1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
//===- JumpTableToSwitch.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/JumpTableToSwitch.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/CtxProfAnalysis.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <limits>
using namespace llvm;
static cl::opt<unsigned>
JumpTableSizeThreshold("jump-table-to-switch-size-threshold", cl::Hidden,
cl::desc("Only split jump tables with size less or "
"equal than JumpTableSizeThreshold."),
cl::init(10));
// TODO: Consider adding a cost model for profitability analysis of this
// transformation. Currently we replace a jump table with a switch if all the
// functions in the jump table are smaller than the provided threshold.
static cl::opt<unsigned> FunctionSizeThreshold(
"jump-table-to-switch-function-size-threshold", cl::Hidden,
cl::desc("Only split jump tables containing functions whose sizes are less "
"or equal than this threshold."),
cl::init(50));
extern cl::opt<bool> ProfcheckDisableMetadataFixes;
#define DEBUG_TYPE "jump-table-to-switch"
namespace {
struct JumpTableTy {
Value *Index;
SmallVector<Function *, 10> Funcs;
};
} // anonymous namespace
static std::optional<JumpTableTy> parseJumpTable(GetElementPtrInst *GEP,
PointerType *PtrTy) {
Constant *Ptr = dyn_cast<Constant>(GEP->getPointerOperand());
if (!Ptr)
return std::nullopt;
GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return std::nullopt;
Function &F = *GEP->getParent()->getParent();
const DataLayout &DL = F.getDataLayout();
const unsigned BitWidth =
DL.getIndexSizeInBits(GEP->getPointerAddressSpace());
SmallMapVector<Value *, APInt, 4> VariableOffsets;
APInt ConstantOffset(BitWidth, 0);
if (!GEP->collectOffset(DL, BitWidth, VariableOffsets, ConstantOffset))
return std::nullopt;
if (VariableOffsets.size() != 1)
return std::nullopt;
// TODO: consider supporting more general patterns
if (!ConstantOffset.isZero())
return std::nullopt;
APInt StrideBytes = VariableOffsets.front().second;
const uint64_t JumpTableSizeBytes = DL.getTypeAllocSize(GV->getValueType());
if (JumpTableSizeBytes % StrideBytes.getZExtValue() != 0)
return std::nullopt;
const uint64_t N = JumpTableSizeBytes / StrideBytes.getZExtValue();
if (N > JumpTableSizeThreshold)
return std::nullopt;
JumpTableTy JumpTable;
JumpTable.Index = VariableOffsets.front().first;
JumpTable.Funcs.reserve(N);
for (uint64_t Index = 0; Index < N; ++Index) {
// ConstantOffset is zero.
APInt Offset = Index * StrideBytes;
Constant *C =
ConstantFoldLoadFromConst(GV->getInitializer(), PtrTy, Offset, DL);
auto *Func = dyn_cast_or_null<Function>(C);
if (!Func || Func->isDeclaration() ||
Func->getInstructionCount() > FunctionSizeThreshold)
return std::nullopt;
JumpTable.Funcs.push_back(Func);
}
return JumpTable;
}
static BasicBlock *
expandToSwitch(CallBase *CB, const JumpTableTy &JT, DomTreeUpdater &DTU,
OptimizationRemarkEmitter &ORE,
llvm::function_ref<GlobalValue::GUID(const Function &)>
GetGuidForFunction) {
const bool IsVoid = CB->getType() == Type::getVoidTy(CB->getContext());
SmallVector<DominatorTree::UpdateType, 8> DTUpdates;
BasicBlock *BB = CB->getParent();
BasicBlock *Tail = SplitBlock(BB, CB, &DTU, nullptr, nullptr,
BB->getName() + Twine(".tail"));
DTUpdates.push_back({DominatorTree::Delete, BB, Tail});
BB->getTerminator()->eraseFromParent();
Function &F = *BB->getParent();
BasicBlock *BBUnreachable = BasicBlock::Create(
F.getContext(), "default.switch.case.unreachable", &F, Tail);
IRBuilder<> BuilderUnreachable(BBUnreachable);
BuilderUnreachable.CreateUnreachable();
IRBuilder<> Builder(BB);
SwitchInst *Switch = Builder.CreateSwitch(JT.Index, BBUnreachable);
DTUpdates.push_back({DominatorTree::Insert, BB, BBUnreachable});
IRBuilder<> BuilderTail(CB);
PHINode *PHI =
IsVoid ? nullptr : BuilderTail.CreatePHI(CB->getType(), JT.Funcs.size());
const auto *ProfMD = CB->getMetadata(LLVMContext::MD_prof);
SmallVector<uint64_t> BranchWeights;
DenseMap<GlobalValue::GUID, uint64_t> GuidToCounter;
const bool HadProfile = isValueProfileMD(ProfMD);
if (HadProfile) {
// The assumptions, coming in, are that the functions in JT.Funcs are
// defined in this module (from parseJumpTable).
assert(llvm::all_of(
JT.Funcs, [](const Function *F) { return F && !F->isDeclaration(); }));
BranchWeights.reserve(JT.Funcs.size() + 1);
// The first is the default target, which is the unreachable block created
// above.
BranchWeights.push_back(0U);
uint64_t TotalCount = 0;
auto Targets = getValueProfDataFromInst(
*CB, InstrProfValueKind::IPVK_IndirectCallTarget,
std::numeric_limits<uint32_t>::max(), TotalCount);
for (const auto &[G, C] : Targets) {
[[maybe_unused]] auto It = GuidToCounter.insert({G, C});
assert(It.second);
}
}
for (auto [Index, Func] : llvm::enumerate(JT.Funcs)) {
BasicBlock *B = BasicBlock::Create(Func->getContext(),
"call." + Twine(Index), &F, Tail);
DTUpdates.push_back({DominatorTree::Insert, BB, B});
DTUpdates.push_back({DominatorTree::Insert, B, Tail});
CallBase *Call = cast<CallBase>(CB->clone());
// The MD_prof metadata (VP kind), if it existed, can be dropped, it doesn't
// make sense on a direct call. Note that the values are used for the branch
// weights of the switch.
Call->setMetadata(LLVMContext::MD_prof, nullptr);
Call->setCalledFunction(Func);
Call->insertInto(B, B->end());
Switch->addCase(
cast<ConstantInt>(ConstantInt::get(JT.Index->getType(), Index)), B);
GlobalValue::GUID FctID = GetGuidForFunction(*Func);
// It'd be OK to _not_ find target functions in GuidToCounter, e.g. suppose
// just some of the jump targets are taken (for the given profile).
BranchWeights.push_back(FctID == 0U ? 0U
: GuidToCounter.lookup_or(FctID, 0U));
BranchInst::Create(Tail, B);
if (PHI)
PHI->addIncoming(Call, B);
}
DTU.applyUpdates(DTUpdates);
ORE.emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "ReplacedJumpTableWithSwitch", CB)
<< "expanded indirect call into switch";
});
if (HadProfile && !ProfcheckDisableMetadataFixes) {
// At least one of the targets must've been taken.
assert(llvm::any_of(BranchWeights, [](uint64_t V) { return V != 0; }));
setBranchWeights(*Switch, downscaleWeights(BranchWeights),
/*IsExpected=*/false);
} else
setExplicitlyUnknownBranchWeights(*Switch, DEBUG_TYPE);
if (PHI)
CB->replaceAllUsesWith(PHI);
CB->eraseFromParent();
return Tail;
}
PreservedAnalyses JumpTableToSwitchPass::run(Function &F,
FunctionAnalysisManager &AM) {
OptimizationRemarkEmitter &ORE =
AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
DominatorTree *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
PostDominatorTree *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Lazy);
bool Changed = false;
InstrProfSymtab Symtab;
if (auto E = Symtab.create(*F.getParent()))
F.getContext().emitError(
"Could not create indirect call table, likely corrupted IR" +
toString(std::move(E)));
DenseMap<const Function *, GlobalValue::GUID> FToGuid;
for (const auto &[G, FPtr] : Symtab.getIDToNameMap())
FToGuid.insert({FPtr, G});
for (BasicBlock &BB : make_early_inc_range(F)) {
BasicBlock *CurrentBB = &BB;
while (CurrentBB) {
BasicBlock *SplittedOutTail = nullptr;
for (Instruction &I : make_early_inc_range(*CurrentBB)) {
auto *Call = dyn_cast<CallInst>(&I);
if (!Call || Call->getCalledFunction() || Call->isMustTailCall())
continue;
auto *L = dyn_cast<LoadInst>(Call->getCalledOperand());
// Skip atomic or volatile loads.
if (!L || !L->isSimple())
continue;
auto *GEP = dyn_cast<GetElementPtrInst>(L->getPointerOperand());
if (!GEP)
continue;
auto *PtrTy = dyn_cast<PointerType>(L->getType());
assert(PtrTy && "call operand must be a pointer");
std::optional<JumpTableTy> JumpTable = parseJumpTable(GEP, PtrTy);
if (!JumpTable)
continue;
SplittedOutTail = expandToSwitch(
Call, *JumpTable, DTU, ORE, [&](const Function &Fct) {
if (Fct.getMetadata(AssignGUIDPass::GUIDMetadataName))
return AssignGUIDPass::getGUID(Fct);
return FToGuid.lookup_or(&Fct, 0U);
});
Changed = true;
break;
}
CurrentBB = SplittedOutTail ? SplittedOutTail : nullptr;
}
}
if (!Changed)
return PreservedAnalyses::all();
PreservedAnalyses PA;
if (DT)
PA.preserve<DominatorTreeAnalysis>();
if (PDT)
PA.preserve<PostDominatorTreeAnalysis>();
return PA;
}
|