1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
//===- AssumeBundleBuilder.cpp - tools to preserve informations -*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
#include "llvm/Analysis/AssumeBundleQueries.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
cl::opt<bool> ShouldPreserveAllAttributes(
"assume-preserve-all", cl::init(false), cl::Hidden,
cl::desc("enable preservation of all attrbitues. even those that are "
"unlikely to be usefull"));
cl::opt<bool> EnableKnowledgeRetention(
"enable-knowledge-retention", cl::init(false), cl::Hidden,
cl::desc(
"enable preservation of attributes throughout code transformation"));
namespace {
struct AssumedKnowledge {
const char *Name;
Value *Argument;
enum {
None,
Empty,
Tombstone,
};
/// Contain the argument and a flag if needed.
llvm::PointerIntPair<Value *, 2> WasOn;
};
} // namespace
namespace llvm {
template <> struct DenseMapInfo<AssumedKnowledge> {
static AssumedKnowledge getEmptyKey() {
return {nullptr, nullptr, {nullptr, AssumedKnowledge::Empty}};
}
static AssumedKnowledge getTombstoneKey() {
return {nullptr, nullptr, {nullptr, AssumedKnowledge::Tombstone}};
}
static unsigned getHashValue(const AssumedKnowledge &AK) {
return hash_combine(AK.Name, AK.Argument, AK.WasOn.getPointer());
}
static bool isEqual(const AssumedKnowledge &LHS,
const AssumedKnowledge &RHS) {
return LHS.WasOn == RHS.WasOn && LHS.Name == RHS.Name &&
LHS.Argument == RHS.Argument;
}
};
} // namespace llvm
namespace {
/// Deterministically compare OperandBundleDef.
/// The ordering is:
/// - by the attribute's name aka operand bundle tag, (doesn't change)
/// - then by the numeric Value of the argument, (doesn't change)
/// - lastly by the Name of the current Value it WasOn. (may change)
/// This order is deterministic and allows looking for the right kind of
/// attribute with binary search. However finding the right WasOn needs to be
/// done via linear search because values can get replaced.
bool isLowerOpBundle(const OperandBundleDef &LHS, const OperandBundleDef &RHS) {
auto getTuple = [](const OperandBundleDef &Op) {
return std::make_tuple(
Op.getTag(),
Op.input_size() <= ABA_Argument
? 0
: cast<ConstantInt>(*(Op.input_begin() + ABA_Argument))
->getZExtValue(),
Op.input_size() <= ABA_WasOn
? StringRef("")
: (*(Op.input_begin() + ABA_WasOn))->getName());
};
return getTuple(LHS) < getTuple(RHS);
}
bool isUsefullToPreserve(Attribute::AttrKind Kind) {
switch (Kind) {
case Attribute::NonNull:
case Attribute::Alignment:
case Attribute::Dereferenceable:
case Attribute::DereferenceableOrNull:
case Attribute::Cold:
return true;
default:
return false;
}
}
/// This class contain all knowledge that have been gather while building an
/// llvm.assume and the function to manipulate it.
struct AssumeBuilderState {
Module *M;
SmallDenseSet<AssumedKnowledge, 8> AssumedKnowledgeSet;
AssumeBuilderState(Module *M) : M(M) {}
void addAttribute(Attribute Attr, Value *WasOn) {
if (!ShouldPreserveAllAttributes &&
(Attr.isTypeAttribute() || Attr.isStringAttribute() ||
!isUsefullToPreserve(Attr.getKindAsEnum())))
return;
StringRef Name;
Value *AttrArg = nullptr;
if (Attr.isStringAttribute())
Name = Attr.getKindAsString();
else
Name = Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
if (Attr.isIntAttribute())
AttrArg = ConstantInt::get(Type::getInt64Ty(M->getContext()),
Attr.getValueAsInt());
AssumedKnowledgeSet.insert(
{Name.data(), AttrArg, {WasOn, AssumedKnowledge::None}});
}
void addCall(const CallBase *Call) {
auto addAttrList = [&](AttributeList AttrList) {
for (unsigned Idx = AttributeList::FirstArgIndex;
Idx < AttrList.getNumAttrSets(); Idx++)
for (Attribute Attr : AttrList.getAttributes(Idx))
addAttribute(Attr, Call->getArgOperand(Idx - 1));
for (Attribute Attr : AttrList.getFnAttributes())
addAttribute(Attr, nullptr);
};
addAttrList(Call->getAttributes());
if (Function *Fn = Call->getCalledFunction())
addAttrList(Fn->getAttributes());
}
IntrinsicInst *build() {
if (AssumedKnowledgeSet.empty())
return nullptr;
Function *FnAssume = Intrinsic::getDeclaration(M, Intrinsic::assume);
LLVMContext &C = M->getContext();
SmallVector<OperandBundleDef, 8> OpBundle;
for (const AssumedKnowledge &Elem : AssumedKnowledgeSet) {
SmallVector<Value *, 2> Args;
assert(Attribute::getAttrKindFromName(Elem.Name) ==
Attribute::AttrKind::None ||
static_cast<bool>(Elem.Argument) ==
Attribute::doesAttrKindHaveArgument(
Attribute::getAttrKindFromName(Elem.Name)));
if (Elem.WasOn.getPointer())
Args.push_back(Elem.WasOn.getPointer());
if (Elem.Argument)
Args.push_back(Elem.Argument);
OpBundle.push_back(OperandBundleDefT<Value *>(Elem.Name, Args));
}
llvm::sort(OpBundle, isLowerOpBundle);
return cast<IntrinsicInst>(CallInst::Create(
FnAssume, ArrayRef<Value *>({ConstantInt::getTrue(C)}), OpBundle));
}
void addAttr(Attribute::AttrKind Kind, Value *Val, unsigned Argument = 0) {
AssumedKnowledge AK;
AK.Name = Attribute::getNameFromAttrKind(Kind).data();
AK.WasOn.setPointer(Val);
if (Attribute::doesAttrKindHaveArgument(Kind)) {
AK.Argument =
ConstantInt::get(Type::getInt64Ty(M->getContext()), Argument);
} else {
AK.Argument = nullptr;
assert(Argument == 0 && "there should be no argument");
}
AssumedKnowledgeSet.insert(AK);
};
void addAccessedPtr(Instruction *MemInst, Value *Pointer, Type *AccType,
MaybeAlign MA) {
uint64_t DerefSize = MemInst->getModule()
->getDataLayout()
.getTypeStoreSize(AccType)
.getKnownMinSize();
if (DerefSize != 0) {
addAttr(Attribute::Dereferenceable, Pointer, DerefSize);
if (!NullPointerIsDefined(MemInst->getFunction(),
Pointer->getType()->getPointerAddressSpace()))
addAttr(Attribute::NonNull, Pointer);
}
if (MA.valueOrOne() > 1)
addAttr(Attribute::Alignment, Pointer, MA.valueOrOne().value());
}
void addInstruction(Instruction *I) {
if (auto *Call = dyn_cast<CallBase>(I))
return addCall(Call);
if (auto *Load = dyn_cast<LoadInst>(I))
return addAccessedPtr(I, Load->getPointerOperand(), Load->getType(),
Load->getAlign());
if (auto *Store = dyn_cast<StoreInst>(I))
return addAccessedPtr(I, Store->getPointerOperand(),
Store->getValueOperand()->getType(),
Store->getAlign());
// TODO: Add support for the other Instructions.
// TODO: Maybe we should look around and merge with other llvm.assume.
}
};
} // namespace
IntrinsicInst *llvm::buildAssumeFromInst(Instruction *I) {
if (!EnableKnowledgeRetention)
return nullptr;
AssumeBuilderState Builder(I->getModule());
Builder.addInstruction(I);
return Builder.build();
}
void llvm::salvageKnowledge(Instruction *I) {
if (Instruction *Intr = buildAssumeFromInst(I))
Intr->insertBefore(I);
}
PreservedAnalyses AssumeBuilderPass::run(Function &F,
FunctionAnalysisManager &AM) {
for (Instruction &I : instructions(F))
if (Instruction *Assume = buildAssumeFromInst(&I))
Assume->insertBefore(&I);
return PreservedAnalyses::all();
}
|