVocabulary instance to test deterministic mapping
// Use a minimal MIRVocabulary to trigger canonical mapping construction
VocabMap VMap;
VMap["ADD"] = Embedding(64, 1.0f);
MIRVocabulary TestVocab(std::move(VMap), TII);
unsigned Index1 = TestVocab.getCanonicalIndexForBaseName(BaseName);
unsigned Index2 = TestVocab.getCanonicalIndexForBaseName(BaseName);
unsigned Index3 = TestVocab.getCanonicalIndexForBaseName(BaseName);
EXPECT_EQ(Index1, Index2);
EXPECT_EQ(Index2, Index3);
// Test across multiple runs
for (int Pos = 0; Pos < 100; ++Pos) {
unsigned Index = TestVocab.getCanonicalIndexForBaseName(BaseName);
EXPECT_EQ(Index, Index1);
}
}
// Test MIRVocabulary construction
TEST_F(MIR2VecVocabTestFixture, VocabularyConstruction) {
VocabMap VMap;
VMap["ADD"] = Embedding(128, 1.0f); // Dimension 128, all values 1.0
VMap["SUB"] = Embedding(128, 2.0f); // Dimension 128, all values 2.0
MIRVocabulary Vocab(std::move(VMap), TII);
EXPECT_TRUE(Vocab.isValid());
EXPECT_EQ(Vocab.getDimension(), 128u);
// Test iterator - iterates over individual embeddings
auto IT = Vocab.begin();
EXPECT_NE(IT, Vocab.end());
// Check first embedding exists and has correct dimension
EXPECT_EQ((*IT).size(), 128u);
size_t Count = 0;
for (auto IT = Vocab.begin(); IT != Vocab.end(); ++IT) {
EXPECT_EQ((*IT).size(), 128u);
++Count;
}
EXPECT_GT(Count, 0u);
}
} // namespace
|