1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
//===- ControlFlowUtils.cpp - Control Flow Utilities -----------------------==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utilities to manipulate the CFG and restore SSA for the new control flow.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ControlFlowUtils.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Transforms/Utils/Local.h"
#define DEBUG_TYPE "control-flow-hub"
using namespace llvm;
using BBPredicates = DenseMap<BasicBlock *, Instruction *>;
using EdgeDescriptor = ControlFlowHub::BranchDescriptor;
// Redirects the terminator of the incoming block to the first guard block in
// the hub. Returns the branch condition from `BB` if it exits.
// - If only one of Succ0 or Succ1 is not null, the corresponding branch
// successor is redirected to the FirstGuardBlock.
// - Else both are not null, and branch is replaced with an unconditional
// branch to the FirstGuardBlock.
static Value *redirectToHub(BasicBlock *BB, BasicBlock *Succ0,
BasicBlock *Succ1, BasicBlock *FirstGuardBlock) {
assert(isa<BranchInst>(BB->getTerminator()) &&
"Only support branch terminator.");
auto *Branch = cast<BranchInst>(BB->getTerminator());
auto *Condition = Branch->isConditional() ? Branch->getCondition() : nullptr;
assert(Succ0 || Succ1);
if (Branch->isUnconditional()) {
assert(Succ0 == Branch->getSuccessor(0));
assert(!Succ1);
Branch->setSuccessor(0, FirstGuardBlock);
} else {
assert(!Succ1 || Succ1 == Branch->getSuccessor(1));
if (Succ0 && !Succ1) {
Branch->setSuccessor(0, FirstGuardBlock);
} else if (Succ1 && !Succ0) {
Branch->setSuccessor(1, FirstGuardBlock);
} else {
Branch->eraseFromParent();
BranchInst::Create(FirstGuardBlock, BB);
}
}
return Condition;
}
// Setup the branch instructions for guard blocks.
//
// Each guard block terminates in a conditional branch that transfers
// control to the corresponding outgoing block or the next guard
// block. The last guard block has two outgoing blocks as successors.
static void setupBranchForGuard(ArrayRef<BasicBlock *> GuardBlocks,
ArrayRef<BasicBlock *> Outgoing,
BBPredicates &GuardPredicates) {
assert(Outgoing.size() > 1);
assert(GuardBlocks.size() == Outgoing.size() - 1);
int I = 0;
for (int E = GuardBlocks.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
BranchInst::Create(Out, GuardBlocks[I + 1], GuardPredicates[Out],
GuardBlocks[I]);
}
BasicBlock *Out = Outgoing[I];
BranchInst::Create(Out, Outgoing[I + 1], GuardPredicates[Out],
GuardBlocks[I]);
}
// Assign an index to each outgoing block. At the corresponding guard
// block, compute the branch condition by comparing this index.
static void calcPredicateUsingInteger(ArrayRef<EdgeDescriptor> Branches,
ArrayRef<BasicBlock *> Outgoing,
ArrayRef<BasicBlock *> GuardBlocks,
BBPredicates &GuardPredicates) {
LLVMContext &Context = GuardBlocks.front()->getContext();
BasicBlock *FirstGuardBlock = GuardBlocks.front();
Type *Int32Ty = Type::getInt32Ty(Context);
auto *Phi = PHINode::Create(Int32Ty, Branches.size(), "merged.bb.idx",
FirstGuardBlock);
for (auto [BB, Succ0, Succ1] : Branches) {
Value *Condition = redirectToHub(BB, Succ0, Succ1, FirstGuardBlock);
Value *IncomingId = nullptr;
if (Succ0 && Succ1) {
auto Succ0Iter = find(Outgoing, Succ0);
auto Succ1Iter = find(Outgoing, Succ1);
Value *Id0 =
ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), Succ0Iter));
Value *Id1 =
ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), Succ1Iter));
IncomingId = SelectInst::Create(Condition, Id0, Id1, "target.bb.idx",
BB->getTerminator()->getIterator());
} else {
// Get the index of the non-null successor.
auto SuccIter = Succ0 ? find(Outgoing, Succ0) : find(Outgoing, Succ1);
IncomingId =
ConstantInt::get(Int32Ty, std::distance(Outgoing.begin(), SuccIter));
}
Phi->addIncoming(IncomingId, BB);
}
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
LLVM_DEBUG(dbgs() << "Creating integer guard for " << Out->getName()
<< "\n");
auto *Cmp = ICmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, Phi,
ConstantInt::get(Int32Ty, I),
Out->getName() + ".predicate", GuardBlocks[I]);
GuardPredicates[Out] = Cmp;
}
}
// Determine the branch condition to be used at each guard block from the
// original boolean values.
static void calcPredicateUsingBooleans(
ArrayRef<EdgeDescriptor> Branches, ArrayRef<BasicBlock *> Outgoing,
SmallVectorImpl<BasicBlock *> &GuardBlocks, BBPredicates &GuardPredicates,
SmallVectorImpl<WeakVH> &DeletionCandidates) {
LLVMContext &Context = GuardBlocks.front()->getContext();
auto *BoolTrue = ConstantInt::getTrue(Context);
auto *BoolFalse = ConstantInt::getFalse(Context);
BasicBlock *FirstGuardBlock = GuardBlocks.front();
// The predicate for the last outgoing is trivially true, and so we
// process only the first N-1 successors.
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
LLVM_DEBUG(dbgs() << "Creating boolean guard for " << Out->getName()
<< "\n");
auto *Phi =
PHINode::Create(Type::getInt1Ty(Context), Branches.size(),
StringRef("Guard.") + Out->getName(), FirstGuardBlock);
GuardPredicates[Out] = Phi;
}
for (auto [BB, Succ0, Succ1] : Branches) {
Value *Condition = redirectToHub(BB, Succ0, Succ1, FirstGuardBlock);
// Optimization: Consider an incoming block A with both successors
// Succ0 and Succ1 in the set of outgoing blocks. The predicates
// for Succ0 and Succ1 complement each other. If Succ0 is visited
// first in the loop below, control will branch to Succ0 using the
// corresponding predicate. But if that branch is not taken, then
// control must reach Succ1, which means that the incoming value of
// the predicate from `BB` is true for Succ1.
bool OneSuccessorDone = false;
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I) {
BasicBlock *Out = Outgoing[I];
PHINode *Phi = cast<PHINode>(GuardPredicates[Out]);
if (Out != Succ0 && Out != Succ1) {
Phi->addIncoming(BoolFalse, BB);
} else if (!Succ0 || !Succ1 || OneSuccessorDone) {
// Optimization: When only one successor is an outgoing block,
// the incoming predicate from `BB` is always true.
Phi->addIncoming(BoolTrue, BB);
} else {
assert(Succ0 && Succ1);
if (Out == Succ0) {
Phi->addIncoming(Condition, BB);
} else {
Value *Inverted = invertCondition(Condition);
DeletionCandidates.push_back(Condition);
Phi->addIncoming(Inverted, BB);
}
OneSuccessorDone = true;
}
}
}
}
// Capture the existing control flow as guard predicates, and redirect
// control flow from \p Incoming block through the \p GuardBlocks to the
// \p Outgoing blocks.
//
// There is one guard predicate for each outgoing block OutBB. The
// predicate represents whether the hub should transfer control flow
// to OutBB. These predicates are NOT ORTHOGONAL. The Hub evaluates
// them in the same order as the Outgoing set-vector, and control
// branches to the first outgoing block whose predicate evaluates to true.
//
// The last guard block has two outgoing blocks as successors since the
// condition for the final outgoing block is trivially true. So we create one
// less block (including the first guard block) than the number of outgoing
// blocks.
static void convertToGuardPredicates(
ArrayRef<EdgeDescriptor> Branches, ArrayRef<BasicBlock *> Outgoing,
SmallVectorImpl<BasicBlock *> &GuardBlocks,
SmallVectorImpl<WeakVH> &DeletionCandidates, const StringRef Prefix,
std::optional<unsigned> MaxControlFlowBooleans) {
BBPredicates GuardPredicates;
Function *F = Outgoing.front()->getParent();
for (int I = 0, E = Outgoing.size() - 1; I != E; ++I)
GuardBlocks.push_back(
BasicBlock::Create(F->getContext(), Prefix + ".guard", F));
// When we are using an integer to record which target block to jump to, we
// are creating less live values, actually we are using one single integer to
// store the index of the target block. When we are using booleans to store
// the branching information, we need (N-1) boolean values, where N is the
// number of outgoing block.
if (!MaxControlFlowBooleans || Outgoing.size() <= *MaxControlFlowBooleans)
calcPredicateUsingBooleans(Branches, Outgoing, GuardBlocks, GuardPredicates,
DeletionCandidates);
else
calcPredicateUsingInteger(Branches, Outgoing, GuardBlocks, GuardPredicates);
setupBranchForGuard(GuardBlocks, Outgoing, GuardPredicates);
}
// After creating a control flow hub, the operands of PHINodes in an outgoing
// block Out no longer match the predecessors of that block. Predecessors of Out
// that are incoming blocks to the hub are now replaced by just one edge from
// the hub. To match this new control flow, the corresponding values from each
// PHINode must now be moved a new PHINode in the first guard block of the hub.
//
// This operation cannot be performed with SSAUpdater, because it involves one
// new use: If the block Out is in the list of Incoming blocks, then the newly
// created PHI in the Hub will use itself along that edge from Out to Hub.
static void reconnectPhis(BasicBlock *Out, BasicBlock *GuardBlock,
ArrayRef<EdgeDescriptor> Incoming,
BasicBlock *FirstGuardBlock) {
auto I = Out->begin();
while (I != Out->end() && isa<PHINode>(I)) {
auto *Phi = cast<PHINode>(I);
auto *NewPhi =
PHINode::Create(Phi->getType(), Incoming.size(),
Phi->getName() + ".moved", FirstGuardBlock->begin());
bool AllUndef = true;
for (auto [BB, Succ0, Succ1] : Incoming) {
Value *V = PoisonValue::get(Phi->getType());
if (Phi->getBasicBlockIndex(BB) != -1) {
V = Phi->removeIncomingValue(BB, false);
if (BB == Out) {
V = NewPhi;
}
AllUndef &= isa<UndefValue>(V);
}
NewPhi->addIncoming(V, BB);
}
assert(NewPhi->getNumIncomingValues() == Incoming.size());
Value *NewV = NewPhi;
if (AllUndef) {
NewPhi->eraseFromParent();
NewV = PoisonValue::get(Phi->getType());
}
if (Phi->getNumOperands() == 0) {
Phi->replaceAllUsesWith(NewV);
I = Phi->eraseFromParent();
continue;
}
Phi->addIncoming(NewV, GuardBlock);
++I;
}
}
std::pair<BasicBlock *, bool> ControlFlowHub::finalize(
DomTreeUpdater *DTU, SmallVectorImpl<BasicBlock *> &GuardBlocks,
const StringRef Prefix, std::optional<unsigned> MaxControlFlowBooleans) {
#ifndef NDEBUG
SmallPtrSet<BasicBlock *, 8> Incoming;
#endif
SetVector<BasicBlock *> Outgoing;
for (auto [BB, Succ0, Succ1] : Branches) {
#ifndef NDEBUG
assert(Incoming.insert(BB).second && "Duplicate entry for incoming block.");
#endif
if (Succ0)
Outgoing.insert(Succ0);
if (Succ1)
Outgoing.insert(Succ1);
}
if (Outgoing.size() < 2)
return {Outgoing.front(), false};
SmallVector<DominatorTree::UpdateType, 16> Updates;
if (DTU) {
for (auto [BB, Succ0, Succ1] : Branches) {
if (Succ0)
Updates.push_back({DominatorTree::Delete, BB, Succ0});
if (Succ1)
Updates.push_back({DominatorTree::Delete, BB, Succ1});
}
}
SmallVector<WeakVH, 8> DeletionCandidates;
convertToGuardPredicates(Branches, Outgoing.getArrayRef(), GuardBlocks,
DeletionCandidates, Prefix, MaxControlFlowBooleans);
BasicBlock *FirstGuardBlock = GuardBlocks.front();
// Update the PHINodes in each outgoing block to match the new control flow.
for (int I = 0, E = GuardBlocks.size(); I != E; ++I)
reconnectPhis(Outgoing[I], GuardBlocks[I], Branches, FirstGuardBlock);
// Process the Nth (last) outgoing block with the (N-1)th (last) guard block.
reconnectPhis(Outgoing.back(), GuardBlocks.back(), Branches, FirstGuardBlock);
if (DTU) {
int NumGuards = GuardBlocks.size();
for (auto [BB, Succ0, Succ1] : Branches)
Updates.push_back({DominatorTree::Insert, BB, FirstGuardBlock});
for (int I = 0; I != NumGuards - 1; ++I) {
Updates.push_back({DominatorTree::Insert, GuardBlocks[I], Outgoing[I]});
Updates.push_back(
{DominatorTree::Insert, GuardBlocks[I], GuardBlocks[I + 1]});
}
// The second successor of the last guard block is an outgoing block instead
// of having a "next" guard block.
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards - 1]});
Updates.push_back({DominatorTree::Insert, GuardBlocks[NumGuards - 1],
Outgoing[NumGuards]});
DTU->applyUpdates(Updates);
}
for (auto I : DeletionCandidates) {
if (I->use_empty())
if (auto *Inst = dyn_cast_or_null<Instruction>(I))
Inst->eraseFromParent();
}
return {FirstGuardBlock, true};
}
|