1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
|
//===- NVPTXUtilities.cpp - Utility Functions -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains miscellaneous utility functions
//
//===----------------------------------------------------------------------===//
#include "NVPTXUtilities.h"
#include "NVPTX.h"
#include "NVPTXTargetMachine.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Alignment.h"
#include "llvm/Support/ModRef.h"
#include "llvm/Support/Mutex.h"
#include <cstdint>
#include <cstring>
#include <map>
#include <mutex>
#include <optional>
#include <string>
#include <vector>
namespace llvm {
namespace {
typedef std::map<std::string, std::vector<unsigned>> key_val_pair_t;
typedef std::map<const GlobalValue *, key_val_pair_t> global_val_annot_t;
struct AnnotationCache {
sys::Mutex Lock;
std::map<const Module *, global_val_annot_t> Cache;
};
AnnotationCache &getAnnotationCache() {
static AnnotationCache AC;
return AC;
}
} // anonymous namespace
void clearAnnotationCache(const Module *Mod) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
AC.Cache.erase(Mod);
}
static void cacheAnnotationFromMD(const MDNode *MetadataNode,
key_val_pair_t &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
assert(MetadataNode && "Invalid mdnode for annotation");
assert((MetadataNode->getNumOperands() % 2) == 1 &&
"Invalid number of operands");
// start index = 1, to skip the global variable key
// increment = 2, to skip the value for each property-value pairs
for (unsigned i = 1, e = MetadataNode->getNumOperands(); i != e; i += 2) {
// property
const MDString *prop = dyn_cast<MDString>(MetadataNode->getOperand(i));
assert(prop && "Annotation property not a string");
std::string Key = prop->getString().str();
// value
if (ConstantInt *Val = mdconst::dyn_extract<ConstantInt>(
MetadataNode->getOperand(i + 1))) {
retval[Key].push_back(Val->getZExtValue());
} else {
llvm_unreachable("Value operand not a constant int");
}
}
}
static void cacheAnnotationFromMD(const Module *m, const GlobalValue *gv) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
NamedMDNode *NMD = m->getNamedMetadata("nvvm.annotations");
if (!NMD)
return;
key_val_pair_t tmp;
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *elem = NMD->getOperand(i);
GlobalValue *entity =
mdconst::dyn_extract_or_null<GlobalValue>(elem->getOperand(0));
// entity may be null due to DCE
if (!entity)
continue;
if (entity != gv)
continue;
// accumulate annotations for entity in tmp
cacheAnnotationFromMD(elem, tmp);
}
if (tmp.empty()) // no annotations for this gv
return;
AC.Cache[m][gv] = std::move(tmp);
}
static std::optional<unsigned> findOneNVVMAnnotation(const GlobalValue *gv,
const std::string &prop) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
auto ACIt = AC.Cache.find(m);
if (ACIt == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (ACIt->second.find(gv) == ACIt->second.end())
cacheAnnotationFromMD(m, gv);
// Look up AC.Cache[m][gv] again because cacheAnnotationFromMD may have
// inserted the entry.
auto &KVP = AC.Cache[m][gv];
auto It = KVP.find(prop);
if (It == KVP.end())
return std::nullopt;
return It->second[0];
}
static bool findAllNVVMAnnotation(const GlobalValue *gv,
const std::string &prop,
std::vector<unsigned> &retval) {
auto &AC = getAnnotationCache();
std::lock_guard<sys::Mutex> Guard(AC.Lock);
const Module *m = gv->getParent();
auto ACIt = AC.Cache.find(m);
if (ACIt == AC.Cache.end())
cacheAnnotationFromMD(m, gv);
else if (ACIt->second.find(gv) == ACIt->second.end())
cacheAnnotationFromMD(m, gv);
// Look up AC.Cache[m][gv] again because cacheAnnotationFromMD may have
// inserted the entry.
auto &KVP = AC.Cache[m][gv];
auto It = KVP.find(prop);
if (It == KVP.end())
return false;
retval = It->second;
return true;
}
static bool globalHasNVVMAnnotation(const Value &V, const std::string &Prop) {
if (const auto *GV = dyn_cast<GlobalValue>(&V))
if (const auto Annot = findOneNVVMAnnotation(GV, Prop)) {
assert((*Annot == 1) && "Unexpected annotation on a symbol");
return true;
}
return false;
}
static bool argHasNVVMAnnotation(const Value &Val,
const std::string &Annotation) {
if (const Argument *Arg = dyn_cast<Argument>(&Val)) {
const Function *Func = Arg->getParent();
std::vector<unsigned> Annot;
if (findAllNVVMAnnotation(Func, Annotation, Annot)) {
if (is_contained(Annot, Arg->getArgNo()))
return true;
}
}
return false;
}
static std::optional<unsigned> getFnAttrParsedInt(const Function &F,
StringRef Attr) {
return F.hasFnAttribute(Attr)
? std::optional(F.getFnAttributeAsParsedInteger(Attr))
: std::nullopt;
}
static SmallVector<unsigned, 3> getFnAttrParsedVector(const Function &F,
StringRef Attr) {
SmallVector<unsigned, 3> V;
auto &Ctx = F.getContext();
if (F.hasFnAttribute(Attr)) {
// We expect the attribute value to be of the form "x[,y[,z]]", where x, y,
// and z are unsigned values.
StringRef S = F.getFnAttribute(Attr).getValueAsString();
for (unsigned I = 0; I < 3 && !S.empty(); I++) {
auto [First, Rest] = S.split(",");
unsigned IntVal;
if (First.trim().getAsInteger(0, IntVal))
Ctx.emitError("can't parse integer attribute " + First + " in " + Attr);
V.push_back(IntVal);
S = Rest;
}
}
return V;
}
static std::optional<uint64_t> getVectorProduct(ArrayRef<unsigned> V) {
if (V.empty())
return std::nullopt;
return std::accumulate(V.begin(), V.end(), 1, std::multiplies<uint64_t>{});
}
bool isParamGridConstant(const Argument &Arg) {
assert(isKernelFunction(*Arg.getParent()) &&
"only kernel arguments can be grid_constant");
if (!Arg.hasByValAttr())
return false;
// Lowering an argument as a grid_constant violates the byval semantics (and
// the C++ API) by reusing the same memory location for the argument across
// multiple threads. If an argument doesn't read memory and its address is not
// captured (its address is not compared with any value), then the tweak of
// the C++ API and byval semantics is unobservable by the program and we can
// lower the arg as a grid_constant.
if (Arg.onlyReadsMemory()) {
const auto CI = Arg.getAttributes().getCaptureInfo();
if (!capturesAddress(CI) && !capturesFullProvenance(CI))
return true;
}
// "grid_constant" counts argument indices starting from 1
if (Arg.hasAttribute("nvvm.grid_constant"))
return true;
return false;
}
bool isTexture(const Value &V) { return globalHasNVVMAnnotation(V, "texture"); }
bool isSurface(const Value &V) { return globalHasNVVMAnnotation(V, "surface"); }
bool isSampler(const Value &V) {
const char *AnnotationName = "sampler";
return globalHasNVVMAnnotation(V, AnnotationName) ||
argHasNVVMAnnotation(V, AnnotationName);
}
bool isImageReadOnly(const Value &V) {
return argHasNVVMAnnotation(V, "rdoimage");
}
bool isImageWriteOnly(const Value &V) {
return argHasNVVMAnnotation(V, "wroimage");
}
bool isImageReadWrite(const Value &V) {
return argHasNVVMAnnotation(V, "rdwrimage");
}
bool isImage(const Value &V) {
return isImageReadOnly(V) || isImageWriteOnly(V) || isImageReadWrite(V);
}
bool isManaged(const Value &V) { return globalHasNVVMAnnotation(V, "managed"); }
StringRef getTextureName(const Value &V) {
assert(V.hasName() && "Found texture variable with no name");
return V.getName();
}
StringRef getSurfaceName(const Value &V) {
assert(V.hasName() && "Found surface variable with no name");
return V.getName();
}
StringRef getSamplerName(const Value &V) {
assert(V.hasName() && "Found sampler variable with no name");
return V.getName();
}
SmallVector<unsigned, 3> getMaxNTID(const Function &F) {
return getFnAttrParsedVector(F, "nvvm.maxntid");
}
SmallVector<unsigned, 3> getReqNTID(const Function &F) {
return getFnAttrParsedVector(F, "nvvm.reqntid");
}
SmallVector<unsigned, 3> getClusterDim(const Function &F) {
return getFnAttrParsedVector(F, "nvvm.cluster_dim");
}
std::optional<uint64_t> getOverallMaxNTID(const Function &F) {
// Note: The semantics here are a bit strange. The PTX ISA states the
// following (11.4.2. Performance-Tuning Directives: .maxntid):
//
// Note that this directive guarantees that the total number of threads does
// not exceed the maximum, but does not guarantee that the limit in any
// particular dimension is not exceeded.
const auto MaxNTID = getMaxNTID(F);
return getVectorProduct(MaxNTID);
}
std::optional<uint64_t> getOverallReqNTID(const Function &F) {
// Note: The semantics here are a bit strange. See getMaxNTID.
const auto ReqNTID = getReqNTID(F);
return getVectorProduct(ReqNTID);
}
std::optional<uint64_t> getOverallClusterRank(const Function &F) {
// maxclusterrank and cluster_dim are mutually exclusive.
if (const auto ClusterRank = getMaxClusterRank(F))
return ClusterRank;
// Note: The semantics here are a bit strange. See getMaxNTID.
const auto ClusterDim = getClusterDim(F);
return getVectorProduct(ClusterDim);
}
std::optional<unsigned> getMaxClusterRank(const Function &F) {
return getFnAttrParsedInt(F, "nvvm.maxclusterrank");
}
std::optional<unsigned> getMinCTASm(const Function &F) {
return getFnAttrParsedInt(F, "nvvm.minctasm");
}
std::optional<unsigned> getMaxNReg(const Function &F) {
return getFnAttrParsedInt(F, "nvvm.maxnreg");
}
bool hasBlocksAreClusters(const Function &F) {
return F.hasFnAttribute("nvvm.blocksareclusters");
}
MaybeAlign getAlign(const CallInst &I, unsigned Index) {
// First check the alignstack metadata
if (MaybeAlign StackAlign =
I.getAttributes().getAttributes(Index).getStackAlignment())
return StackAlign;
// If that is missing, check the legacy nvvm metadata
if (MDNode *alignNode = I.getMetadata("callalign")) {
for (int i = 0, n = alignNode->getNumOperands(); i < n; i++) {
if (const ConstantInt *CI =
mdconst::dyn_extract<ConstantInt>(alignNode->getOperand(i))) {
unsigned V = CI->getZExtValue();
if ((V >> 16) == Index)
return Align(V & 0xFFFF);
if ((V >> 16) > Index)
return std::nullopt;
}
}
}
return std::nullopt;
}
Function *getMaybeBitcastedCallee(const CallBase *CB) {
return dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
}
bool shouldEmitPTXNoReturn(const Value *V, const TargetMachine &TM) {
const auto &ST =
*static_cast<const NVPTXTargetMachine &>(TM).getSubtargetImpl();
if (!ST.hasNoReturn())
return false;
assert((isa<Function>(V) || isa<CallInst>(V)) &&
"Expect either a call instruction or a function");
if (const CallInst *CallI = dyn_cast<CallInst>(V))
return CallI->doesNotReturn() &&
CallI->getFunctionType()->getReturnType()->isVoidTy();
const Function *F = cast<Function>(V);
return F->doesNotReturn() &&
F->getFunctionType()->getReturnType()->isVoidTy() &&
!isKernelFunction(*F);
}
} // namespace llvm
|