aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Vectorize/VPlanConstruction.cpp
blob: 03b0ac1b03ff95b250c57a18d2e37bf6ccf7da7f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
//===-- VPlanConstruction.cpp - Transforms for initial VPlan construction -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements transforms for initial VPlan construction.
///
//===----------------------------------------------------------------------===//

#include "LoopVectorizationPlanner.h"
#include "VPlan.h"
#include "VPlanCFG.h"
#include "VPlanDominatorTree.h"
#include "VPlanPatternMatch.h"
#include "VPlanTransforms.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"

#define DEBUG_TYPE "vplan"

using namespace llvm;
using namespace VPlanPatternMatch;

namespace {
// Class that is used to build the plain CFG for the incoming IR.
class PlainCFGBuilder {
  // The outermost loop of the input loop nest considered for vectorization.
  Loop *TheLoop;

  // Loop Info analysis.
  LoopInfo *LI;

  // Loop versioning for alias metadata.
  LoopVersioning *LVer;

  // Vectorization plan that we are working on.
  std::unique_ptr<VPlan> Plan;

  // Builder of the VPlan instruction-level representation.
  VPBuilder VPIRBuilder;

  // NOTE: The following maps are intentionally destroyed after the plain CFG
  // construction because subsequent VPlan-to-VPlan transformation may
  // invalidate them.
  // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
  DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
  // Map incoming Value definitions to their newly-created VPValues.
  DenseMap<Value *, VPValue *> IRDef2VPValue;

  // Hold phi node's that need to be fixed once the plain CFG has been built.
  SmallVector<PHINode *, 8> PhisToFix;

  // Utility functions.
  void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
  void fixHeaderPhis();
  VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
#ifndef NDEBUG
  bool isExternalDef(Value *Val);
#endif
  VPValue *getOrCreateVPOperand(Value *IRVal);
  void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);

public:
  PlainCFGBuilder(Loop *Lp, LoopInfo *LI, LoopVersioning *LVer)
      : TheLoop(Lp), LI(LI), LVer(LVer), Plan(std::make_unique<VPlan>(Lp)) {}

  /// Build plain CFG for TheLoop and connect it to Plan's entry.
  std::unique_ptr<VPlan> buildPlainCFG();
};
} // anonymous namespace

// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
// must have no predecessors.
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
  // Collect VPBB predecessors.
  SmallVector<VPBlockBase *, 2> VPBBPreds;
  for (BasicBlock *Pred : predecessors(BB))
    VPBBPreds.push_back(getOrCreateVPBB(Pred));
  VPBB->setPredecessors(VPBBPreds);
}

static bool isHeaderBB(BasicBlock *BB, Loop *L) {
  return L && BB == L->getHeader();
}

// Add operands to VPInstructions representing phi nodes from the input IR.
void PlainCFGBuilder::fixHeaderPhis() {
  for (auto *Phi : PhisToFix) {
    assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
    VPValue *VPVal = IRDef2VPValue[Phi];
    assert(isa<VPPhi>(VPVal) && "Expected VPPhi for phi node.");
    auto *PhiR = cast<VPPhi>(VPVal);
    assert(PhiR->getNumOperands() == 0 && "Expected VPPhi with no operands.");
    assert(isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent())) &&
           "Expected Phi in header block.");
    assert(Phi->getNumOperands() == 2 &&
           "header phi must have exactly 2 operands");
    for (BasicBlock *Pred : predecessors(Phi->getParent()))
      PhiR->addOperand(
          getOrCreateVPOperand(Phi->getIncomingValueForBlock(Pred)));
  }
}

// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
// existing one if it was already created.
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
  if (auto *VPBB = BB2VPBB.lookup(BB)) {
    // Retrieve existing VPBB.
    return VPBB;
  }

  // Create new VPBB.
  StringRef Name = BB->getName();
  LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << Name << "\n");
  VPBasicBlock *VPBB = Plan->createVPBasicBlock(Name);
  BB2VPBB[BB] = VPBB;
  return VPBB;
}

#ifndef NDEBUG
// Return true if \p Val is considered an external definition. An external
// definition is either:
// 1. A Value that is not an Instruction. This will be refined in the future.
// 2. An Instruction that is outside of the IR region represented in VPlan,
// i.e., is not part of the loop nest.
bool PlainCFGBuilder::isExternalDef(Value *Val) {
  // All the Values that are not Instructions are considered external
  // definitions for now.
  Instruction *Inst = dyn_cast<Instruction>(Val);
  if (!Inst)
    return true;

  // Check whether Instruction definition is in loop body.
  return !TheLoop->contains(Inst);
}
#endif

// Create a new VPValue or retrieve an existing one for the Instruction's
// operand \p IRVal. This function must only be used to create/retrieve VPValues
// for *Instruction's operands* and not to create regular VPInstruction's. For
// the latter, please, look at 'createVPInstructionsForVPBB'.
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
  auto VPValIt = IRDef2VPValue.find(IRVal);
  if (VPValIt != IRDef2VPValue.end())
    // Operand has an associated VPInstruction or VPValue that was previously
    // created.
    return VPValIt->second;

  // Operand doesn't have a previously created VPInstruction/VPValue. This
  // means that operand is:
  //   A) a definition external to VPlan,
  //   B) any other Value without specific representation in VPlan.
  // For now, we use VPValue to represent A and B and classify both as external
  // definitions. We may introduce specific VPValue subclasses for them in the
  // future.
  assert(isExternalDef(IRVal) && "Expected external definition as operand.");

  // A and B: Create VPValue and add it to the pool of external definitions and
  // to the Value->VPValue map.
  VPValue *NewVPVal = Plan->getOrAddLiveIn(IRVal);
  IRDef2VPValue[IRVal] = NewVPVal;
  return NewVPVal;
}

// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
// counterpart. This function must be invoked in RPO so that the operands of a
// VPInstruction in \p BB have been visited before (except for Phi nodes).
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
                                                  BasicBlock *BB) {
  VPIRBuilder.setInsertPoint(VPBB);
  // TODO: Model and preserve debug intrinsics in VPlan.
  for (Instruction &InstRef : BB->instructionsWithoutDebug(false)) {
    Instruction *Inst = &InstRef;

    // There shouldn't be any VPValue for Inst at this point. Otherwise, we
    // visited Inst when we shouldn't, breaking the RPO traversal order.
    assert(!IRDef2VPValue.count(Inst) &&
           "Instruction shouldn't have been visited.");

    if (auto *Br = dyn_cast<BranchInst>(Inst)) {
      // Conditional branch instruction are represented using BranchOnCond
      // recipes.
      if (Br->isConditional()) {
        VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
        VPIRBuilder.createNaryOp(VPInstruction::BranchOnCond, {Cond}, Inst, {},
                                 VPIRMetadata(*Inst), Inst->getDebugLoc());
      }

      // Skip the rest of the Instruction processing for Branch instructions.
      continue;
    }

    if (auto *SI = dyn_cast<SwitchInst>(Inst)) {
      // Don't emit recipes for unconditional switch instructions.
      if (SI->getNumCases() == 0)
        continue;
      SmallVector<VPValue *> Ops = {getOrCreateVPOperand(SI->getCondition())};
      for (auto Case : SI->cases())
        Ops.push_back(getOrCreateVPOperand(Case.getCaseValue()));
      VPIRBuilder.createNaryOp(Instruction::Switch, Ops, Inst, {},
                               VPIRMetadata(*Inst), Inst->getDebugLoc());
      continue;
    }

    VPSingleDefRecipe *NewR;
    if (auto *Phi = dyn_cast<PHINode>(Inst)) {
      // Phi node's operands may not have been visited at this point. We create
      // an empty VPInstruction that we will fix once the whole plain CFG has
      // been built.
      NewR = VPIRBuilder.createScalarPhi({}, Phi->getDebugLoc(), "vec.phi");
      NewR->setUnderlyingValue(Phi);
      if (isHeaderBB(Phi->getParent(), LI->getLoopFor(Phi->getParent()))) {
        // Header phis need to be fixed after the VPBB for the latch has been
        // created.
        PhisToFix.push_back(Phi);
      } else {
        // Add operands for VPPhi in the order matching its predecessors in
        // VPlan.
        DenseMap<const VPBasicBlock *, VPValue *> VPPredToIncomingValue;
        for (unsigned I = 0; I != Phi->getNumOperands(); ++I) {
          VPPredToIncomingValue[BB2VPBB[Phi->getIncomingBlock(I)]] =
              getOrCreateVPOperand(Phi->getIncomingValue(I));
        }
        for (VPBlockBase *Pred : VPBB->getPredecessors())
          NewR->addOperand(
              VPPredToIncomingValue.lookup(Pred->getExitingBasicBlock()));
      }
    } else {
      // Build VPIRMetadata from the instruction and add loop versioning
      // metadata for loads and stores.
      VPIRMetadata MD(*Inst);
      if (isa<LoadInst, StoreInst>(Inst) && LVer) {
        const auto &[AliasScopeMD, NoAliasMD] =
            LVer->getNoAliasMetadataFor(Inst);
        if (AliasScopeMD)
          MD.setMetadata(LLVMContext::MD_alias_scope, AliasScopeMD);
        if (NoAliasMD)
          MD.setMetadata(LLVMContext::MD_noalias, NoAliasMD);
      }

      // Translate LLVM-IR operands into VPValue operands and set them in the
      // new VPInstruction.
      SmallVector<VPValue *, 4> VPOperands;
      for (Value *Op : Inst->operands())
        VPOperands.push_back(getOrCreateVPOperand(Op));

      if (auto *CI = dyn_cast<CastInst>(Inst)) {
        NewR = VPIRBuilder.createScalarCast(CI->getOpcode(), VPOperands[0],
                                            CI->getType(), CI->getDebugLoc(),
                                            VPIRFlags(*CI), MD);
        NewR->setUnderlyingValue(CI);
      } else {
        // Build VPInstruction for any arbitrary Instruction without specific
        // representation in VPlan.
        NewR =
            VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst,
                                     VPIRFlags(*Inst), MD, Inst->getDebugLoc());
      }
    }

    IRDef2VPValue[Inst] = NewR;
  }
}

// Main interface to build the plain CFG.
std::unique_ptr<VPlan> PlainCFGBuilder::buildPlainCFG() {
  VPIRBasicBlock *Entry = cast<VPIRBasicBlock>(Plan->getEntry());
  BB2VPBB[Entry->getIRBasicBlock()] = Entry;
  for (VPIRBasicBlock *ExitVPBB : Plan->getExitBlocks())
    BB2VPBB[ExitVPBB->getIRBasicBlock()] = ExitVPBB;

  // 1. Scan the body of the loop in a topological order to visit each basic
  // block after having visited its predecessor basic blocks. Create a VPBB for
  // each BB and link it to its successor and predecessor VPBBs. Note that
  // predecessors must be set in the same order as they are in the incomming IR.
  // Otherwise, there might be problems with existing phi nodes and algorithm
  // based on predecessors traversal.

  // Loop PH needs to be explicitly visited since it's not taken into account by
  // LoopBlocksDFS.
  BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
  assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
         "Unexpected loop preheader");
  for (auto &I : *ThePreheaderBB) {
    if (I.getType()->isVoidTy())
      continue;
    IRDef2VPValue[&I] = Plan->getOrAddLiveIn(&I);
  }

  LoopBlocksRPO RPO(TheLoop);
  RPO.perform(LI);

  for (BasicBlock *BB : RPO) {
    // Create or retrieve the VPBasicBlock for this BB.
    VPBasicBlock *VPBB = getOrCreateVPBB(BB);
    // Set VPBB predecessors in the same order as they are in the incoming BB.
    setVPBBPredsFromBB(VPBB, BB);

    // Create VPInstructions for BB.
    createVPInstructionsForVPBB(VPBB, BB);

    // Set VPBB successors. We create empty VPBBs for successors if they don't
    // exist already. Recipes will be created when the successor is visited
    // during the RPO traversal.
    if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
      SmallVector<VPBlockBase *> Succs = {
          getOrCreateVPBB(SI->getDefaultDest())};
      for (auto Case : SI->cases())
        Succs.push_back(getOrCreateVPBB(Case.getCaseSuccessor()));
      VPBB->setSuccessors(Succs);
      continue;
    }
    auto *BI = cast<BranchInst>(BB->getTerminator());
    unsigned NumSuccs = succ_size(BB);
    if (NumSuccs == 1) {
      VPBB->setOneSuccessor(getOrCreateVPBB(BB->getSingleSuccessor()));
      continue;
    }
    assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
           "block must have conditional branch with 2 successors");

    BasicBlock *IRSucc0 = BI->getSuccessor(0);
    BasicBlock *IRSucc1 = BI->getSuccessor(1);
    VPBasicBlock *Successor0 = getOrCreateVPBB(IRSucc0);
    VPBasicBlock *Successor1 = getOrCreateVPBB(IRSucc1);
    VPBB->setTwoSuccessors(Successor0, Successor1);
  }

  for (auto *EB : Plan->getExitBlocks())
    setVPBBPredsFromBB(EB, EB->getIRBasicBlock());

  // 2. The whole CFG has been built at this point so all the input Values must
  // have a VPlan counterpart. Fix VPlan header phi by adding their
  // corresponding VPlan operands.
  fixHeaderPhis();

  Plan->getEntry()->setOneSuccessor(getOrCreateVPBB(TheLoop->getHeader()));
  Plan->getEntry()->setPlan(&*Plan);

  // Fix VPlan loop-closed-ssa exit phi's by adding incoming operands to the
  // VPIRInstructions wrapping them.
  // // Note that the operand order corresponds to IR predecessor order, and may
  // need adjusting when VPlan predecessors are added, if an exit block has
  // multiple predecessor.
  for (auto *EB : Plan->getExitBlocks()) {
    for (VPRecipeBase &R : EB->phis()) {
      auto *PhiR = cast<VPIRPhi>(&R);
      PHINode &Phi = PhiR->getIRPhi();
      assert(PhiR->getNumOperands() == 0 &&
             "no phi operands should be added yet");
      for (BasicBlock *Pred : predecessors(EB->getIRBasicBlock()))
        PhiR->addOperand(
            getOrCreateVPOperand(Phi.getIncomingValueForBlock(Pred)));
    }
  }

  LLVM_DEBUG(Plan->setName("Plain CFG\n"); dbgs() << *Plan);
  return std::move(Plan);
}

/// Checks if \p HeaderVPB is a loop header block in the plain CFG; that is, it
/// has exactly 2 predecessors (preheader and latch), where the block
/// dominates the latch and the preheader dominates the block. If it is a
/// header block return true and canonicalize the predecessors of the header
/// (making sure the preheader appears first and the latch second) and the
/// successors of the latch (making sure the loop exit comes first). Otherwise
/// return false.
static bool canonicalHeaderAndLatch(VPBlockBase *HeaderVPB,
                                    const VPDominatorTree &VPDT) {
  ArrayRef<VPBlockBase *> Preds = HeaderVPB->getPredecessors();
  if (Preds.size() != 2)
    return false;

  auto *PreheaderVPBB = Preds[0];
  auto *LatchVPBB = Preds[1];
  if (!VPDT.dominates(PreheaderVPBB, HeaderVPB) ||
      !VPDT.dominates(HeaderVPB, LatchVPBB)) {
    std::swap(PreheaderVPBB, LatchVPBB);

    if (!VPDT.dominates(PreheaderVPBB, HeaderVPB) ||
        !VPDT.dominates(HeaderVPB, LatchVPBB))
      return false;

    // Canonicalize predecessors of header so that preheader is first and
    // latch second.
    HeaderVPB->swapPredecessors();
    for (VPRecipeBase &R : cast<VPBasicBlock>(HeaderVPB)->phis())
      R.swapOperands();
  }

  // The two successors of conditional branch match the condition, with the
  // first successor corresponding to true and the second to false. We
  // canonicalize the successors of the latch when introducing the region, such
  // that the latch exits the region when its condition is true; invert the
  // original condition if the original CFG branches to the header on true.
  // Note that the exit edge is not yet connected for top-level loops.
  if (LatchVPBB->getSingleSuccessor() ||
      LatchVPBB->getSuccessors()[0] != HeaderVPB)
    return true;

  assert(LatchVPBB->getNumSuccessors() == 2 && "Must have 2 successors");
  auto *Term = cast<VPBasicBlock>(LatchVPBB)->getTerminator();
  assert(cast<VPInstruction>(Term)->getOpcode() ==
             VPInstruction::BranchOnCond &&
         "terminator must be a BranchOnCond");
  auto *Not = new VPInstruction(VPInstruction::Not, {Term->getOperand(0)});
  Not->insertBefore(Term);
  Term->setOperand(0, Not);
  LatchVPBB->swapSuccessors();

  return true;
}

/// Create a new VPRegionBlock for the loop starting at \p HeaderVPB.
static void createLoopRegion(VPlan &Plan, VPBlockBase *HeaderVPB) {
  auto *PreheaderVPBB = HeaderVPB->getPredecessors()[0];
  auto *LatchVPBB = HeaderVPB->getPredecessors()[1];

  VPBlockUtils::disconnectBlocks(PreheaderVPBB, HeaderVPB);
  VPBlockUtils::disconnectBlocks(LatchVPBB, HeaderVPB);
  VPBlockBase *LatchExitVPB = LatchVPBB->getSingleSuccessor();
  assert(LatchExitVPB && "Latch expected to be left with a single successor");

  // Create an empty region first and insert it between PreheaderVPBB and
  // LatchExitVPB, taking care to preserve the original predecessor & successor
  // order of blocks. Set region entry and exiting after both HeaderVPB and
  // LatchVPBB have been disconnected from their predecessors/successors.
  auto *R = Plan.createLoopRegion();
  VPBlockUtils::insertOnEdge(LatchVPBB, LatchExitVPB, R);
  VPBlockUtils::disconnectBlocks(LatchVPBB, R);
  VPBlockUtils::connectBlocks(PreheaderVPBB, R);
  R->setEntry(HeaderVPB);
  R->setExiting(LatchVPBB);

  // All VPBB's reachable shallowly from HeaderVPB belong to the current region.
  for (VPBlockBase *VPBB : vp_depth_first_shallow(HeaderVPB))
    VPBB->setParent(R);
}

// Add the necessary canonical IV and branch recipes required to control the
// loop.
static void addCanonicalIVRecipes(VPlan &Plan, VPBasicBlock *HeaderVPBB,
                                  VPBasicBlock *LatchVPBB, Type *IdxTy,
                                  DebugLoc DL) {
  Value *StartIdx = ConstantInt::get(IdxTy, 0);
  auto *StartV = Plan.getOrAddLiveIn(StartIdx);

  // Add a VPCanonicalIVPHIRecipe starting at 0 to the header.
  auto *CanonicalIVPHI = new VPCanonicalIVPHIRecipe(StartV, DL);
  HeaderVPBB->insert(CanonicalIVPHI, HeaderVPBB->begin());

  // We are about to replace the branch to exit the region. Remove the original
  // BranchOnCond, if there is any.
  DebugLoc LatchDL = DL;
  if (!LatchVPBB->empty() && match(&LatchVPBB->back(), m_BranchOnCond())) {
    LatchDL = LatchVPBB->getTerminator()->getDebugLoc();
    LatchVPBB->getTerminator()->eraseFromParent();
  }

  VPBuilder Builder(LatchVPBB);
  // Add a VPInstruction to increment the scalar canonical IV by VF * UF.
  // Initially the induction increment is guaranteed to not wrap, but that may
  // change later, e.g. when tail-folding, when the flags need to be dropped.
  auto *CanonicalIVIncrement = Builder.createOverflowingOp(
      Instruction::Add, {CanonicalIVPHI, &Plan.getVFxUF()}, {true, false}, DL,
      "index.next");
  CanonicalIVPHI->addOperand(CanonicalIVIncrement);

  // Add the BranchOnCount VPInstruction to the latch.
  Builder.createNaryOp(VPInstruction::BranchOnCount,
                       {CanonicalIVIncrement, &Plan.getVectorTripCount()},
                       LatchDL);
}

/// Creates extracts for values in \p Plan defined in a loop region and used
/// outside a loop region.
static void createExtractsForLiveOuts(VPlan &Plan, VPBasicBlock *MiddleVPBB) {
  VPBuilder B(MiddleVPBB, MiddleVPBB->getFirstNonPhi());
  for (VPBasicBlock *EB : Plan.getExitBlocks()) {
    if (EB->getSinglePredecessor() != MiddleVPBB)
      continue;

    for (VPRecipeBase &R : EB->phis()) {
      auto *ExitIRI = cast<VPIRPhi>(&R);
      for (unsigned Idx = 0; Idx != ExitIRI->getNumIncoming(); ++Idx) {
        VPRecipeBase *Inc = ExitIRI->getIncomingValue(Idx)->getDefiningRecipe();
        if (!Inc)
          continue;
        assert(ExitIRI->getNumOperands() == 1 &&
               ExitIRI->getParent()->getSinglePredecessor() == MiddleVPBB &&
               "exit values from early exits must be fixed when branch to "
               "early-exit is added");
        ExitIRI->extractLastLaneOfLastPartOfFirstOperand(B);
      }
    }
  }
}

static void addInitialSkeleton(VPlan &Plan, Type *InductionTy, DebugLoc IVDL,
                               PredicatedScalarEvolution &PSE, Loop *TheLoop) {
  VPDominatorTree VPDT(Plan);

  auto *HeaderVPBB = cast<VPBasicBlock>(Plan.getEntry()->getSingleSuccessor());
  canonicalHeaderAndLatch(HeaderVPBB, VPDT);
  auto *LatchVPBB = cast<VPBasicBlock>(HeaderVPBB->getPredecessors()[1]);

  VPBasicBlock *VecPreheader = Plan.createVPBasicBlock("vector.ph");
  VPBlockUtils::insertBlockAfter(VecPreheader, Plan.getEntry());

  VPBasicBlock *MiddleVPBB = Plan.createVPBasicBlock("middle.block");
  // The canonical LatchVPBB has the header block as last successor. If it has
  // another successor, this successor is an exit block - insert middle block on
  // its edge. Otherwise, add middle block as another successor retaining header
  // as last.
  if (LatchVPBB->getNumSuccessors() == 2) {
    VPBlockBase *LatchExitVPB = LatchVPBB->getSuccessors()[0];
    VPBlockUtils::insertOnEdge(LatchVPBB, LatchExitVPB, MiddleVPBB);
  } else {
    VPBlockUtils::connectBlocks(LatchVPBB, MiddleVPBB);
    LatchVPBB->swapSuccessors();
  }

  addCanonicalIVRecipes(Plan, HeaderVPBB, LatchVPBB, InductionTy, IVDL);

  // Create SCEV and VPValue for the trip count.
  // We use the symbolic max backedge-taken-count, which works also when
  // vectorizing loops with uncountable early exits.
  const SCEV *BackedgeTakenCountSCEV = PSE.getSymbolicMaxBackedgeTakenCount();
  assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCountSCEV) &&
         "Invalid backedge-taken count");
  ScalarEvolution &SE = *PSE.getSE();
  const SCEV *TripCount = SE.getTripCountFromExitCount(BackedgeTakenCountSCEV,
                                                       InductionTy, TheLoop);
  Plan.setTripCount(vputils::getOrCreateVPValueForSCEVExpr(Plan, TripCount));

  VPBasicBlock *ScalarPH = Plan.createVPBasicBlock("scalar.ph");
  VPBlockUtils::connectBlocks(ScalarPH, Plan.getScalarHeader());

  // The connection order corresponds to the operands of the conditional branch,
  // with the middle block already connected to the exit block.
  VPBlockUtils::connectBlocks(MiddleVPBB, ScalarPH);
  // Also connect the entry block to the scalar preheader.
  // TODO: Also introduce a branch recipe together with the minimum trip count
  // check.
  VPBlockUtils::connectBlocks(Plan.getEntry(), ScalarPH);
  Plan.getEntry()->swapSuccessors();

  createExtractsForLiveOuts(Plan, MiddleVPBB);

  VPBuilder ScalarPHBuilder(ScalarPH);
  for (const auto &[PhiR, ScalarPhiR] : zip_equal(
           drop_begin(HeaderVPBB->phis()), Plan.getScalarHeader()->phis())) {
    auto *VectorPhiR = cast<VPPhi>(&PhiR);
    auto *ResumePhiR = ScalarPHBuilder.createScalarPhi(
        {VectorPhiR, VectorPhiR->getOperand(0)}, VectorPhiR->getDebugLoc());
    cast<VPIRPhi>(&ScalarPhiR)->addOperand(ResumePhiR);
  }
}

std::unique_ptr<VPlan>
VPlanTransforms::buildVPlan0(Loop *TheLoop, LoopInfo &LI, Type *InductionTy,
                             DebugLoc IVDL, PredicatedScalarEvolution &PSE,
                             LoopVersioning *LVer) {
  PlainCFGBuilder Builder(TheLoop, &LI, LVer);
  std::unique_ptr<VPlan> VPlan0 = Builder.buildPlainCFG();
  addInitialSkeleton(*VPlan0, InductionTy, IVDL, PSE, TheLoop);
  return VPlan0;
}

void VPlanTransforms::handleEarlyExits(VPlan &Plan,
                                       bool HasUncountableEarlyExit) {
  auto *MiddleVPBB = cast<VPBasicBlock>(
      Plan.getScalarHeader()->getSinglePredecessor()->getPredecessors()[0]);
  auto *LatchVPBB = cast<VPBasicBlock>(MiddleVPBB->getSinglePredecessor());
  VPBlockBase *HeaderVPB = cast<VPBasicBlock>(LatchVPBB->getSuccessors()[1]);

  // Disconnect all early exits from the loop leaving it with a single exit from
  // the latch. Early exits that are countable are left for a scalar epilog. The
  // condition of uncountable early exits (currently at most one is supported)
  // is fused into the latch exit, and used to branch from middle block to the
  // early exit destination.
  [[maybe_unused]] bool HandledUncountableEarlyExit = false;
  for (VPIRBasicBlock *EB : Plan.getExitBlocks()) {
    for (VPBlockBase *Pred : to_vector(EB->getPredecessors())) {
      if (Pred == MiddleVPBB)
        continue;
      if (HasUncountableEarlyExit) {
        assert(!HandledUncountableEarlyExit &&
               "can handle exactly one uncountable early exit");
        handleUncountableEarlyExit(cast<VPBasicBlock>(Pred), EB, Plan,
                                   cast<VPBasicBlock>(HeaderVPB), LatchVPBB);
        HandledUncountableEarlyExit = true;
      } else {
        for (VPRecipeBase &R : EB->phis())
          cast<VPIRPhi>(&R)->removeIncomingValueFor(Pred);
      }
      cast<VPBasicBlock>(Pred)->getTerminator()->eraseFromParent();
      VPBlockUtils::disconnectBlocks(Pred, EB);
    }
  }

  assert((!HasUncountableEarlyExit || HandledUncountableEarlyExit) &&
         "missed an uncountable exit that must be handled");
}

void VPlanTransforms::addMiddleCheck(VPlan &Plan,
                                     bool RequiresScalarEpilogueCheck,
                                     bool TailFolded) {
  auto *MiddleVPBB = cast<VPBasicBlock>(
      Plan.getScalarHeader()->getSinglePredecessor()->getPredecessors()[0]);
  // If MiddleVPBB has a single successor then the original loop does not exit
  // via the latch and the single successor must be the scalar preheader.
  // There's no need to add a runtime check to MiddleVPBB.
  if (MiddleVPBB->getNumSuccessors() == 1) {
    assert(MiddleVPBB->getSingleSuccessor() == Plan.getScalarPreheader() &&
           "must have ScalarPH as single successor");
    return;
  }

  assert(MiddleVPBB->getNumSuccessors() == 2 && "must have 2 successors");

  // Add a check in the middle block to see if we have completed all of the
  // iterations in the first vector loop.
  //
  // Three cases:
  // 1) If we require a scalar epilogue, the scalar ph must execute. Set the
  //    condition to false.
  // 2) If (N - N%VF) == N, then we *don't* need to run the
  //    remainder. Thus if tail is to be folded, we know we don't need to run
  //    the remainder and we can set the condition to true.
  // 3) Otherwise, construct a runtime check.

  // We use the same DebugLoc as the scalar loop latch terminator instead of
  // the corresponding compare because they may have ended up with different
  // line numbers and we want to avoid awkward line stepping while debugging.
  // E.g., if the compare has got a line number inside the loop.
  auto *LatchVPBB = cast<VPBasicBlock>(MiddleVPBB->getSinglePredecessor());
  DebugLoc LatchDL = LatchVPBB->getTerminator()->getDebugLoc();
  VPBuilder Builder(MiddleVPBB);
  VPValue *Cmp;
  if (!RequiresScalarEpilogueCheck)
    Cmp = Plan.getFalse();
  else if (TailFolded)
    Cmp = Plan.getTrue();
  else
    Cmp = Builder.createICmp(CmpInst::ICMP_EQ, Plan.getTripCount(),
                             &Plan.getVectorTripCount(), LatchDL, "cmp.n");
  Builder.createNaryOp(VPInstruction::BranchOnCond, {Cmp}, LatchDL);
}

void VPlanTransforms::createLoopRegions(VPlan &Plan) {
  VPDominatorTree VPDT(Plan);
  for (VPBlockBase *HeaderVPB : vp_post_order_shallow(Plan.getEntry()))
    if (canonicalHeaderAndLatch(HeaderVPB, VPDT))
      createLoopRegion(Plan, HeaderVPB);

  VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
  TopRegion->setName("vector loop");
  TopRegion->getEntryBasicBlock()->setName("vector.body");
}

// Likelyhood of bypassing the vectorized loop due to a runtime check block,
// including memory overlap checks block and wrapping/unit-stride checks block.
static constexpr uint32_t CheckBypassWeights[] = {1, 127};

void VPlanTransforms::attachCheckBlock(VPlan &Plan, Value *Cond,
                                       BasicBlock *CheckBlock,
                                       bool AddBranchWeights) {
  VPValue *CondVPV = Plan.getOrAddLiveIn(Cond);
  VPBasicBlock *CheckBlockVPBB = Plan.createVPIRBasicBlock(CheckBlock);
  VPBlockBase *VectorPH = Plan.getVectorPreheader();
  VPBlockBase *ScalarPH = Plan.getScalarPreheader();
  VPBlockBase *PreVectorPH = VectorPH->getSinglePredecessor();
  VPBlockUtils::insertOnEdge(PreVectorPH, VectorPH, CheckBlockVPBB);
  VPBlockUtils::connectBlocks(CheckBlockVPBB, ScalarPH);
  CheckBlockVPBB->swapSuccessors();

  // We just connected a new block to the scalar preheader. Update all
  // VPPhis by adding an incoming value for it, replicating the last value.
  unsigned NumPredecessors = ScalarPH->getNumPredecessors();
  for (VPRecipeBase &R : cast<VPBasicBlock>(ScalarPH)->phis()) {
    assert(isa<VPPhi>(&R) && "Phi expected to be VPPhi");
    assert(cast<VPPhi>(&R)->getNumIncoming() == NumPredecessors - 1 &&
           "must have incoming values for all operands");
    R.addOperand(R.getOperand(NumPredecessors - 2));
  }

  VPIRMetadata VPBranchWeights;
  auto *Term =
      VPBuilder(CheckBlockVPBB)
          .createNaryOp(
              VPInstruction::BranchOnCond, {CondVPV},
              Plan.getVectorLoopRegion()->getCanonicalIV()->getDebugLoc());
  if (AddBranchWeights) {
    MDBuilder MDB(Plan.getContext());
    MDNode *BranchWeights =
        MDB.createBranchWeights(CheckBypassWeights, /*IsExpected=*/false);
    Term->setMetadata(LLVMContext::MD_prof, BranchWeights);
  }
}

void VPlanTransforms::addMinimumIterationCheck(
    VPlan &Plan, ElementCount VF, unsigned UF,
    ElementCount MinProfitableTripCount, bool RequiresScalarEpilogue,
    bool TailFolded, bool CheckNeededWithTailFolding, Loop *OrigLoop,
    const uint32_t *MinItersBypassWeights, DebugLoc DL, ScalarEvolution &SE) {
  // Generate code to check if the loop's trip count is less than VF * UF, or
  // equal to it in case a scalar epilogue is required; this implies that the
  // vector trip count is zero. This check also covers the case where adding one
  // to the backedge-taken count overflowed leading to an incorrect trip count
  // of zero. In this case we will also jump to the scalar loop.
  CmpInst::Predicate CmpPred =
      RequiresScalarEpilogue ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
  // If tail is to be folded, vector loop takes care of all iterations.
  VPValue *TripCountVPV = Plan.getTripCount();
  const SCEV *TripCount = vputils::getSCEVExprForVPValue(TripCountVPV, SE);
  Type *TripCountTy = TripCount->getType();
  auto GetMinTripCount = [&]() -> const SCEV * {
    // Compute max(MinProfitableTripCount, UF * VF) and return it.
    const SCEV *VFxUF =
        SE.getElementCount(TripCountTy, (VF * UF), SCEV::FlagNUW);
    if (UF * VF.getKnownMinValue() >=
        MinProfitableTripCount.getKnownMinValue()) {
      // TODO: SCEV should be able to simplify test.
      return VFxUF;
    }
    const SCEV *MinProfitableTripCountSCEV =
        SE.getElementCount(TripCountTy, MinProfitableTripCount, SCEV::FlagNUW);
    return SE.getUMaxExpr(MinProfitableTripCountSCEV, VFxUF);
  };

  VPBasicBlock *EntryVPBB = Plan.getEntry();
  VPBuilder Builder(EntryVPBB);
  VPValue *TripCountCheck = Plan.getFalse();
  const SCEV *Step = GetMinTripCount();
  if (TailFolded) {
    if (CheckNeededWithTailFolding) {
      // vscale is not necessarily a power-of-2, which means we cannot guarantee
      // an overflow to zero when updating induction variables and so an
      // additional overflow check is required before entering the vector loop.

      // Get the maximum unsigned value for the type.
      VPValue *MaxUIntTripCount =
          Plan.getConstantInt(cast<IntegerType>(TripCountTy)->getMask());
      VPValue *DistanceToMax = Builder.createNaryOp(
          Instruction::Sub, {MaxUIntTripCount, TripCountVPV},
          DebugLoc::getUnknown());

      // Don't execute the vector loop if (UMax - n) < (VF * UF).
      // FIXME: Should only check VF * UF, but currently checks Step=max(VF*UF,
      // minProfitableTripCount).
      TripCountCheck = Builder.createICmp(ICmpInst::ICMP_ULT, DistanceToMax,
                                          Builder.createExpandSCEV(Step), DL);
    } else {
      // TripCountCheck = false, folding tail implies positive vector trip
      // count.
    }
  } else {
    // TODO: Emit unconditional branch to vector preheader instead of
    // conditional branch with known condition.
    TripCount = SE.applyLoopGuards(TripCount, OrigLoop);
    // Check if the trip count is < the step.
    if (SE.isKnownPredicate(CmpPred, TripCount, Step)) {
      // TODO: Ensure step is at most the trip count when determining max VF and
      // UF, w/o tail folding.
      TripCountCheck = Plan.getTrue();
    } else if (!SE.isKnownPredicate(CmpInst::getInversePredicate(CmpPred),
                                    TripCount, Step)) {
      // Generate the minimum iteration check only if we cannot prove the
      // check is known to be true, or known to be false.
      VPValue *MinTripCountVPV = Builder.createExpandSCEV(Step);
      TripCountCheck = Builder.createICmp(
          CmpPred, TripCountVPV, MinTripCountVPV, DL, "min.iters.check");
    } // else step known to be < trip count, use TripCountCheck preset to false.
  }
  VPInstruction *Term =
      Builder.createNaryOp(VPInstruction::BranchOnCond, {TripCountCheck}, DL);
  if (MinItersBypassWeights) {
    MDBuilder MDB(Plan.getContext());
    MDNode *BranchWeights = MDB.createBranchWeights(
        ArrayRef(MinItersBypassWeights, 2), /*IsExpected=*/false);
    Term->setMetadata(LLVMContext::MD_prof, BranchWeights);
  }
}

void VPlanTransforms::addMinimumVectorEpilogueIterationCheck(
    VPlan &Plan, Value *TripCount, Value *VectorTripCount,
    bool RequiresScalarEpilogue, ElementCount EpilogueVF, unsigned EpilogueUF,
    unsigned MainLoopStep, unsigned EpilogueLoopStep, ScalarEvolution &SE) {
  // Add the minimum iteration check for the epilogue vector loop.
  VPValue *TC = Plan.getOrAddLiveIn(TripCount);
  VPBuilder Builder(cast<VPBasicBlock>(Plan.getEntry()));
  VPValue *VFxUF = Builder.createExpandSCEV(SE.getElementCount(
      TripCount->getType(), (EpilogueVF * EpilogueUF), SCEV::FlagNUW));
  VPValue *Count = Builder.createNaryOp(
      Instruction::Sub, {TC, Plan.getOrAddLiveIn(VectorTripCount)},
      DebugLoc::getUnknown(), "n.vec.remaining");

  // Generate code to check if the loop's trip count is less than VF * UF of
  // the vector epilogue loop.
  auto P = RequiresScalarEpilogue ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT;
  auto *CheckMinIters = Builder.createICmp(
      P, Count, VFxUF, DebugLoc::getUnknown(), "min.epilog.iters.check");
  VPInstruction *Branch =
      Builder.createNaryOp(VPInstruction::BranchOnCond, CheckMinIters);

  // We assume the remaining `Count` is equally distributed in
  // [0, MainLoopStep)
  // So the probability for `Count < EpilogueLoopStep` should be
  // min(MainLoopStep, EpilogueLoopStep) / MainLoopStep
  // TODO: Improve the estimate by taking the estimated trip count into
  // consideration.
  unsigned EstimatedSkipCount = std::min(MainLoopStep, EpilogueLoopStep);
  const uint32_t Weights[] = {EstimatedSkipCount,
                              MainLoopStep - EstimatedSkipCount};
  MDBuilder MDB(Plan.getContext());
  MDNode *BranchWeights =
      MDB.createBranchWeights(Weights, /*IsExpected=*/false);
  Branch->setMetadata(LLVMContext::MD_prof, BranchWeights);
}

/// If \p V is used by a recipe matching pattern \p P, return it. Otherwise
/// return nullptr;
template <typename MatchT>
static VPRecipeBase *findUserOf(VPValue *V, const MatchT &P) {
  auto It = find_if(V->users(), match_fn(P));
  return It == V->user_end() ? nullptr : cast<VPRecipeBase>(*It);
}

/// If \p V is used by a VPInstruction with \p Opcode, return it. Otherwise
/// return nullptr.
template <unsigned Opcode> static VPInstruction *findUserOf(VPValue *V) {
  return cast_or_null<VPInstruction>(findUserOf(V, m_VPInstruction<Opcode>()));
}

bool VPlanTransforms::handleMaxMinNumReductions(VPlan &Plan) {
  auto GetMinMaxCompareValue = [](VPReductionPHIRecipe *RedPhiR) -> VPValue * {
    auto *MinMaxR =
        dyn_cast_or_null<VPRecipeWithIRFlags>(RedPhiR->getBackedgeValue());
    if (!MinMaxR)
      return nullptr;

    // Check that MinMaxR is a VPWidenIntrinsicRecipe or VPReplicateRecipe
    // with an intrinsic that matches the reduction kind.
    Intrinsic::ID ExpectedIntrinsicID =
        getMinMaxReductionIntrinsicOp(RedPhiR->getRecurrenceKind());
    if (!match(MinMaxR, m_Intrinsic(ExpectedIntrinsicID)))
      return nullptr;

    if (MinMaxR->getOperand(0) == RedPhiR)
      return MinMaxR->getOperand(1);

    assert(MinMaxR->getOperand(1) == RedPhiR &&
           "Reduction phi operand expected");
    return MinMaxR->getOperand(0);
  };

  VPRegionBlock *LoopRegion = Plan.getVectorLoopRegion();
  SmallVector<std::pair<VPReductionPHIRecipe *, VPValue *>>
      MinMaxNumReductionsToHandle;
  bool HasUnsupportedPhi = false;
  for (auto &R : LoopRegion->getEntryBasicBlock()->phis()) {
    if (isa<VPCanonicalIVPHIRecipe, VPWidenIntOrFpInductionRecipe>(&R))
      continue;
    auto *Cur = dyn_cast<VPReductionPHIRecipe>(&R);
    if (!Cur) {
      // TODO: Also support fixed-order recurrence phis.
      HasUnsupportedPhi = true;
      continue;
    }
    if (!RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
            Cur->getRecurrenceKind())) {
      HasUnsupportedPhi = true;
      continue;
    }

    VPValue *MinMaxOp = GetMinMaxCompareValue(Cur);
    if (!MinMaxOp)
      return false;

    MinMaxNumReductionsToHandle.emplace_back(Cur, MinMaxOp);
  }

  if (MinMaxNumReductionsToHandle.empty())
    return true;

  // We won't be able to resume execution in the scalar tail, if there are
  // unsupported header phis or there is no scalar tail at all, due to
  // tail-folding.
  if (HasUnsupportedPhi || !Plan.hasScalarTail())
    return false;

  /// Check if the vector loop of \p Plan can early exit and restart
  /// execution of last vector iteration in the scalar loop. This requires all
  /// recipes up to early exit point be side-effect free as they are
  /// re-executed. Currently we check that the loop is free of any recipe that
  /// may write to memory. Expected to operate on an early VPlan w/o nested
  /// regions.
  for (VPBlockBase *VPB : vp_depth_first_shallow(
           Plan.getVectorLoopRegion()->getEntryBasicBlock())) {
    auto *VPBB = cast<VPBasicBlock>(VPB);
    for (auto &R : *VPBB) {
      if (R.mayWriteToMemory() && !match(&R, m_BranchOnCount()))
        return false;
    }
  }

  VPBasicBlock *LatchVPBB = LoopRegion->getExitingBasicBlock();
  VPBuilder LatchBuilder(LatchVPBB->getTerminator());
  VPValue *AllNaNLanes = nullptr;
  SmallPtrSet<VPValue *, 2> RdxResults;
  for (const auto &[_, MinMaxOp] : MinMaxNumReductionsToHandle) {
    VPValue *RedNaNLanes =
        LatchBuilder.createFCmp(CmpInst::FCMP_UNO, MinMaxOp, MinMaxOp);
    AllNaNLanes = AllNaNLanes ? LatchBuilder.createOr(AllNaNLanes, RedNaNLanes)
                              : RedNaNLanes;
  }

  VPValue *AnyNaNLane =
      LatchBuilder.createNaryOp(VPInstruction::AnyOf, {AllNaNLanes});
  VPBasicBlock *MiddleVPBB = Plan.getMiddleBlock();
  VPBuilder MiddleBuilder(MiddleVPBB, MiddleVPBB->begin());
  for (const auto &[RedPhiR, _] : MinMaxNumReductionsToHandle) {
    assert(RecurrenceDescriptor::isFPMinMaxNumRecurrenceKind(
               RedPhiR->getRecurrenceKind()) &&
           "unsupported reduction");

    // If we exit early due to NaNs, compute the final reduction result based on
    // the reduction phi at the beginning of the last vector iteration.
    auto *RdxResult =
        findUserOf<VPInstruction::ComputeReductionResult>(RedPhiR);

    auto *NewSel = MiddleBuilder.createSelect(AnyNaNLane, RedPhiR,
                                              RdxResult->getOperand(1));
    RdxResult->setOperand(1, NewSel);
    assert(!RdxResults.contains(RdxResult) && "RdxResult already used");
    RdxResults.insert(RdxResult);
  }

  auto *LatchExitingBranch = LatchVPBB->getTerminator();
  assert(match(LatchExitingBranch, m_BranchOnCount(m_VPValue(), m_VPValue())) &&
         "Unexpected terminator");
  auto *IsLatchExitTaken = LatchBuilder.createICmp(
      CmpInst::ICMP_EQ, LatchExitingBranch->getOperand(0),
      LatchExitingBranch->getOperand(1));
  auto *AnyExitTaken = LatchBuilder.createNaryOp(
      Instruction::Or, {AnyNaNLane, IsLatchExitTaken});
  LatchBuilder.createNaryOp(VPInstruction::BranchOnCond, AnyExitTaken);
  LatchExitingBranch->eraseFromParent();

  // Update resume phis for inductions in the scalar preheader. If AnyNaNLane is
  // true, the resume from the start of the last vector iteration via the
  // canonical IV, otherwise from the original value.
  for (auto &R : Plan.getScalarPreheader()->phis()) {
    auto *ResumeR = cast<VPPhi>(&R);
    VPValue *VecV = ResumeR->getOperand(0);
    if (RdxResults.contains(VecV))
      continue;
    if (auto *DerivedIV = dyn_cast<VPDerivedIVRecipe>(VecV)) {
      if (DerivedIV->getNumUsers() == 1 &&
          DerivedIV->getOperand(1) == &Plan.getVectorTripCount()) {
        auto *NewSel =
            MiddleBuilder.createSelect(AnyNaNLane, LoopRegion->getCanonicalIV(),
                                       &Plan.getVectorTripCount());
        DerivedIV->moveAfter(&*MiddleBuilder.getInsertPoint());
        DerivedIV->setOperand(1, NewSel);
        continue;
      }
    }
    // Bail out and abandon the current, partially modified, VPlan if we
    // encounter resume phi that cannot be updated yet.
    if (VecV != &Plan.getVectorTripCount()) {
      LLVM_DEBUG(dbgs() << "Found resume phi we cannot update for VPlan with "
                           "FMaxNum/FMinNum reduction.\n");
      return false;
    }
    auto *NewSel = MiddleBuilder.createSelect(
        AnyNaNLane, LoopRegion->getCanonicalIV(), VecV);
    ResumeR->setOperand(0, NewSel);
  }

  auto *MiddleTerm = MiddleVPBB->getTerminator();
  MiddleBuilder.setInsertPoint(MiddleTerm);
  VPValue *MiddleCond = MiddleTerm->getOperand(0);
  VPValue *NewCond =
      MiddleBuilder.createAnd(MiddleCond, MiddleBuilder.createNot(AnyNaNLane));
  MiddleTerm->setOperand(0, NewCond);
  return true;
}

bool VPlanTransforms::handleMultiUseReductions(VPlan &Plan) {
  for (auto &PhiR : make_early_inc_range(
           Plan.getVectorLoopRegion()->getEntryBasicBlock()->phis())) {
    auto *MinMaxPhiR = dyn_cast<VPReductionPHIRecipe>(&PhiR);
    // TODO: check for multi-uses in VPlan directly.
    if (!MinMaxPhiR || !MinMaxPhiR->hasUsesOutsideReductionChain())
      continue;

    // MinMaxPhiR has users outside the reduction cycle in the loop. Check if
    // the only other user is a FindLastIV reduction. MinMaxPhiR must have
    // exactly 3 users: 1) the min/max operation, the compare of a FindLastIV
    // reduction and ComputeReductionResult. The comparisom must compare
    // MinMaxPhiR against the min/max operand used for the min/max reduction
    // and only be used by the select of the FindLastIV reduction.
    RecurKind RdxKind = MinMaxPhiR->getRecurrenceKind();
    assert(
        RecurrenceDescriptor::isIntMinMaxRecurrenceKind(RdxKind) &&
        "only min/max recurrences support users outside the reduction chain");

    auto *MinMaxOp =
        dyn_cast<VPRecipeWithIRFlags>(MinMaxPhiR->getBackedgeValue());
    if (!MinMaxOp)
      return false;

    // Check that MinMaxOp is a VPWidenIntrinsicRecipe or VPReplicateRecipe
    // with an intrinsic that matches the reduction kind.
    Intrinsic::ID ExpectedIntrinsicID = getMinMaxReductionIntrinsicOp(RdxKind);
    if (!match(MinMaxOp, m_Intrinsic(ExpectedIntrinsicID)))
      return false;

    // MinMaxOp must have 2 users: 1) MinMaxPhiR and 2) ComputeReductionResult
    // (asserted below).
    assert(MinMaxOp->getNumUsers() == 2 &&
           "MinMaxOp must have exactly 2 users");
    VPValue *MinMaxOpValue = MinMaxOp->getOperand(0);
    if (MinMaxOpValue == MinMaxPhiR)
      MinMaxOpValue = MinMaxOp->getOperand(1);

    VPValue *CmpOpA;
    VPValue *CmpOpB;
    CmpPredicate Pred;
    auto *Cmp = dyn_cast_or_null<VPRecipeWithIRFlags>(findUserOf(
        MinMaxPhiR, m_Cmp(Pred, m_VPValue(CmpOpA), m_VPValue(CmpOpB))));
    if (!Cmp || Cmp->getNumUsers() != 1 ||
        (CmpOpA != MinMaxOpValue && CmpOpB != MinMaxOpValue))
      return false;

    if (MinMaxOpValue != CmpOpB)
      Pred = CmpInst::getSwappedPredicate(Pred);

    // MinMaxPhiR must have exactly 3 users:
    // * MinMaxOp,
    // * Cmp (that's part of a FindLastIV chain),
    // * ComputeReductionResult.
    if (MinMaxPhiR->getNumUsers() != 3)
      return false;

    VPInstruction *MinMaxResult =
        findUserOf<VPInstruction::ComputeReductionResult>(MinMaxPhiR);
    assert(is_contained(MinMaxPhiR->users(), MinMaxOp) &&
           "one user must be MinMaxOp");
    assert(MinMaxResult && "MinMaxResult must be a user of MinMaxPhiR");
    assert(is_contained(MinMaxOp->users(), MinMaxResult) &&
           "MinMaxResult must be a user of MinMaxOp (and of MinMaxPhiR");

    // Cmp must be used by the select of a FindLastIV chain.
    VPValue *Sel = dyn_cast<VPSingleDefRecipe>(Cmp->getSingleUser());
    VPValue *IVOp, *FindIV;
    if (!Sel || Sel->getNumUsers() != 2 ||
        !match(Sel,
               m_Select(m_Specific(Cmp), m_VPValue(IVOp), m_VPValue(FindIV))))
      return false;

    if (!isa<VPReductionPHIRecipe>(FindIV)) {
      std::swap(FindIV, IVOp);
      Pred = CmpInst::getInversePredicate(Pred);
    }

    auto *FindIVPhiR = dyn_cast<VPReductionPHIRecipe>(FindIV);
    if (!FindIVPhiR || !RecurrenceDescriptor::isFindLastIVRecurrenceKind(
                           FindIVPhiR->getRecurrenceKind()))
      return false;

    // TODO: Support cases where IVOp is the IV increment.
    if (!match(IVOp, m_TruncOrSelf(m_VPValue(IVOp))) ||
        !isa<VPWidenIntOrFpInductionRecipe>(IVOp))
      return false;

    CmpInst::Predicate RdxPredicate = [RdxKind]() {
      switch (RdxKind) {
      case RecurKind::UMin:
        return CmpInst::ICMP_UGE;
      case RecurKind::UMax:
        return CmpInst::ICMP_ULE;
      case RecurKind::SMax:
        return CmpInst::ICMP_SLE;
      case RecurKind::SMin:
        return CmpInst::ICMP_SGE;
      default:
        llvm_unreachable("unhandled recurrence kind");
      }
    }();

    // TODO: Strict predicates need to find the first IV value for which the
    // predicate holds, not the last.
    if (Pred != RdxPredicate)
      return false;

    assert(!FindIVPhiR->isInLoop() && !FindIVPhiR->isOrdered() &&
           "cannot handle inloop/ordered reductions yet");

    // The reduction using MinMaxPhiR needs adjusting to compute the correct
    // result:
    //  1. We need to find the last IV for which the condition based on the
    //     min/max recurrence is true,
    //  2. Compare the partial min/max reduction result to its final value and,
    //  3. Select the lanes of the partial FindLastIV reductions which
    //     correspond to the lanes matching the min/max reduction result.
    //
    // For example, this transforms
    // vp<%min.result> = compute-reduction-result ir<%min.val>,
    //                                            ir<%min.val.next>
    // vp<%find.iv.result = compute-find-iv-result ir<%min.idx>, ir<0>,
    //                                             SENTINEL, vp<%min.idx.next>
    //
    // into:
    //
    // vp<min.result> = compute-reduction-result ir<%min.val>, ir<%min.val.next>
    // vp<%final.min.cmp> = icmp eq ir<%min.val.next>, vp<min.result>
    // vp<%final.iv> = select vp<%final.min.cmp>, ir<%min.idx.next>, SENTINEL
    // vp<%find.iv.result> = compute-find-iv-result ir<%min.idx>, ir<0>,
    //                                             SENTINEL, vp<%final.iv>
    VPInstruction *FindIVResult =
        findUserOf<VPInstruction::ComputeFindIVResult>(FindIVPhiR);
    assert(FindIVResult->getParent() == MinMaxResult->getParent() &&
           "both results must be computed in the same block");
    MinMaxResult->moveBefore(*FindIVResult->getParent(),
                             FindIVResult->getIterator());

    VPBuilder B(FindIVResult);
    VPValue *MinMaxExiting = MinMaxResult->getOperand(1);
    auto *FinalMinMaxCmp =
        B.createICmp(CmpInst::ICMP_EQ, MinMaxExiting, MinMaxResult);
    VPValue *Sentinel = FindIVResult->getOperand(2);
    VPValue *LastIVExiting = FindIVResult->getOperand(3);
    auto *FinalIVSelect =
        B.createSelect(FinalMinMaxCmp, LastIVExiting, Sentinel);
    FindIVResult->setOperand(3, FinalIVSelect);
  }
  return true;
}