1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
|
//===-- RISCVAsmBackend.cpp - RISC-V Assembler Backend --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVAsmBackend.h"
#include "RISCVFixupKinds.h"
#include "llvm/ADT/APInt.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCELFObjectWriter.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// Temporary workaround for old linkers that do not support ULEB128 relocations,
// which are abused by DWARF v5 DW_LLE_offset_pair/DW_RLE_offset_pair
// implemented in Clang/LLVM.
static cl::opt<bool> ULEB128Reloc(
"riscv-uleb128-reloc", cl::init(true), cl::Hidden,
cl::desc("Emit R_RISCV_SET_ULEB128/E_RISCV_SUB_ULEB128 if appropriate"));
static cl::opt<bool>
AlignRvc("riscv-align-rvc", cl::init(true), cl::Hidden,
cl::desc("When generating R_RISCV_ALIGN, insert $alignment-2 "
"bytes of NOPs even in norvc code"));
RISCVAsmBackend::RISCVAsmBackend(const MCSubtargetInfo &STI, uint8_t OSABI,
bool Is64Bit, bool IsLittleEndian,
const MCTargetOptions &Options)
: MCAsmBackend(IsLittleEndian ? llvm::endianness::little
: llvm::endianness::big),
STI(STI), OSABI(OSABI), Is64Bit(Is64Bit), TargetOptions(Options) {
RISCVFeatures::validate(STI.getTargetTriple(), STI.getFeatureBits());
}
std::optional<MCFixupKind> RISCVAsmBackend::getFixupKind(StringRef Name) const {
if (STI.getTargetTriple().isOSBinFormatELF()) {
unsigned Type;
Type = llvm::StringSwitch<unsigned>(Name)
#define ELF_RELOC(NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV.def"
#undef ELF_RELOC
#define ELF_RISCV_NONSTANDARD_RELOC(_VENDOR, NAME, ID) .Case(#NAME, ID)
#include "llvm/BinaryFormat/ELFRelocs/RISCV_nonstandard.def"
#undef ELF_RISCV_NONSTANDARD_RELOC
.Case("BFD_RELOC_NONE", ELF::R_RISCV_NONE)
.Case("BFD_RELOC_32", ELF::R_RISCV_32)
.Case("BFD_RELOC_64", ELF::R_RISCV_64)
.Default(-1u);
if (Type != -1u)
return static_cast<MCFixupKind>(FirstLiteralRelocationKind + Type);
}
return std::nullopt;
}
MCFixupKindInfo RISCVAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
const static MCFixupKindInfo Infos[] = {
// This table *must* be in the order that the fixup_* kinds are defined in
// RISCVFixupKinds.h.
//
// name offset bits flags
{"fixup_riscv_hi20", 12, 20, 0},
{"fixup_riscv_lo12_i", 20, 12, 0},
{"fixup_riscv_12_i", 20, 12, 0},
{"fixup_riscv_lo12_s", 0, 32, 0},
{"fixup_riscv_pcrel_hi20", 12, 20, 0},
{"fixup_riscv_pcrel_lo12_i", 20, 12, 0},
{"fixup_riscv_pcrel_lo12_s", 0, 32, 0},
{"fixup_riscv_jal", 12, 20, 0},
{"fixup_riscv_branch", 0, 32, 0},
{"fixup_riscv_rvc_jump", 2, 11, 0},
{"fixup_riscv_rvc_branch", 0, 16, 0},
{"fixup_riscv_rvc_imm", 0, 16, 0},
{"fixup_riscv_call", 0, 64, 0},
{"fixup_riscv_call_plt", 0, 64, 0},
{"fixup_riscv_qc_e_branch", 0, 48, 0},
{"fixup_riscv_qc_e_32", 16, 32, 0},
{"fixup_riscv_qc_abs20_u", 0, 32, 0},
{"fixup_riscv_qc_e_call_plt", 0, 48, 0},
// Andes fixups
{"fixup_riscv_nds_branch_10", 0, 32, 0},
};
static_assert((std::size(Infos)) == RISCV::NumTargetFixupKinds,
"Not all fixup kinds added to Infos array");
// Fixup kinds from raw relocation types and .reloc directives force
// relocations and do not use these fields.
if (mc::isRelocation(Kind))
return {};
if (Kind < FirstTargetFixupKind)
return MCAsmBackend::getFixupKindInfo(Kind);
assert(unsigned(Kind - FirstTargetFixupKind) < RISCV::NumTargetFixupKinds &&
"Invalid kind!");
return Infos[Kind - FirstTargetFixupKind];
}
bool RISCVAsmBackend::fixupNeedsRelaxationAdvanced(const MCFragment &,
const MCFixup &Fixup,
const MCValue &,
uint64_t Value,
bool Resolved) const {
int64_t Offset = int64_t(Value);
auto Kind = Fixup.getKind();
// Return true if the symbol is unresolved.
if (!Resolved)
return true;
switch (Kind) {
default:
return false;
case RISCV::fixup_riscv_rvc_branch:
// For compressed branch instructions the immediate must be
// in the range [-256, 254].
return Offset > 254 || Offset < -256;
case RISCV::fixup_riscv_rvc_jump:
// For compressed jump instructions the immediate must be
// in the range [-2048, 2046].
return Offset > 2046 || Offset < -2048;
case RISCV::fixup_riscv_branch:
case RISCV::fixup_riscv_qc_e_branch:
// For conditional branch instructions the immediate must be
// in the range [-4096, 4094].
return Offset > 4094 || Offset < -4096;
case RISCV::fixup_riscv_jal:
// For jump instructions the immediate must be in the range
// [-1048576, 1048574]
return Offset > 1048574 || Offset < -1048576;
case RISCV::fixup_riscv_rvc_imm:
// This fixup can never be emitted as a relocation, so always needs to be
// relaxed.
return true;
}
}
// Given a compressed control flow instruction this function returns
// the expanded instruction, or the original instruction code if no
// expansion is available.
static unsigned getRelaxedOpcode(unsigned Opcode, ArrayRef<MCOperand> Operands,
const MCSubtargetInfo &STI) {
switch (Opcode) {
case RISCV::C_BEQZ:
return RISCV::BEQ;
case RISCV::C_BNEZ:
return RISCV::BNE;
case RISCV::C_J:
case RISCV::C_JAL: // fall through.
// This only relaxes one "step" - i.e. from C.J to JAL, not from C.J to
// QC.E.J, because we can always relax again if needed.
return RISCV::JAL;
case RISCV::C_LI:
if (!STI.hasFeature(RISCV::FeatureVendorXqcili))
break;
// We only need this because `QC.E.LI` can be compressed into a `C.LI`. This
// happens because the `simm6` MCOperandPredicate accepts bare symbols, and
// `QC.E.LI` is the only instruction that accepts bare symbols at parse-time
// and compresses to `C.LI`. `C.LI` does not itself accept bare symbols at
// parse time.
//
// If we have a bare symbol, we need to turn this back to a `QC.E.LI`, as we
// have no way to emit a relocation on a `C.LI` instruction.
return RISCV::QC_E_LI;
case RISCV::JAL: {
// We can only relax JAL if we have Xqcilb
if (!STI.hasFeature(RISCV::FeatureVendorXqcilb))
break;
// And only if it is using X0 or X1 for rd.
MCRegister Reg = Operands[0].getReg();
if (Reg == RISCV::X0)
return RISCV::QC_E_J;
if (Reg == RISCV::X1)
return RISCV::QC_E_JAL;
break;
}
case RISCV::BEQ:
return RISCV::PseudoLongBEQ;
case RISCV::BNE:
return RISCV::PseudoLongBNE;
case RISCV::BLT:
return RISCV::PseudoLongBLT;
case RISCV::BGE:
return RISCV::PseudoLongBGE;
case RISCV::BLTU:
return RISCV::PseudoLongBLTU;
case RISCV::BGEU:
return RISCV::PseudoLongBGEU;
case RISCV::QC_BEQI:
return RISCV::PseudoLongQC_BEQI;
case RISCV::QC_BNEI:
return RISCV::PseudoLongQC_BNEI;
case RISCV::QC_BLTI:
return RISCV::PseudoLongQC_BLTI;
case RISCV::QC_BGEI:
return RISCV::PseudoLongQC_BGEI;
case RISCV::QC_BLTUI:
return RISCV::PseudoLongQC_BLTUI;
case RISCV::QC_BGEUI:
return RISCV::PseudoLongQC_BGEUI;
case RISCV::QC_E_BEQI:
return RISCV::PseudoLongQC_E_BEQI;
case RISCV::QC_E_BNEI:
return RISCV::PseudoLongQC_E_BNEI;
case RISCV::QC_E_BLTI:
return RISCV::PseudoLongQC_E_BLTI;
case RISCV::QC_E_BGEI:
return RISCV::PseudoLongQC_E_BGEI;
case RISCV::QC_E_BLTUI:
return RISCV::PseudoLongQC_E_BLTUI;
case RISCV::QC_E_BGEUI:
return RISCV::PseudoLongQC_E_BGEUI;
}
// Returning the original opcode means we cannot relax the instruction.
return Opcode;
}
void RISCVAsmBackend::relaxInstruction(MCInst &Inst,
const MCSubtargetInfo &STI) const {
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return;
MCInst Res;
switch (Inst.getOpcode()) {
default:
llvm_unreachable("Opcode not expected!");
case RISCV::C_BEQZ:
case RISCV::C_BNEZ:
case RISCV::C_J:
case RISCV::C_JAL: {
[[maybe_unused]] bool Success = RISCVRVC::uncompress(Res, Inst, STI);
assert(Success && "Can't uncompress instruction");
assert(Res.getOpcode() ==
getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI) &&
"Branch Relaxation Error");
break;
}
case RISCV::JAL: {
// This has to be written manually because the QC.E.J -> JAL is
// compression-only, so that it is not used when printing disassembly.
assert(STI.hasFeature(RISCV::FeatureVendorXqcilb) &&
"JAL is only relaxable with Xqcilb");
assert((Inst.getOperand(0).getReg() == RISCV::X0 ||
Inst.getOperand(0).getReg() == RISCV::X1) &&
"JAL only relaxable with rd=x0 or rd=x1");
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::C_LI: {
// This should only be hit when trying to relax a `C.LI` into a `QC.E.LI`
// because the `C.LI` has a bare symbol. We cannot use
// `RISCVRVC::uncompress` because it will use decompression patterns. The
// `QC.E.LI` compression pattern to `C.LI` is compression-only (because we
// don't want `c.li` ever printed as `qc.e.li`, which might be done if the
// pattern applied to decompression), but that doesn't help much becuase
// `C.LI` with a bare symbol will decompress to an `ADDI` anyway (because
// `simm12`'s MCOperandPredicate accepts a bare symbol and that pattern
// comes first), and we still cannot emit an `ADDI` with a bare symbol.
assert(STI.hasFeature(RISCV::FeatureVendorXqcili) &&
"C.LI is only relaxable with Xqcili");
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
break;
}
case RISCV::BEQ:
case RISCV::BNE:
case RISCV::BLT:
case RISCV::BGE:
case RISCV::BLTU:
case RISCV::BGEU:
case RISCV::QC_BEQI:
case RISCV::QC_BNEI:
case RISCV::QC_BLTI:
case RISCV::QC_BGEI:
case RISCV::QC_BLTUI:
case RISCV::QC_BGEUI:
case RISCV::QC_E_BEQI:
case RISCV::QC_E_BNEI:
case RISCV::QC_E_BLTI:
case RISCV::QC_E_BGEI:
case RISCV::QC_E_BLTUI:
case RISCV::QC_E_BGEUI:
Res.setOpcode(getRelaxedOpcode(Inst.getOpcode(), Inst.getOperands(), STI));
Res.addOperand(Inst.getOperand(0));
Res.addOperand(Inst.getOperand(1));
Res.addOperand(Inst.getOperand(2));
break;
}
Inst = std::move(Res);
}
// Check if an R_RISCV_ALIGN relocation is needed for an alignment directive.
// If conditions are met, compute the padding size and create a fixup encoding
// the padding size in the addend.
bool RISCVAsmBackend::relaxAlign(MCFragment &F, unsigned &Size) {
// Alignments before the first linker-relaxable instruction have fixed sizes
// and do not require relocations. Alignments after a linker-relaxable
// instruction require a relocation, even if the STI specifies norelax.
//
// firstLinkerRelaxable is the layout order within the subsection, which may
// be smaller than the section's order. Therefore, alignments in a
// lower-numbered subsection may be unnecessarily treated as linker-relaxable.
auto *Sec = F.getParent();
if (F.getLayoutOrder() <= Sec->firstLinkerRelaxable())
return false;
// Use default handling unless the alignment is larger than the nop size.
const MCSubtargetInfo *STI = F.getSubtargetInfo();
unsigned MinNopLen =
AlignRvc || STI->hasFeature(RISCV::FeatureStdExtZca) ? 2 : 4;
if (F.getAlignment() <= MinNopLen)
return false;
Size = F.getAlignment().value() - MinNopLen;
auto *Expr = MCConstantExpr::create(Size, getContext());
MCFixup Fixup =
MCFixup::create(0, Expr, FirstLiteralRelocationKind + ELF::R_RISCV_ALIGN);
F.setVarFixups({Fixup});
F.setLinkerRelaxable();
return true;
}
bool RISCVAsmBackend::relaxDwarfLineAddr(MCFragment &F) const {
int64_t LineDelta = F.getDwarfLineDelta();
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
int64_t Value;
// If the label difference can be resolved, use the default handling, which
// utilizes a shorter special opcode.
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
SmallVector<char> Data;
raw_svector_ostream OS(Data);
// INT64_MAX is a signal that this is actually a DW_LNE_end_sequence.
if (LineDelta != INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_advance_line);
encodeSLEB128(LineDelta, OS);
}
// According to the DWARF specification, the `DW_LNS_fixed_advance_pc` opcode
// takes a single unsigned half (unencoded) operand. The maximum encodable
// value is therefore 65535. Set a conservative upper bound for relaxation.
unsigned PCBytes;
if (Value > 60000) {
PCBytes = getContext().getAsmInfo()->getCodePointerSize();
OS << uint8_t(dwarf::DW_LNS_extended_op) << uint8_t(PCBytes + 1)
<< uint8_t(dwarf::DW_LNE_set_address);
OS.write_zeros(PCBytes);
} else {
PCBytes = 2;
OS << uint8_t(dwarf::DW_LNS_fixed_advance_pc);
support::endian::write<uint16_t>(OS, 0, Endian);
}
auto Offset = OS.tell() - PCBytes;
if (LineDelta == INT64_MAX) {
OS << uint8_t(dwarf::DW_LNS_extended_op);
OS << uint8_t(1);
OS << uint8_t(dwarf::DW_LNE_end_sequence);
} else {
OS << uint8_t(dwarf::DW_LNS_copy);
}
F.setVarContents(Data);
F.setVarFixups({MCFixup::create(Offset, &AddrDelta,
MCFixup::getDataKindForSize(PCBytes))});
return true;
}
bool RISCVAsmBackend::relaxDwarfCFA(MCFragment &F) const {
const MCExpr &AddrDelta = F.getDwarfAddrDelta();
SmallVector<MCFixup, 2> Fixups;
int64_t Value;
if (AddrDelta.evaluateAsAbsolute(Value, *Asm))
return false;
[[maybe_unused]] bool IsAbsolute =
AddrDelta.evaluateKnownAbsolute(Value, *Asm);
assert(IsAbsolute && "CFA with invalid expression");
assert(getContext().getAsmInfo()->getMinInstAlignment() == 1 &&
"expected 1-byte alignment");
if (Value == 0) {
F.clearVarContents();
F.clearVarFixups();
return true;
}
auto AddFixups = [&Fixups, &AddrDelta](unsigned Offset,
std::pair<unsigned, unsigned> Fixup) {
const MCBinaryExpr &MBE = cast<MCBinaryExpr>(AddrDelta);
Fixups.push_back(MCFixup::create(Offset, MBE.getLHS(), std::get<0>(Fixup)));
Fixups.push_back(MCFixup::create(Offset, MBE.getRHS(), std::get<1>(Fixup)));
};
SmallVector<char, 8> Data;
raw_svector_ostream OS(Data);
if (isUIntN(6, Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc);
AddFixups(0, {ELF::R_RISCV_SET6, ELF::R_RISCV_SUB6});
} else if (isUInt<8>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc1);
support::endian::write<uint8_t>(OS, 0, Endian);
AddFixups(1, {ELF::R_RISCV_SET8, ELF::R_RISCV_SUB8});
} else if (isUInt<16>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc2);
support::endian::write<uint16_t>(OS, 0, Endian);
AddFixups(1, {ELF::R_RISCV_SET16, ELF::R_RISCV_SUB16});
} else if (isUInt<32>(Value)) {
OS << uint8_t(dwarf::DW_CFA_advance_loc4);
support::endian::write<uint32_t>(OS, 0, Endian);
AddFixups(1, {ELF::R_RISCV_SET32, ELF::R_RISCV_SUB32});
} else {
llvm_unreachable("unsupported CFA encoding");
}
F.setVarContents(Data);
F.setVarFixups(Fixups);
return true;
}
std::pair<bool, bool> RISCVAsmBackend::relaxLEB128(MCFragment &LF,
int64_t &Value) const {
if (LF.isLEBSigned())
return std::make_pair(false, false);
const MCExpr &Expr = LF.getLEBValue();
if (ULEB128Reloc) {
LF.setVarFixups({MCFixup::create(0, &Expr, FK_Data_leb128)});
}
return std::make_pair(Expr.evaluateKnownAbsolute(Value, *Asm), false);
}
bool RISCVAsmBackend::mayNeedRelaxation(unsigned Opcode,
ArrayRef<MCOperand> Operands,
const MCSubtargetInfo &STI) const {
// This function has access to two STIs, the member of the AsmBackend, and the
// one passed as an argument. The latter is more specific, so we query it for
// specific features.
if (STI.hasFeature(RISCV::FeatureExactAssembly))
return false;
return getRelaxedOpcode(Opcode, Operands, STI) != Opcode;
}
bool RISCVAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count,
const MCSubtargetInfo *STI) const {
// We mostly follow binutils' convention here: align to even boundary with a
// 0-fill padding. We emit up to 1 2-byte nop, though we use c.nop if RVC is
// enabled or 0-fill otherwise. The remainder is now padded with 4-byte nops.
// Instructions always are at even addresses. We must be in a data area or
// be unaligned due to some other reason.
if (Count % 2) {
OS.write("\0", 1);
Count -= 1;
}
// TODO: emit a mapping symbol right here
if (Count % 4 == 2) {
// The canonical nop with Zca is c.nop. For .balign 4, we generate a 2-byte
// c.nop even in a norvc region.
OS.write("\x01\0", 2);
Count -= 2;
}
// The canonical nop on RISC-V is addi x0, x0, 0.
for (; Count >= 4; Count -= 4)
OS.write("\x13\0\0\0", 4);
return true;
}
static uint64_t adjustFixupValue(const MCFixup &Fixup, uint64_t Value,
MCContext &Ctx) {
switch (Fixup.getKind()) {
default:
llvm_unreachable("Unknown fixup kind!");
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
case FK_Data_leb128:
return Value;
case RISCV::fixup_riscv_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_i:
return Value & 0xfff;
case RISCV::fixup_riscv_12_i:
if (!isInt<12>(Value)) {
Ctx.reportError(Fixup.getLoc(),
"operand must be a constant 12-bit integer");
}
return Value & 0xfff;
case RISCV::fixup_riscv_lo12_s:
case RISCV::fixup_riscv_pcrel_lo12_s:
return (((Value >> 5) & 0x7f) << 25) | ((Value & 0x1f) << 7);
case RISCV::fixup_riscv_hi20:
case RISCV::fixup_riscv_pcrel_hi20:
// Add 1 if bit 11 is 1, to compensate for low 12 bits being negative.
return ((Value + 0x800) >> 12) & 0xfffff;
case RISCV::fixup_riscv_jal: {
if (!isInt<21>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to produce imm[19|10:1|11|19:12] from the 21-bit Value.
unsigned Sbit = (Value >> 20) & 0x1;
unsigned Hi8 = (Value >> 12) & 0xff;
unsigned Mid1 = (Value >> 11) & 0x1;
unsigned Lo10 = (Value >> 1) & 0x3ff;
// Inst{31} = Sbit;
// Inst{30-21} = Lo10;
// Inst{20} = Mid1;
// Inst{19-12} = Hi8;
Value = (Sbit << 19) | (Lo10 << 9) | (Mid1 << 8) | Hi8;
return Value;
}
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_branch: {
if (!isInt<13>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[12], imm[10:5], imm[4:1], imm[11] from the 13-bit
// Value.
unsigned Sbit = (Value >> 12) & 0x1;
unsigned Hi1 = (Value >> 11) & 0x1;
unsigned Mid6 = (Value >> 5) & 0x3f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{30-25} = Mid6;
// Inst{11-8} = Lo4;
// Inst{7} = Hi1;
Value = (Sbit << 31) | (Mid6 << 25) | (Lo4 << 8) | (Hi1 << 7);
return Value;
}
case RISCV::fixup_riscv_call:
case RISCV::fixup_riscv_call_plt: {
// Jalr will add UpperImm with the sign-extended 12-bit LowerImm,
// we need to add 0x800ULL before extract upper bits to reflect the
// effect of the sign extension.
uint64_t UpperImm = (Value + 0x800ULL) & 0xfffff000ULL;
uint64_t LowerImm = Value & 0xfffULL;
return UpperImm | ((LowerImm << 20) << 32);
}
case RISCV::fixup_riscv_rvc_jump: {
if (!isInt<12>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[11|4|9:8|10|6|7|3:1|5] from the 11-bit Value.
unsigned Bit11 = (Value >> 11) & 0x1;
unsigned Bit4 = (Value >> 4) & 0x1;
unsigned Bit9_8 = (Value >> 8) & 0x3;
unsigned Bit10 = (Value >> 10) & 0x1;
unsigned Bit6 = (Value >> 6) & 0x1;
unsigned Bit7 = (Value >> 7) & 0x1;
unsigned Bit3_1 = (Value >> 1) & 0x7;
unsigned Bit5 = (Value >> 5) & 0x1;
Value = (Bit11 << 10) | (Bit4 << 9) | (Bit9_8 << 7) | (Bit10 << 6) |
(Bit6 << 5) | (Bit7 << 4) | (Bit3_1 << 1) | Bit5;
return Value;
}
case RISCV::fixup_riscv_rvc_branch: {
if (!isInt<9>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
// Need to produce offset[8|4:3], [reg 3 bit], offset[7:6|2:1|5]
unsigned Bit8 = (Value >> 8) & 0x1;
unsigned Bit7_6 = (Value >> 6) & 0x3;
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_3 = (Value >> 3) & 0x3;
unsigned Bit2_1 = (Value >> 1) & 0x3;
Value = (Bit8 << 12) | (Bit4_3 << 10) | (Bit7_6 << 5) | (Bit2_1 << 3) |
(Bit5 << 2);
return Value;
}
case RISCV::fixup_riscv_rvc_imm: {
if (!isInt<6>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit5 = (Value >> 5) & 0x1;
unsigned Bit4_0 = Value & 0x1f;
Value = (Bit5 << 12) | (Bit4_0 << 2);
return Value;
}
case RISCV::fixup_riscv_qc_e_32: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
return Value & 0xffffffffu;
}
case RISCV::fixup_riscv_qc_abs20_u: {
if (!isInt<20>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
unsigned Bit19 = (Value >> 19) & 0x1;
unsigned Bit14_0 = Value & 0x7fff;
unsigned Bit18_15 = (Value >> 15) & 0xf;
Value = (Bit19 << 31) | (Bit14_0 << 16) | (Bit18_15 << 12);
return Value;
}
case RISCV::fixup_riscv_qc_e_call_plt: {
if (!isInt<32>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
uint64_t Bit31_16 = (Value >> 16) & 0xffff;
uint64_t Bit12 = (Value >> 12) & 0x1;
uint64_t Bit10_5 = (Value >> 5) & 0x3f;
uint64_t Bit15_13 = (Value >> 13) & 0x7;
uint64_t Bit4_1 = (Value >> 1) & 0xf;
uint64_t Bit11 = (Value >> 11) & 0x1;
Value = (Bit31_16 << 32ull) | (Bit12 << 31) | (Bit10_5 << 25) |
(Bit15_13 << 17) | (Bit4_1 << 8) | (Bit11 << 7);
return Value;
}
case RISCV::fixup_riscv_nds_branch_10: {
if (!isInt<11>(Value))
Ctx.reportError(Fixup.getLoc(), "fixup value out of range");
if (Value & 0x1)
Ctx.reportError(Fixup.getLoc(), "fixup value must be 2-byte aligned");
// Need to extract imm[10], imm[9:5], imm[4:1] from the 11-bit Value.
unsigned Sbit = (Value >> 10) & 0x1;
unsigned Hi5 = (Value >> 5) & 0x1f;
unsigned Lo4 = (Value >> 1) & 0xf;
// Inst{31} = Sbit;
// Inst{29-25} = Hi5;
// Inst{11-8} = Lo4;
Value = (Sbit << 31) | (Hi5 << 25) | (Lo4 << 8);
return Value;
}
}
}
bool RISCVAsmBackend::isPCRelFixupResolved(const MCSymbol *SymA,
const MCFragment &F) {
// If the section does not contain linker-relaxable fragments, PC-relative
// fixups can be resolved.
if (!F.getParent()->isLinkerRelaxable())
return true;
// Otherwise, check if the offset between the symbol and fragment is fully
// resolved, unaffected by linker-relaxable fragments (e.g. instructions or
// offset-affected FT_Align fragments). Complements the generic
// isSymbolRefDifferenceFullyResolvedImpl.
if (!PCRelTemp)
PCRelTemp = getContext().createTempSymbol();
PCRelTemp->setFragment(const_cast<MCFragment *>(&F));
MCValue Res;
MCExpr::evaluateSymbolicAdd(Asm, false, MCValue::get(SymA),
MCValue::get(nullptr, PCRelTemp), Res);
return !Res.getSubSym();
}
// Get the corresponding PC-relative HI fixup that a S_PCREL_LO points to, and
// optionally the fragment containing it.
//
// \returns nullptr if this isn't a S_PCREL_LO pointing to a known PC-relative
// HI fixup.
static const MCFixup *getPCRelHiFixup(const MCSpecifierExpr &Expr,
const MCFragment **DFOut) {
MCValue AUIPCLoc;
if (!Expr.getSubExpr()->evaluateAsRelocatable(AUIPCLoc, nullptr))
return nullptr;
const MCSymbol *AUIPCSymbol = AUIPCLoc.getAddSym();
if (!AUIPCSymbol)
return nullptr;
const auto *DF = AUIPCSymbol->getFragment();
if (!DF)
return nullptr;
uint64_t Offset = AUIPCSymbol->getOffset();
if (DF->getContents().size() == Offset) {
DF = DF->getNext();
if (!DF)
return nullptr;
Offset = 0;
}
for (const MCFixup &F : DF->getFixups()) {
if (F.getOffset() != Offset)
continue;
auto Kind = F.getKind();
if (!mc::isRelocation(F.getKind())) {
if (Kind == RISCV::fixup_riscv_pcrel_hi20) {
*DFOut = DF;
return &F;
}
break;
}
switch (Kind) {
case ELF::R_RISCV_GOT_HI20:
case ELF::R_RISCV_TLS_GOT_HI20:
case ELF::R_RISCV_TLS_GD_HI20:
case ELF::R_RISCV_TLSDESC_HI20:
*DFOut = DF;
return &F;
}
}
return nullptr;
}
std::optional<bool> RISCVAsmBackend::evaluateFixup(const MCFragment &,
MCFixup &Fixup,
MCValue &Target,
uint64_t &Value) {
const MCFixup *AUIPCFixup;
const MCFragment *AUIPCDF;
MCValue AUIPCTarget;
switch (Fixup.getKind()) {
default:
// Use default handling for `Value` and `IsResolved`.
return {};
case RISCV::fixup_riscv_pcrel_lo12_i:
case RISCV::fixup_riscv_pcrel_lo12_s: {
AUIPCFixup =
getPCRelHiFixup(cast<MCSpecifierExpr>(*Fixup.getValue()), &AUIPCDF);
if (!AUIPCFixup) {
getContext().reportError(Fixup.getLoc(),
"could not find corresponding %pcrel_hi");
return true;
}
// MCAssembler::evaluateFixup will emit an error for this case when it sees
// the %pcrel_hi, so don't duplicate it when also seeing the %pcrel_lo.
const MCExpr *AUIPCExpr = AUIPCFixup->getValue();
if (!AUIPCExpr->evaluateAsRelocatable(AUIPCTarget, Asm))
return true;
break;
}
}
if (!AUIPCTarget.getAddSym())
return false;
auto &SA = static_cast<const MCSymbolELF &>(*AUIPCTarget.getAddSym());
if (SA.isUndefined())
return false;
bool IsResolved = &SA.getSection() == AUIPCDF->getParent() &&
SA.getBinding() == ELF::STB_LOCAL &&
SA.getType() != ELF::STT_GNU_IFUNC;
if (!IsResolved)
return false;
Value = Asm->getSymbolOffset(SA) + AUIPCTarget.getConstant();
Value -= Asm->getFragmentOffset(*AUIPCDF) + AUIPCFixup->getOffset();
return AUIPCFixup->getKind() == RISCV::fixup_riscv_pcrel_hi20 &&
isPCRelFixupResolved(AUIPCTarget.getAddSym(), *AUIPCDF);
}
void RISCVAsmBackend::maybeAddVendorReloc(const MCFragment &F,
const MCFixup &Fixup) {
StringRef VendorIdentifier;
switch (Fixup.getKind()) {
default:
// No Vendor Relocation Required.
return;
case RISCV::fixup_riscv_qc_e_branch:
case RISCV::fixup_riscv_qc_abs20_u:
case RISCV::fixup_riscv_qc_e_32:
case RISCV::fixup_riscv_qc_e_call_plt:
VendorIdentifier = "QUALCOMM";
break;
case RISCV::fixup_riscv_nds_branch_10:
VendorIdentifier = "ANDES";
break;
}
// Create a local symbol for the vendor relocation to reference. It's fine if
// the symbol has the same name as an existing symbol.
MCContext &Ctx = Asm->getContext();
MCSymbol *VendorSymbol = Ctx.createLocalSymbol(VendorIdentifier);
auto [It, Inserted] =
VendorSymbols.try_emplace(VendorIdentifier, VendorSymbol);
if (Inserted) {
// Setup the just-created symbol
VendorSymbol->setVariableValue(MCConstantExpr::create(0, Ctx));
Asm->registerSymbol(*VendorSymbol);
} else {
// Fetch the existing symbol
VendorSymbol = It->getValue();
}
MCFixup VendorFixup =
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_VENDOR);
// Explicitly create MCValue rather than using an MCExpr and evaluating it so
// that the absolute vendor symbol is not evaluated to constant 0.
MCValue VendorTarget = MCValue::get(VendorSymbol);
uint64_t VendorValue;
Asm->getWriter().recordRelocation(F, VendorFixup, VendorTarget, VendorValue);
}
static bool relaxableFixupNeedsRelocation(const MCFixupKind Kind) {
// Some Fixups are marked as LinkerRelaxable by
// `RISCVMCCodeEmitter::getImmOpValue` only because they may be
// (assembly-)relaxed into a linker-relaxable instruction. This function
// should return `false` for those fixups so they do not get a `R_RISCV_RELAX`
// relocation emitted in addition to the relocation.
switch (Kind) {
default:
break;
case RISCV::fixup_riscv_rvc_jump:
case RISCV::fixup_riscv_rvc_branch:
case RISCV::fixup_riscv_jal:
return false;
}
return true;
}
bool RISCVAsmBackend::addReloc(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint64_t &FixedValue,
bool IsResolved) {
uint64_t FixedValueA, FixedValueB;
if (Target.getSubSym()) {
assert(Target.getSpecifier() == 0 &&
"relocatable SymA-SymB cannot have relocation specifier");
unsigned TA = 0, TB = 0;
switch (Fixup.getKind()) {
case llvm::FK_Data_1:
TA = ELF::R_RISCV_ADD8;
TB = ELF::R_RISCV_SUB8;
break;
case llvm::FK_Data_2:
TA = ELF::R_RISCV_ADD16;
TB = ELF::R_RISCV_SUB16;
break;
case llvm::FK_Data_4:
TA = ELF::R_RISCV_ADD32;
TB = ELF::R_RISCV_SUB32;
break;
case llvm::FK_Data_8:
TA = ELF::R_RISCV_ADD64;
TB = ELF::R_RISCV_SUB64;
break;
case llvm::FK_Data_leb128:
TA = ELF::R_RISCV_SET_ULEB128;
TB = ELF::R_RISCV_SUB_ULEB128;
break;
default:
llvm_unreachable("unsupported fixup size");
}
MCValue A = MCValue::get(Target.getAddSym(), nullptr, Target.getConstant());
MCValue B = MCValue::get(Target.getSubSym());
auto FA = MCFixup::create(Fixup.getOffset(), nullptr, TA);
auto FB = MCFixup::create(Fixup.getOffset(), nullptr, TB);
Asm->getWriter().recordRelocation(F, FA, A, FixedValueA);
Asm->getWriter().recordRelocation(F, FB, B, FixedValueB);
FixedValue = FixedValueA - FixedValueB;
return false;
}
// If linker relaxation is enabled and supported by the current fixup, then we
// always want to generate a relocation.
bool NeedsRelax = Fixup.isLinkerRelaxable() &&
relaxableFixupNeedsRelocation(Fixup.getKind());
if (NeedsRelax)
IsResolved = false;
if (IsResolved && Fixup.isPCRel())
IsResolved = isPCRelFixupResolved(Target.getAddSym(), F);
if (!IsResolved) {
// Some Fixups require a VENDOR relocation, record it (directly) before we
// add the relocation.
maybeAddVendorReloc(F, Fixup);
Asm->getWriter().recordRelocation(F, Fixup, Target, FixedValue);
if (NeedsRelax) {
// Some Fixups get a RELAX relocation, record it (directly) after we add
// the relocation.
MCFixup RelaxFixup =
MCFixup::create(Fixup.getOffset(), nullptr, ELF::R_RISCV_RELAX);
MCValue RelaxTarget = MCValue::get(nullptr);
uint64_t RelaxValue;
Asm->getWriter().recordRelocation(F, RelaxFixup, RelaxTarget, RelaxValue);
}
}
return false;
}
// Data fixups should be swapped for big endian cores.
// Instruction fixups should not be swapped as RISC-V instructions
// are always little-endian.
static bool isDataFixup(unsigned Kind) {
switch (Kind) {
default:
return false;
case FK_Data_1:
case FK_Data_2:
case FK_Data_4:
case FK_Data_8:
return true;
}
}
void RISCVAsmBackend::applyFixup(const MCFragment &F, const MCFixup &Fixup,
const MCValue &Target, uint8_t *Data,
uint64_t Value, bool IsResolved) {
IsResolved = addReloc(F, Fixup, Target, Value, IsResolved);
MCFixupKind Kind = Fixup.getKind();
if (mc::isRelocation(Kind))
return;
MCContext &Ctx = getContext();
MCFixupKindInfo Info = getFixupKindInfo(Kind);
if (!Value)
return; // Doesn't change encoding.
// Apply any target-specific value adjustments.
Value = adjustFixupValue(Fixup, Value, Ctx);
// Shift the value into position.
Value <<= Info.TargetOffset;
unsigned NumBytes = alignTo(Info.TargetSize + Info.TargetOffset, 8) / 8;
assert(Fixup.getOffset() + NumBytes <= F.getSize() &&
"Invalid fixup offset!");
// For each byte of the fragment that the fixup touches, mask in the
// bits from the fixup value.
// For big endian cores, data fixup should be swapped.
bool SwapValue = Endian == llvm::endianness::big && isDataFixup(Kind);
for (unsigned i = 0; i != NumBytes; ++i) {
unsigned Idx = SwapValue ? (NumBytes - 1 - i) : i;
Data[Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
}
}
std::unique_ptr<MCObjectTargetWriter>
RISCVAsmBackend::createObjectTargetWriter() const {
return createRISCVELFObjectWriter(OSABI, Is64Bit);
}
MCAsmBackend *llvm::createRISCVAsmBackend(const Target &T,
const MCSubtargetInfo &STI,
const MCRegisterInfo &MRI,
const MCTargetOptions &Options) {
const Triple &TT = STI.getTargetTriple();
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new RISCVAsmBackend(STI, OSABI, TT.isArch64Bit(), TT.isLittleEndian(),
Options);
}
|