1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py
; RUN: opt -S -passes=early-cse -earlycse-debug-hash < %s | FileCheck %s --check-prefixes=CHECK,NO-MSSA
; RUN: opt -S -passes='early-cse<memssa>' < %s | FileCheck %s --check-prefixes=CHECK,MSSA
@var = global i32 undef
declare void @foo() nounwind
define void @test() {
; CHECK-LABEL: @test(
; CHECK-NEXT: call void @foo() #[[ATTR1:[0-9]+]]
; CHECK-NEXT: store i32 2, ptr @var, align 4
; CHECK-NEXT: ret void
;
store i32 1, ptr @var
call void @foo() writeonly
store i32 2, ptr @var
ret void
}
declare void @writeonly_void() memory(write)
; Can CSE writeonly calls, including non-nounwind/willreturn.
define void @writeonly_cse() {
; CHECK-LABEL: @writeonly_cse(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: ret void
;
call void @writeonly_void()
call void @writeonly_void()
ret void
}
; Can CSE, loads do not matter.
define i32 @writeonly_cse_intervening_load(ptr %p) {
; CHECK-LABEL: @writeonly_cse_intervening_load(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: [[V:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: ret i32 [[V]]
;
call void @writeonly_void()
%v = load i32, ptr %p
call void @writeonly_void()
ret i32 %v
}
; Cannot CSE, the store may be to the same memory.
define void @writeonly_cse_intervening_store(ptr %p) {
; CHECK-LABEL: @writeonly_cse_intervening_store(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: store i32 0, ptr [[P:%.*]], align 4
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: ret void
;
call void @writeonly_void()
store i32 0, ptr %p
call void @writeonly_void()
ret void
}
; Can CSE, the store does not alias the writeonly call.
define void @writeonly_cse_intervening_noalias_store(ptr noalias %p) {
; NO-MSSA-LABEL: @writeonly_cse_intervening_noalias_store(
; NO-MSSA-NEXT: call void @writeonly_void()
; NO-MSSA-NEXT: store i32 0, ptr [[P:%.*]], align 4
; NO-MSSA-NEXT: call void @writeonly_void()
; NO-MSSA-NEXT: ret void
;
; MSSA-LABEL: @writeonly_cse_intervening_noalias_store(
; MSSA-NEXT: call void @writeonly_void()
; MSSA-NEXT: store i32 0, ptr [[P:%.*]], align 4
; MSSA-NEXT: ret void
;
call void @writeonly_void()
store i32 0, ptr %p
call void @writeonly_void()
ret void
}
; Cannot CSE loads across writeonly call.
define i32 @load_cse_across_writeonly(ptr %p) {
; CHECK-LABEL: @load_cse_across_writeonly(
; CHECK-NEXT: [[V1:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: [[V2:%.*]] = load i32, ptr [[P]], align 4
; CHECK-NEXT: [[RES:%.*]] = sub i32 [[V1]], [[V2]]
; CHECK-NEXT: ret i32 [[RES]]
;
%v1 = load i32, ptr %p
call void @writeonly_void()
%v2 = load i32, ptr %p
%res = sub i32 %v1, %v2
ret i32 %res
}
; Can CSE loads across eliminated writeonly call.
define i32 @load_cse_across_csed_writeonly(ptr %p) {
; CHECK-LABEL: @load_cse_across_csed_writeonly(
; CHECK-NEXT: call void @writeonly_void()
; CHECK-NEXT: [[V2:%.*]] = load i32, ptr [[P:%.*]], align 4
; CHECK-NEXT: ret i32 0
;
call void @writeonly_void()
%v1 = load i32, ptr %p
call void @writeonly_void()
%v2 = load i32, ptr %p
%res = sub i32 %v1, %v2
ret i32 %res
}
declare i32 @writeonly(ptr %p) memory(write)
; Can CSE writeonly calls with arg and return.
define i32 @writeonly_ret_cse(ptr %p) {
; CHECK-LABEL: @writeonly_ret_cse(
; CHECK-NEXT: [[V2:%.*]] = call i32 @writeonly(ptr [[P:%.*]])
; CHECK-NEXT: ret i32 0
;
%v1 = call i32 @writeonly(ptr %p)
%v2 = call i32 @writeonly(ptr %p)
%res = sub i32 %v1, %v2
ret i32 %res
}
; Cannot CSE writeonly calls with different arguments.
define i32 @writeonly_different_args(ptr %p1, ptr %p2) {
; CHECK-LABEL: @writeonly_different_args(
; CHECK-NEXT: [[V1:%.*]] = call i32 @writeonly(ptr [[P1:%.*]])
; CHECK-NEXT: [[V2:%.*]] = call i32 @writeonly(ptr [[P2:%.*]])
; CHECK-NEXT: [[RES:%.*]] = sub i32 [[V1]], [[V2]]
; CHECK-NEXT: ret i32 [[RES]]
;
%v1 = call i32 @writeonly(ptr %p1)
%v2 = call i32 @writeonly(ptr %p2)
%res = sub i32 %v1, %v2
ret i32 %res
}
declare void @callee()
; These are weird cases where the same call is both readonly and writeonly
; based on call-site attributes. I believe this implies that both calls are
; actually readnone and safe to CSE, but leave them alone to be conservative.
define void @readonly_and_writeonly() {
; CHECK-LABEL: @readonly_and_writeonly(
; CHECK-NEXT: call void @callee() #[[ATTR2:[0-9]+]]
; CHECK-NEXT: call void @callee() #[[ATTR1]]
; CHECK-NEXT: ret void
;
call void @callee() memory(read)
call void @callee() memory(write)
ret void
}
define void @writeonly_and_readonly() {
; CHECK-LABEL: @writeonly_and_readonly(
; CHECK-NEXT: call void @callee() #[[ATTR1]]
; CHECK-NEXT: call void @callee() #[[ATTR2]]
; CHECK-NEXT: ret void
;
call void @callee() memory(write)
call void @callee() memory(read)
ret void
}
|