1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
|
//===- X86LegalizerInfo.cpp --------------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for X86.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "X86LegalizerInfo.h"
#include "X86Subtarget.h"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace TargetOpcode;
using namespace LegalizeActions;
using namespace LegalityPredicates;
X86LegalizerInfo::X86LegalizerInfo(const X86Subtarget &STI,
const X86TargetMachine &TM)
: Subtarget(STI) {
bool Is64Bit = Subtarget.is64Bit();
bool HasCMOV = Subtarget.canUseCMOV();
bool HasSSE1 = Subtarget.hasSSE1();
bool HasSSE2 = Subtarget.hasSSE2();
bool HasSSE41 = Subtarget.hasSSE41();
bool HasAVX = Subtarget.hasAVX();
bool HasAVX2 = Subtarget.hasAVX2();
bool HasAVX512 = Subtarget.hasAVX512();
bool HasVLX = Subtarget.hasVLX();
bool HasDQI = Subtarget.hasAVX512() && Subtarget.hasDQI();
bool HasBWI = Subtarget.hasAVX512() && Subtarget.hasBWI();
bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
bool HasPOPCNT = Subtarget.hasPOPCNT();
bool HasLZCNT = Subtarget.hasLZCNT();
bool HasBMI = Subtarget.hasBMI();
const LLT p0 = LLT::pointer(0, TM.getPointerSizeInBits(0));
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s80 = LLT::scalar(80);
const LLT s128 = LLT::scalar(128);
const LLT sMaxScalar = Subtarget.is64Bit() ? s64 : s32;
const LLT v2s32 = LLT::fixed_vector(2, 32);
const LLT v4s8 = LLT::fixed_vector(4, 8);
const LLT v16s8 = LLT::fixed_vector(16, 8);
const LLT v8s16 = LLT::fixed_vector(8, 16);
const LLT v4s32 = LLT::fixed_vector(4, 32);
const LLT v2s64 = LLT::fixed_vector(2, 64);
const LLT v2p0 = LLT::fixed_vector(2, p0);
const LLT v32s8 = LLT::fixed_vector(32, 8);
const LLT v16s16 = LLT::fixed_vector(16, 16);
const LLT v8s32 = LLT::fixed_vector(8, 32);
const LLT v4s64 = LLT::fixed_vector(4, 64);
const LLT v4p0 = LLT::fixed_vector(4, p0);
const LLT v64s8 = LLT::fixed_vector(64, 8);
const LLT v32s16 = LLT::fixed_vector(32, 16);
const LLT v16s32 = LLT::fixed_vector(16, 32);
const LLT v8s64 = LLT::fixed_vector(8, 64);
const LLT s8MaxVector = HasAVX512 ? v64s8 : HasAVX ? v32s8 : v16s8;
const LLT s16MaxVector = HasAVX512 ? v32s16 : HasAVX ? v16s16 : v8s16;
const LLT s32MaxVector = HasAVX512 ? v16s32 : HasAVX ? v8s32 : v4s32;
const LLT s64MaxVector = HasAVX512 ? v8s64 : HasAVX ? v4s64 : v2s64;
// todo: AVX512 bool vector predicate types
// implicit/constants
// 32/64-bits needs support for s64/s128 to handle cases:
// s64 = EXTEND (G_IMPLICIT_DEF s32) -> s64 = G_IMPLICIT_DEF
// s128 = EXTEND (G_IMPLICIT_DEF s32/s64) -> s128 = G_IMPLICIT_DEF
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalFor({p0, s1, s8, s16, s32, s64})
.legalFor(Is64Bit, {s128});
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({p0, s8, s16, s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar);
getActionDefinitionsBuilder({G_LROUND, G_LLROUND, G_FCOS, G_FCOSH, G_FACOS,
G_FSIN, G_FSINH, G_FASIN, G_FTAN, G_FTANH,
G_FATAN, G_FATAN2, G_FPOW, G_FEXP, G_FEXP2,
G_FEXP10, G_FLOG, G_FLOG2, G_FLOG10, G_FPOWI,
G_FSINCOS, G_FCEIL, G_FFLOOR})
.libcall();
getActionDefinitionsBuilder(G_FSQRT)
.legalFor(HasSSE1 || UseX87, {s32})
.legalFor(HasSSE2 || UseX87, {s64})
.legalFor(UseX87, {s80});
getActionDefinitionsBuilder({G_GET_ROUNDING, G_SET_ROUNDING})
.customFor({s32});
// merge/unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
getActionDefinitionsBuilder(Op)
.widenScalarToNextPow2(LitTyIdx, /*Min=*/8)
.widenScalarToNextPow2(BigTyIdx, /*Min=*/16)
.minScalar(LitTyIdx, s8)
.minScalar(BigTyIdx, s32)
.legalIf([=](const LegalityQuery &Q) {
switch (Q.Types[BigTyIdx].getSizeInBits()) {
case 16:
case 32:
case 64:
case 128:
case 256:
case 512:
break;
default:
return false;
}
switch (Q.Types[LitTyIdx].getSizeInBits()) {
case 8:
case 16:
case 32:
case 64:
case 128:
case 256:
return true;
default:
return false;
}
});
}
getActionDefinitionsBuilder({G_UMIN, G_UMAX, G_SMIN, G_SMAX})
.widenScalarToNextPow2(0, /*Min=*/32)
.lower();
// integer addition/subtraction
getActionDefinitionsBuilder({G_ADD, G_SUB})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE2, {v16s8, v8s16, v4s32, v2s64})
.legalFor(HasAVX2, {v32s8, v16s16, v8s32, v4s64})
.legalFor(HasAVX512, {v16s32, v8s64})
.legalFor(HasBWI, {v64s8, v32s16})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasBWI ? 64 : (HasAVX2 ? 32 : 16))
.clampMaxNumElements(0, s16, HasBWI ? 32 : (HasAVX2 ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX2 ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX2 ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder({G_UADDE, G_UADDO, G_USUBE, G_USUBO})
.legalFor({{s8, s1}, {s16, s1}, {s32, s1}})
.legalFor(Is64Bit, {{s64, s1}})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.clampScalar(1, s1, s1)
.scalarize(0);
// integer multiply
getActionDefinitionsBuilder(G_MUL)
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE2, {v8s16})
.legalFor(HasSSE41, {v4s32})
.legalFor(HasAVX2, {v16s16, v8s32})
.legalFor(HasAVX512, {v16s32})
.legalFor(HasDQI, {v8s64})
.legalFor(HasDQI && HasVLX, {v2s64, v4s64})
.legalFor(HasBWI, {v32s16})
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, HasVLX ? 2 : 8)
.clampMaxNumElements(0, s16, HasBWI ? 32 : (HasAVX2 ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX2 ? 8 : 4))
.clampMaxNumElements(0, s64, 8)
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// integer divisions
getActionDefinitionsBuilder({G_SDIV, G_SREM, G_UDIV, G_UREM})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.libcallFor({s64})
.clampScalar(0, s8, sMaxScalar);
// integer shifts
getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
.legalFor({{s8, s8}, {s16, s8}, {s32, s8}})
.legalFor(Is64Bit, {{s64, s8}})
.clampScalar(0, s8, sMaxScalar)
.clampScalar(1, s8, s8);
// integer logic
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE2, {v16s8, v8s16, v4s32, v2s64})
.legalFor(HasAVX, {v32s8, v16s16, v8s32, v4s64})
.legalFor(HasAVX512, {v64s8, v32s16, v16s32, v8s64})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasAVX512 ? 64 : (HasAVX ? 32 : 16))
.clampMaxNumElements(0, s16, HasAVX512 ? 32 : (HasAVX ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
// integer comparison
const std::initializer_list<LLT> IntTypes32 = {s8, s16, s32, p0};
const std::initializer_list<LLT> IntTypes64 = {s8, s16, s32, s64, p0};
getActionDefinitionsBuilder(G_ICMP)
.legalForCartesianProduct({s8}, Is64Bit ? IntTypes64 : IntTypes32)
.clampScalar(0, s8, s8)
.clampScalar(1, s8, sMaxScalar);
// bswap
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s32, sMaxScalar);
// popcount
getActionDefinitionsBuilder(G_CTPOP)
.legalFor(HasPOPCNT, {{s16, s16}, {s32, s32}})
.legalFor(HasPOPCNT && Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
// count leading zeros (LZCNT)
getActionDefinitionsBuilder(G_CTLZ)
.legalFor(HasLZCNT, {{s16, s16}, {s32, s32}})
.legalFor(HasLZCNT && Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
// count trailing zeros
getActionDefinitionsBuilder(G_CTTZ_ZERO_UNDEF)
.legalFor({{s16, s16}, {s32, s32}})
.legalFor(Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
getActionDefinitionsBuilder(G_CTTZ)
.legalFor(HasBMI, {{s16, s16}, {s32, s32}})
.legalFor(HasBMI && Is64Bit, {{s64, s64}})
.widenScalarToNextPow2(1, /*Min=*/16)
.clampScalar(1, s16, sMaxScalar)
.scalarSameSizeAs(0, 1);
// control flow
getActionDefinitionsBuilder(G_PHI)
.legalFor({s8, s16, s32, p0})
.legalFor(UseX87, {s80})
.legalFor(Is64Bit, {s64})
.legalFor(HasSSE1, {v16s8, v8s16, v4s32, v2s64})
.legalFor(HasAVX, {v32s8, v16s16, v8s32, v4s64})
.legalFor(HasAVX512, {v64s8, v32s16, v16s32, v8s64})
.clampMinNumElements(0, s8, 16)
.clampMinNumElements(0, s16, 8)
.clampMinNumElements(0, s32, 4)
.clampMinNumElements(0, s64, 2)
.clampMaxNumElements(0, s8, HasAVX512 ? 64 : (HasAVX ? 32 : 16))
.clampMaxNumElements(0, s16, HasAVX512 ? 32 : (HasAVX ? 16 : 8))
.clampMaxNumElements(0, s32, HasAVX512 ? 16 : (HasAVX ? 8 : 4))
.clampMaxNumElements(0, s64, HasAVX512 ? 8 : (HasAVX ? 4 : 2))
.widenScalarToNextPow2(0, /*Min=*/32)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
// pointer handling
const std::initializer_list<LLT> PtrTypes32 = {s1, s8, s16, s32};
const std::initializer_list<LLT> PtrTypes64 = {s1, s8, s16, s32, s64};
getActionDefinitionsBuilder(G_PTRTOINT)
.legalForCartesianProduct(Is64Bit ? PtrTypes64 : PtrTypes32, {p0})
.maxScalar(0, sMaxScalar)
.widenScalarToNextPow2(0, /*Min*/ 8);
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, sMaxScalar}});
getActionDefinitionsBuilder(G_CONSTANT_POOL).legalFor({p0});
getActionDefinitionsBuilder(G_PTR_ADD)
.legalFor({{p0, s32}})
.legalFor(Is64Bit, {{p0, s64}})
.widenScalarToNextPow2(1, /*Min*/ 32)
.clampScalar(1, s32, sMaxScalar);
getActionDefinitionsBuilder({G_FRAME_INDEX, G_GLOBAL_VALUE}).legalFor({p0});
// load/store: add more corner cases
for (unsigned Op : {G_LOAD, G_STORE}) {
auto &Action = getActionDefinitionsBuilder(Op);
Action.legalForTypesWithMemDesc({{s8, p0, s8, 1},
{s16, p0, s16, 1},
{s32, p0, s32, 1},
{s80, p0, s80, 1},
{p0, p0, p0, 1},
{v4s8, p0, v4s8, 1}});
if (Is64Bit)
Action.legalForTypesWithMemDesc(
{{s64, p0, s64, 1}, {v2s32, p0, v2s32, 1}});
if (HasSSE1)
Action.legalForTypesWithMemDesc({{v4s32, p0, v4s32, 1}});
if (HasSSE2)
Action.legalForTypesWithMemDesc({{v16s8, p0, v16s8, 1},
{v8s16, p0, v8s16, 1},
{v2s64, p0, v2s64, 1},
{v2p0, p0, v2p0, 1}});
if (HasAVX)
Action.legalForTypesWithMemDesc({{v32s8, p0, v32s8, 1},
{v16s16, p0, v16s16, 1},
{v8s32, p0, v8s32, 1},
{v4s64, p0, v4s64, 1},
{v4p0, p0, v4p0, 1}});
if (HasAVX512)
Action.legalForTypesWithMemDesc({{v64s8, p0, v64s8, 1},
{v32s16, p0, v32s16, 1},
{v16s32, p0, v16s32, 1},
{v8s64, p0, v8s64, 1}});
// X86 supports extending loads but not stores for GPRs
if (Op == G_LOAD) {
Action.legalForTypesWithMemDesc({{s8, p0, s1, 1},
{s16, p0, s8, 1},
{s32, p0, s8, 1},
{s32, p0, s16, 1}});
if (Is64Bit)
Action.legalForTypesWithMemDesc(
{{s64, p0, s8, 1}, {s64, p0, s16, 1}, {s64, p0, s32, 1}});
} else {
Action.customIf([=](const LegalityQuery &Query) {
return Query.Types[0] != Query.MMODescrs[0].MemoryTy;
});
}
Action.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar)
.scalarize(0);
}
for (unsigned Op : {G_SEXTLOAD, G_ZEXTLOAD}) {
auto &Action = getActionDefinitionsBuilder(Op);
Action.legalForTypesWithMemDesc(
{{s16, p0, s8, 1}, {s32, p0, s8, 1}, {s32, p0, s16, 1}});
if (Is64Bit)
Action.legalForTypesWithMemDesc(
{{s64, p0, s8, 1}, {s64, p0, s16, 1}, {s64, p0, s32, 1}});
// TODO - SSE41/AVX2/AVX512F/AVX512BW vector extensions
}
// sext, zext, and anyext
getActionDefinitionsBuilder(G_ANYEXT)
.legalFor({s8, s16, s32, s128})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar)
.widenScalarToNextPow2(1, /*Min=*/8)
.clampScalar(1, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder({G_SEXT, G_ZEXT})
.legalFor({s8, s16, s32})
.legalFor(Is64Bit, {s64})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar)
.widenScalarToNextPow2(1, /*Min=*/8)
.clampScalar(1, s8, sMaxScalar)
.scalarize(0);
getActionDefinitionsBuilder(G_SEXT_INREG).lower();
// fp constants
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({s32, s64})
.legalFor(UseX87, {s80});
// fp arithmetic
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
.legalFor({s32, s64})
.legalFor(HasSSE1, {v4s32})
.legalFor(HasSSE2, {v2s64})
.legalFor(HasAVX, {v8s32, v4s64})
.legalFor(HasAVX512, {v16s32, v8s64})
.legalFor(UseX87, {s80});
getActionDefinitionsBuilder(G_FABS)
.legalFor(UseX87, {s80})
.legalFor(UseX87 && !Is64Bit, {s64})
.lower();
// fp comparison
getActionDefinitionsBuilder(G_FCMP)
.legalFor(HasSSE1 || UseX87, {s8, s32})
.legalFor(HasSSE2 || UseX87, {s8, s64})
.legalFor(UseX87, {s8, s80})
.clampScalar(0, s8, s8)
.clampScalar(1, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(1);
// fp conversions
getActionDefinitionsBuilder(G_FPEXT)
.legalFor(HasSSE2, {{s64, s32}})
.legalFor(HasAVX, {{v4s64, v4s32}})
.legalFor(HasAVX512, {{v8s64, v8s32}});
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor(HasSSE2, {{s32, s64}})
.legalFor(HasAVX, {{v4s32, v4s64}})
.legalFor(HasAVX512, {{v8s32, v8s64}});
getActionDefinitionsBuilder(G_SITOFP)
.legalFor(HasSSE1, {{s32, s32}})
.legalFor(HasSSE1 && Is64Bit, {{s32, s64}})
.legalFor(HasSSE2, {{s64, s32}})
.legalFor(HasSSE2 && Is64Bit, {{s64, s64}})
.clampScalar(1, (UseX87 && !HasSSE1) ? s16 : s32, sMaxScalar)
.widenScalarToNextPow2(1)
.customForCartesianProduct(UseX87, {s32, s64, s80}, {s16, s32, s64})
.clampScalar(0, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(0);
getActionDefinitionsBuilder(G_FPTOSI)
.legalFor(HasSSE1, {{s32, s32}})
.legalFor(HasSSE1 && Is64Bit, {{s64, s32}})
.legalFor(HasSSE2, {{s32, s64}})
.legalFor(HasSSE2 && Is64Bit, {{s64, s64}})
.clampScalar(0, (UseX87 && !HasSSE1) ? s16 : s32, sMaxScalar)
.widenScalarToNextPow2(0)
.customForCartesianProduct(UseX87, {s16, s32, s64}, {s32, s64, s80})
.clampScalar(1, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(1);
// For G_UITOFP and G_FPTOUI without AVX512, we have to custom legalize types
// <= s32 manually. Otherwise, in custom handler there is no way to
// understand whether s32 is an original type and we need to promote it to
// s64 or s32 is obtained after widening and we shouldn't widen it to s64.
//
// For AVX512 we simply widen types as there is direct mapping from opcodes
// to asm instructions.
getActionDefinitionsBuilder(G_UITOFP)
.legalFor(HasAVX512, {{s32, s32}, {s32, s64}, {s64, s32}, {s64, s64}})
.customIf([=](const LegalityQuery &Query) {
return !HasAVX512 &&
((HasSSE1 && typeIs(0, s32)(Query)) ||
(HasSSE2 && typeIs(0, s64)(Query))) &&
scalarNarrowerThan(1, Is64Bit ? 64 : 32)(Query);
})
.lowerIf([=](const LegalityQuery &Query) {
// Lower conversions from s64
return !HasAVX512 &&
((HasSSE1 && typeIs(0, s32)(Query)) ||
(HasSSE2 && typeIs(0, s64)(Query))) &&
(Is64Bit && typeIs(1, s64)(Query));
})
.clampScalar(0, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(0)
.clampScalar(1, s32, sMaxScalar)
.widenScalarToNextPow2(1);
getActionDefinitionsBuilder(G_FPTOUI)
.legalFor(HasAVX512, {{s32, s32}, {s32, s64}, {s64, s32}, {s64, s64}})
.customIf([=](const LegalityQuery &Query) {
return !HasAVX512 &&
((HasSSE1 && typeIs(1, s32)(Query)) ||
(HasSSE2 && typeIs(1, s64)(Query))) &&
scalarNarrowerThan(0, Is64Bit ? 64 : 32)(Query);
})
// TODO: replace with customized legalization using
// specifics of cvttsd2si. The selection of this node requires
// a vector type. Either G_SCALAR_TO_VECTOR is needed or more advanced
// support of G_BUILD_VECTOR/G_INSERT_VECTOR_ELT is required beforehand.
.lowerIf([=](const LegalityQuery &Query) {
return !HasAVX512 &&
((HasSSE1 && typeIs(1, s32)(Query)) ||
(HasSSE2 && typeIs(1, s64)(Query))) &&
(Is64Bit && typeIs(0, s64)(Query));
})
.clampScalar(0, s32, sMaxScalar)
.widenScalarToNextPow2(0)
.clampScalar(1, s32, HasSSE2 ? s64 : s32)
.widenScalarToNextPow2(1);
// vector ops
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.customIf([=](const LegalityQuery &Query) {
return (HasSSE1 && typeInSet(0, {v4s32})(Query)) ||
(HasSSE2 && typeInSet(0, {v2s64, v8s16, v16s8})(Query)) ||
(HasAVX && typeInSet(0, {v4s64, v8s32, v16s16, v32s8})(Query)) ||
(HasAVX512 && typeInSet(0, {v8s64, v16s32, v32s16, v64s8}));
})
.clampNumElements(0, v16s8, s8MaxVector)
.clampNumElements(0, v8s16, s16MaxVector)
.clampNumElements(0, v4s32, s32MaxVector)
.clampNumElements(0, v2s64, s64MaxVector)
.moreElementsToNextPow2(0);
getActionDefinitionsBuilder({G_EXTRACT, G_INSERT})
.legalIf([=](const LegalityQuery &Query) {
unsigned SubIdx = Query.Opcode == G_EXTRACT ? 0 : 1;
unsigned FullIdx = Query.Opcode == G_EXTRACT ? 1 : 0;
return (HasAVX && typePairInSet(SubIdx, FullIdx,
{{v16s8, v32s8},
{v8s16, v16s16},
{v4s32, v8s32},
{v2s64, v4s64}})(Query)) ||
(HasAVX512 && typePairInSet(SubIdx, FullIdx,
{{v16s8, v64s8},
{v32s8, v64s8},
{v8s16, v32s16},
{v16s16, v32s16},
{v4s32, v16s32},
{v8s32, v16s32},
{v2s64, v8s64},
{v4s64, v8s64}})(Query));
});
// todo: only permit dst types up to max legal vector register size?
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor(
HasSSE1,
{{v32s8, v16s8}, {v16s16, v8s16}, {v8s32, v4s32}, {v4s64, v2s64}})
.legalFor(HasAVX, {{v64s8, v16s8},
{v64s8, v32s8},
{v32s16, v8s16},
{v32s16, v16s16},
{v16s32, v4s32},
{v16s32, v8s32},
{v8s64, v2s64},
{v8s64, v4s64}});
// todo: vectors and address spaces
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s8, s32}, {s16, s32}, {s32, s32}, {s64, s32}, {p0, s32}})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, HasCMOV ? s16 : s8, sMaxScalar)
.clampScalar(1, s32, s32);
// memory intrinsics
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
getActionDefinitionsBuilder({G_DYN_STACKALLOC, G_STACKSAVE, G_STACKRESTORE})
.lower();
// fp intrinsics
getActionDefinitionsBuilder({G_INTRINSIC_ROUNDEVEN, G_INTRINSIC_TRUNC})
.scalarize(0)
.minScalar(0, LLT::scalar(32))
.libcall();
getActionDefinitionsBuilder({G_FREEZE, G_CONSTANT_FOLD_BARRIER})
.legalFor({s8, s16, s32, s64, p0})
.widenScalarToNextPow2(0, /*Min=*/8)
.clampScalar(0, s8, sMaxScalar);
getLegacyLegalizerInfo().computeTables();
verify(*STI.getInstrInfo());
}
bool X86LegalizerInfo::legalizeCustom(LegalizerHelper &Helper, MachineInstr &MI,
LostDebugLocObserver &LocObserver) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_BUILD_VECTOR:
return legalizeBuildVector(MI, MRI, Helper);
case TargetOpcode::G_FPTOUI:
return legalizeFPTOUI(MI, MRI, Helper);
case TargetOpcode::G_UITOFP:
return legalizeUITOFP(MI, MRI, Helper);
case TargetOpcode::G_STORE:
return legalizeNarrowingStore(MI, MRI, Helper);
case TargetOpcode::G_SITOFP:
return legalizeSITOFP(MI, MRI, Helper);
case TargetOpcode::G_FPTOSI:
return legalizeFPTOSI(MI, MRI, Helper);
case TargetOpcode::G_GET_ROUNDING:
return legalizeGETROUNDING(MI, MRI, Helper);
case TargetOpcode::G_SET_ROUNDING:
return legalizeSETROUNDING(MI, MRI, Helper);
}
llvm_unreachable("expected switch to return");
}
bool X86LegalizerInfo::legalizeSITOFP(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineFunction &MF = *MI.getMF();
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
assert((SrcTy.getSizeInBits() == 16 || SrcTy.getSizeInBits() == 32 ||
SrcTy.getSizeInBits() == 64) &&
"Unexpected source type for SITOFP in X87 mode.");
TypeSize MemSize = SrcTy.getSizeInBytes();
MachinePointerInfo PtrInfo;
Align Alignmt = Helper.getStackTemporaryAlignment(SrcTy);
auto SlotPointer = Helper.createStackTemporary(MemSize, Alignmt, PtrInfo);
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, MemSize, Align(MemSize));
// Store the integer value on the FPU stack.
MIRBuilder.buildStore(Src, SlotPointer, *StoreMMO);
MachineMemOperand *LoadMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, MemSize, Align(MemSize));
MIRBuilder.buildInstr(X86::G_FILD)
.addDef(Dst)
.addUse(SlotPointer.getReg(0))
.addMemOperand(LoadMMO);
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeFPTOSI(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineFunction &MF = *MI.getMF();
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
TypeSize MemSize = DstTy.getSizeInBytes();
MachinePointerInfo PtrInfo;
Align Alignmt = Helper.getStackTemporaryAlignment(DstTy);
auto SlotPointer = Helper.createStackTemporary(MemSize, Alignmt, PtrInfo);
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, MemSize, Align(MemSize));
MIRBuilder.buildInstr(X86::G_FIST)
.addUse(Src)
.addUse(SlotPointer.getReg(0))
.addMemOperand(StoreMMO);
MIRBuilder.buildLoad(Dst, SlotPointer, PtrInfo, Align(MemSize));
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeBuildVector(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
const auto &BuildVector = cast<GBuildVector>(MI);
Register Dst = BuildVector.getReg(0);
LLT DstTy = MRI.getType(Dst);
MachineFunction &MF = MIRBuilder.getMF();
LLVMContext &Ctx = MF.getFunction().getContext();
uint64_t DstTySize = DstTy.getScalarSizeInBits();
SmallVector<Constant *, 4> CstIdxs;
for (unsigned i = 0; i < BuildVector.getNumSources(); ++i) {
Register Source = BuildVector.getSourceReg(i);
auto ValueAndReg = getIConstantVRegValWithLookThrough(Source, MRI);
if (ValueAndReg) {
CstIdxs.emplace_back(ConstantInt::get(Ctx, ValueAndReg->Value));
continue;
}
auto FPValueAndReg = getFConstantVRegValWithLookThrough(Source, MRI);
if (FPValueAndReg) {
CstIdxs.emplace_back(ConstantFP::get(Ctx, FPValueAndReg->Value));
continue;
}
if (getOpcodeDef<GImplicitDef>(Source, MRI)) {
CstIdxs.emplace_back(UndefValue::get(Type::getIntNTy(Ctx, DstTySize)));
continue;
}
return false;
}
Constant *ConstVal = ConstantVector::get(CstIdxs);
const DataLayout &DL = MIRBuilder.getDataLayout();
unsigned AddrSpace = DL.getDefaultGlobalsAddressSpace();
Align Alignment(DL.getABITypeAlign(ConstVal->getType()));
auto Addr = MIRBuilder.buildConstantPool(
LLT::pointer(AddrSpace, DL.getPointerSizeInBits(AddrSpace)),
MF.getConstantPool()->getConstantPoolIndex(ConstVal, Alignment));
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
MachineMemOperand::MOLoad, DstTy, Alignment);
MIRBuilder.buildLoad(Dst, Addr, *MMO);
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeFPTOUI(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
unsigned DstSizeInBits = DstTy.getScalarSizeInBits();
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
// Simply reuse FPTOSI when it is possible to widen the type
if (DstSizeInBits <= 32) {
auto Casted = MIRBuilder.buildFPTOSI(DstTy == s32 ? s64 : s32, Src);
MIRBuilder.buildTrunc(Dst, Casted);
MI.eraseFromParent();
return true;
}
return false;
}
bool X86LegalizerInfo::legalizeUITOFP(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
auto [Dst, DstTy, Src, SrcTy] = MI.getFirst2RegLLTs();
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
// Simply reuse SITOFP when it is possible to widen the type
if (SrcTy.getSizeInBits() <= 32) {
auto Ext = MIRBuilder.buildZExt(SrcTy == s32 ? s64 : s32, Src);
MIRBuilder.buildSITOFP(Dst, Ext);
MI.eraseFromParent();
return true;
}
return false;
}
bool X86LegalizerInfo::legalizeNarrowingStore(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
auto &Store = cast<GStore>(MI);
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineMemOperand &MMO = **Store.memoperands_begin();
MachineFunction &MF = MIRBuilder.getMF();
LLT ValTy = MRI.getType(Store.getValueReg());
auto *NewMMO = MF.getMachineMemOperand(&MMO, MMO.getPointerInfo(), ValTy);
Helper.Observer.changingInstr(Store);
Store.setMemRefs(MF, {NewMMO});
Helper.Observer.changedInstr(Store);
return true;
}
bool X86LegalizerInfo::legalizeGETROUNDING(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
/*
The rounding mode is in bits 11:10 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to -inf
10 Round to +inf
11 Round to 0
GET_ROUNDING, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we use a packed lookup table of the four 2-bit
values that we can index by FPSP[11:10]
0x2d --> (0b00,10,11,01) --> (0,2,3,1) >> FPSR[11:10]
(0x2d >> ((FPSR >> 9) & 6)) & 3
*/
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineFunction &MF = MIRBuilder.getMF();
Register Dst = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(Dst);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
// Save FP Control Word to stack slot
int MemSize = 2;
Align Alignment = Align(2);
MachinePointerInfo PtrInfo;
auto StackTemp = Helper.createStackTemporary(TypeSize::getFixed(MemSize),
Alignment, PtrInfo);
Register StackPtr = StackTemp.getReg(0);
auto StoreMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore,
MemSize, Alignment);
// Store FP Control Word to stack slot using G_FNSTCW16
MIRBuilder.buildInstr(X86::G_FNSTCW16)
.addUse(StackPtr)
.addMemOperand(StoreMMO);
// Load FP Control Word from stack slot
auto LoadMMO = MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad,
MemSize, Alignment);
auto CWD32 =
MIRBuilder.buildZExt(s32, MIRBuilder.buildLoad(s16, StackPtr, *LoadMMO));
auto Shifted8 = MIRBuilder.buildTrunc(
s8, MIRBuilder.buildLShr(s32, CWD32, MIRBuilder.buildConstant(s8, 9)));
auto Masked32 = MIRBuilder.buildZExt(
s32, MIRBuilder.buildAnd(s8, Shifted8, MIRBuilder.buildConstant(s8, 6)));
// LUT is a packed lookup table (0x2d) used to map the 2-bit x87 FPU rounding
// mode (from bits 11:10 of the control word) to the values expected by
// GET_ROUNDING. The mapping is performed by shifting LUT right by the
// extracted rounding mode and masking the result with 3 to obtain the final
auto LUT = MIRBuilder.buildConstant(s32, 0x2d);
auto LUTShifted = MIRBuilder.buildLShr(s32, LUT, Masked32);
auto RetVal =
MIRBuilder.buildAnd(s32, LUTShifted, MIRBuilder.buildConstant(s32, 3));
auto RetValTrunc = MIRBuilder.buildZExtOrTrunc(DstTy, RetVal);
MIRBuilder.buildCopy(Dst, RetValTrunc);
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeSETROUNDING(MachineInstr &MI,
MachineRegisterInfo &MRI,
LegalizerHelper &Helper) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineFunction &MF = MIRBuilder.getMF();
Register Src = MI.getOperand(0).getReg();
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
// Allocate stack slot for control word and MXCSR (4 bytes).
int MemSize = 4;
Align Alignment = Align(4);
MachinePointerInfo PtrInfo;
auto StackTemp = Helper.createStackTemporary(TypeSize::getFixed(MemSize),
Alignment, PtrInfo);
Register StackPtr = StackTemp.getReg(0);
auto StoreMMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 2, Align(2));
MIRBuilder.buildInstr(X86::G_FNSTCW16)
.addUse(StackPtr)
.addMemOperand(StoreMMO);
auto LoadMMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 2, Align(2));
auto CWD16 = MIRBuilder.buildLoad(s16, StackPtr, *LoadMMO);
// Clear RM field (bits 11:10)
auto ClearedCWD =
MIRBuilder.buildAnd(s16, CWD16, MIRBuilder.buildConstant(s16, 0xf3ff));
// Check if Src is a constant
auto *SrcDef = MRI.getVRegDef(Src);
Register RMBits;
Register MXCSRRMBits;
if (SrcDef && SrcDef->getOpcode() == TargetOpcode::G_CONSTANT) {
uint64_t RM = getIConstantFromReg(Src, MRI).getZExtValue();
int FieldVal = X86::getRoundingModeX86(RM);
if (FieldVal == X86::rmInvalid) {
FieldVal = X86::rmToNearest;
LLVMContext &C = MF.getFunction().getContext();
C.diagnose(DiagnosticInfoUnsupported(
MF.getFunction(), "rounding mode is not supported by X86 hardware",
DiagnosticLocation(MI.getDebugLoc()), DS_Error));
return false;
}
FieldVal = FieldVal << 3;
RMBits = MIRBuilder.buildConstant(s16, FieldVal).getReg(0);
MXCSRRMBits = MIRBuilder.buildConstant(s32, FieldVal).getReg(0);
} else {
// Convert Src (rounding mode) to bits for control word
// (0xc9 << (2 * Src + 4)) & 0xc00
auto Src32 = MIRBuilder.buildZExtOrTrunc(s32, Src);
auto ShiftAmt = MIRBuilder.buildAdd(
s32, MIRBuilder.buildShl(s32, Src32, MIRBuilder.buildConstant(s32, 1)),
MIRBuilder.buildConstant(s32, 4));
auto ShiftAmt8 = MIRBuilder.buildTrunc(s8, ShiftAmt);
auto Shifted = MIRBuilder.buildShl(s16, MIRBuilder.buildConstant(s16, 0xc9),
ShiftAmt8);
RMBits =
MIRBuilder.buildAnd(s16, Shifted, MIRBuilder.buildConstant(s16, 0xc00))
.getReg(0);
// For non-constant case, we still need to compute MXCSR bits dynamically
auto RMBits32 = MIRBuilder.buildZExt(s32, RMBits);
MXCSRRMBits =
MIRBuilder.buildShl(s32, RMBits32, MIRBuilder.buildConstant(s32, 3))
.getReg(0);
}
// Update rounding mode bits
auto NewCWD =
MIRBuilder.buildOr(s16, ClearedCWD, RMBits, MachineInstr::Disjoint);
// Store new FP Control Word to stack
auto StoreNewMMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, 2, Align(2));
MIRBuilder.buildStore(NewCWD, StackPtr, *StoreNewMMO);
// Load FP control word from the slot using G_FLDCW16
auto LoadNewMMO =
MF.getMachineMemOperand(PtrInfo, MachineMemOperand::MOLoad, 2, Align(2));
MIRBuilder.buildInstr(X86::G_FLDCW16)
.addUse(StackPtr)
.addMemOperand(LoadNewMMO);
if (Subtarget.hasSSE1()) {
// Store MXCSR to stack (use STMXCSR)
auto StoreMXCSRMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, 4, Align(4));
MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
.addIntrinsicID(Intrinsic::x86_sse_stmxcsr)
.addUse(StackPtr)
.addMemOperand(StoreMXCSRMMO);
// Load MXCSR from stack
auto LoadMXCSRMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, 4, Align(4));
auto MXCSR = MIRBuilder.buildLoad(s32, StackPtr, *LoadMXCSRMMO);
// Clear RM field (bits 14:13)
auto ClearedMXCSR = MIRBuilder.buildAnd(
s32, MXCSR, MIRBuilder.buildConstant(s32, 0xffff9fff));
// Update rounding mode bits
auto NewMXCSR = MIRBuilder.buildOr(s32, ClearedMXCSR, MXCSRRMBits);
// Store new MXCSR to stack
auto StoreNewMXCSRMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, 4, Align(4));
MIRBuilder.buildStore(NewMXCSR, StackPtr, *StoreNewMXCSRMMO);
// Load MXCSR from stack (use LDMXCSR)
auto LoadNewMXCSRMMO = MF.getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, 4, Align(4));
MIRBuilder.buildInstr(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS)
.addIntrinsicID(Intrinsic::x86_sse_ldmxcsr)
.addUse(StackPtr)
.addMemOperand(LoadNewMXCSRMMO);
}
MI.eraseFromParent();
return true;
}
bool X86LegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
return true;
}
|