aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/MIR2Vec.cpp
blob: 00b37e7032f616d2ca78aba625f0c0821dc8a07b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
//===- MIR2Vec.cpp - Implementation of MIR2Vec ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM
// Exceptions. See the LICENSE file for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the MIR2Vec algorithm for Machine IR embeddings.
///
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/MIR2Vec.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/IR/Module.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Regex.h"

using namespace llvm;
using namespace mir2vec;

#define DEBUG_TYPE "mir2vec"

STATISTIC(MIRVocabMissCounter,
          "Number of lookups to MIR entities not present in the vocabulary");

namespace llvm {
namespace mir2vec {
cl::OptionCategory MIR2VecCategory("MIR2Vec Options");

// FIXME: Use a default vocab when not specified
static cl::opt<std::string>
    VocabFile("mir2vec-vocab-path", cl::Optional,
              cl::desc("Path to the vocabulary file for MIR2Vec"), cl::init(""),
              cl::cat(MIR2VecCategory));
cl::opt<float> OpcWeight("mir2vec-opc-weight", cl::Optional, cl::init(1.0),
                         cl::desc("Weight for machine opcode embeddings"),
                         cl::cat(MIR2VecCategory));
cl::opt<float> CommonOperandWeight(
    "mir2vec-common-operand-weight", cl::Optional, cl::init(1.0),
    cl::desc("Weight for common operand embeddings"), cl::cat(MIR2VecCategory));
cl::opt<float>
    RegOperandWeight("mir2vec-reg-operand-weight", cl::Optional, cl::init(1.0),
                     cl::desc("Weight for register operand embeddings"),
                     cl::cat(MIR2VecCategory));
cl::opt<MIR2VecKind> MIR2VecEmbeddingKind(
    "mir2vec-kind", cl::Optional,
    cl::values(clEnumValN(MIR2VecKind::Symbolic, "symbolic",
                          "Generate symbolic embeddings for MIR")),
    cl::init(MIR2VecKind::Symbolic), cl::desc("MIR2Vec embedding kind"),
    cl::cat(MIR2VecCategory));

} // namespace mir2vec
} // namespace llvm

//===----------------------------------------------------------------------===//
// Vocabulary
//===----------------------------------------------------------------------===//

MIRVocabulary::MIRVocabulary(VocabMap &&OpcodeMap, VocabMap &&CommonOperandMap,
                             VocabMap &&PhysicalRegisterMap,
                             VocabMap &&VirtualRegisterMap,
                             const TargetInstrInfo &TII,
                             const TargetRegisterInfo &TRI,
                             const MachineRegisterInfo &MRI)
    : TII(TII), TRI(TRI), MRI(MRI) {
  buildCanonicalOpcodeMapping();
  unsigned CanonicalOpcodeCount = UniqueBaseOpcodeNames.size();
  assert(CanonicalOpcodeCount > 0 &&
         "No canonical opcodes found for target - invalid vocabulary");

  buildRegisterOperandMapping();

  // Define layout of vocabulary sections
  Layout.OpcodeBase = 0;
  Layout.CommonOperandBase = CanonicalOpcodeCount;
  // We expect same classes for physical and virtual registers
  Layout.PhyRegBase = Layout.CommonOperandBase + std::size(CommonOperandNames);
  Layout.VirtRegBase = Layout.PhyRegBase + RegisterOperandNames.size();

  generateStorage(OpcodeMap, CommonOperandMap, PhysicalRegisterMap,
                  VirtualRegisterMap);
  Layout.TotalEntries = Storage.size();
}

Expected<MIRVocabulary>
MIRVocabulary::create(VocabMap &&OpcodeMap, VocabMap &&CommonOperandMap,
                      VocabMap &&PhyRegMap, VocabMap &&VirtRegMap,
                      const TargetInstrInfo &TII, const TargetRegisterInfo &TRI,
                      const MachineRegisterInfo &MRI) {
  if (OpcodeMap.empty() || CommonOperandMap.empty() || PhyRegMap.empty() ||
      VirtRegMap.empty())
    return createStringError(errc::invalid_argument,
                             "Empty vocabulary entries provided");

  MIRVocabulary Vocab(std::move(OpcodeMap), std::move(CommonOperandMap),
                      std::move(PhyRegMap), std::move(VirtRegMap), TII, TRI,
                      MRI);

  // Validate Storage after construction
  if (!Vocab.Storage.isValid())
    return createStringError(errc::invalid_argument,
                             "Failed to create valid vocabulary storage");
  Vocab.ZeroEmbedding = Embedding(Vocab.Storage.getDimension(), 0.0);
  return std::move(Vocab);
}

std::string MIRVocabulary::extractBaseOpcodeName(StringRef InstrName) {
  // Extract base instruction name using regex to capture letters and
  // underscores Examples: "ADD32rr" -> "ADD", "ARITH_FENCE" -> "ARITH_FENCE"
  //
  // TODO: Consider more sophisticated extraction:
  // - Handle complex prefixes like "AVX1_SETALLONES" correctly (Currently, it
  // would naively map to "AVX")
  // - Extract width suffixes (8,16,32,64) as separate features
  // - Capture addressing mode suffixes (r,i,m,ri,etc.) for better analysis
  // (Currently, instances like "MOV32mi" map to "MOV", but "ADDPDrr" would map
  // to "ADDPDrr")

  assert(!InstrName.empty() && "Instruction name should not be empty");

  // Use regex to extract initial sequence of letters and underscores
  static const Regex BaseOpcodeRegex("([a-zA-Z_]+)");
  SmallVector<StringRef, 2> Matches;

  if (BaseOpcodeRegex.match(InstrName, &Matches) && Matches.size() > 1) {
    StringRef Match = Matches[1];
    // Trim trailing underscores
    while (!Match.empty() && Match.back() == '_')
      Match = Match.drop_back();
    return Match.str();
  }

  // Fallback to original name if no pattern matches
  return InstrName.str();
}

unsigned MIRVocabulary::getCanonicalIndexForBaseName(StringRef BaseName) const {
  assert(!UniqueBaseOpcodeNames.empty() && "Canonical mapping not built");
  auto It = std::find(UniqueBaseOpcodeNames.begin(),
                      UniqueBaseOpcodeNames.end(), BaseName.str());
  assert(It != UniqueBaseOpcodeNames.end() &&
         "Base name not found in unique opcodes");
  return std::distance(UniqueBaseOpcodeNames.begin(), It);
}

unsigned MIRVocabulary::getCanonicalOpcodeIndex(unsigned Opcode) const {
  auto BaseOpcode = extractBaseOpcodeName(TII.getName(Opcode));
  return getCanonicalIndexForBaseName(BaseOpcode);
}

unsigned
MIRVocabulary::getCanonicalIndexForOperandName(StringRef OperandName) const {
  auto It = std::find(std::begin(CommonOperandNames),
                      std::end(CommonOperandNames), OperandName);
  assert(It != std::end(CommonOperandNames) &&
         "Operand name not found in common operands");
  return Layout.CommonOperandBase +
         std::distance(std::begin(CommonOperandNames), It);
}

unsigned
MIRVocabulary::getCanonicalIndexForRegisterClass(StringRef RegName,
                                                 bool IsPhysical) const {
  auto It = std::find(RegisterOperandNames.begin(), RegisterOperandNames.end(),
                      RegName);
  assert(It != RegisterOperandNames.end() &&
         "Register name not found in register operands");
  unsigned LocalIndex = std::distance(RegisterOperandNames.begin(), It);
  return (IsPhysical ? Layout.PhyRegBase : Layout.VirtRegBase) + LocalIndex;
}

std::string MIRVocabulary::getStringKey(unsigned Pos) const {
  assert(Pos < Layout.TotalEntries && "Position out of bounds in vocabulary");

  // Handle opcodes section
  if (Pos < Layout.CommonOperandBase) {
    // Convert canonical index back to base opcode name
    auto It = UniqueBaseOpcodeNames.begin();
    std::advance(It, Pos);
    assert(It != UniqueBaseOpcodeNames.end() &&
           "Canonical index out of bounds in opcode section");
    return *It;
  }

  auto getLocalIndex = [](unsigned Pos, size_t BaseOffset, size_t Bound,
                          const char *Msg) {
    unsigned LocalIndex = Pos - BaseOffset;
    assert(LocalIndex < Bound && Msg);
    return LocalIndex;
  };

  // Handle common operands section
  if (Pos < Layout.PhyRegBase) {
    unsigned LocalIndex = getLocalIndex(
        Pos, Layout.CommonOperandBase, std::size(CommonOperandNames),
        "Local index out of bounds in common operands");
    return CommonOperandNames[LocalIndex].str();
  }

  // Handle physical registers section
  if (Pos < Layout.VirtRegBase) {
    unsigned LocalIndex =
        getLocalIndex(Pos, Layout.PhyRegBase, RegisterOperandNames.size(),
                      "Local index out of bounds in physical registers");
    return "PhyReg_" + RegisterOperandNames[LocalIndex];
  }

  // Handle virtual registers section
  unsigned LocalIndex =
      getLocalIndex(Pos, Layout.VirtRegBase, RegisterOperandNames.size(),
                    "Local index out of bounds in virtual registers");
  return "VirtReg_" + RegisterOperandNames[LocalIndex];
}

void MIRVocabulary::generateStorage(const VocabMap &OpcodeMap,
                                    const VocabMap &CommonOperandsMap,
                                    const VocabMap &PhyRegMap,
                                    const VocabMap &VirtRegMap) {

  // Helper for handling missing entities in the vocabulary.
  // Currently, we use a zero vector. In the future, we will throw an error to
  // ensure that *all* known entities are present in the vocabulary.
  auto handleMissingEntity = [](StringRef Key) {
    LLVM_DEBUG(errs() << "MIR2Vec: Missing vocabulary entry for " << Key
                      << "; using zero vector. This will result in an error "
                         "in the future.\n");
    ++MIRVocabMissCounter;
  };

  // Initialize opcode embeddings section
  unsigned EmbeddingDim = OpcodeMap.begin()->second.size();
  std::vector<Embedding> OpcodeEmbeddings(Layout.CommonOperandBase,
                                          Embedding(EmbeddingDim));

  // Populate opcode embeddings using canonical mapping
  for (auto COpcodeName : UniqueBaseOpcodeNames) {
    if (auto It = OpcodeMap.find(COpcodeName); It != OpcodeMap.end()) {
      auto COpcodeIndex = getCanonicalIndexForBaseName(COpcodeName);
      assert(COpcodeIndex < Layout.CommonOperandBase &&
             "Canonical index out of bounds");
      OpcodeEmbeddings[COpcodeIndex] = It->second;
    } else {
      handleMissingEntity(COpcodeName);
    }
  }

  // Initialize common operand embeddings section
  std::vector<Embedding> CommonOperandEmbeddings(std::size(CommonOperandNames),
                                                 Embedding(EmbeddingDim));
  unsigned OperandIndex = 0;
  for (const auto &CommonOperandName : CommonOperandNames) {
    if (auto It = CommonOperandsMap.find(CommonOperandName.str());
        It != CommonOperandsMap.end()) {
      CommonOperandEmbeddings[OperandIndex] = It->second;
    } else {
      handleMissingEntity(CommonOperandName);
    }
    ++OperandIndex;
  }

  // Helper lambda for creating register operand embeddings
  auto createRegisterEmbeddings = [&](const VocabMap &RegMap) {
    std::vector<Embedding> RegEmbeddings(TRI.getNumRegClasses(),
                                         Embedding(EmbeddingDim));
    unsigned RegOperandIndex = 0;
    for (const auto &RegOperandName : RegisterOperandNames) {
      if (auto It = RegMap.find(RegOperandName); It != RegMap.end())
        RegEmbeddings[RegOperandIndex] = It->second;
      else
        handleMissingEntity(RegOperandName);
      ++RegOperandIndex;
    }
    return RegEmbeddings;
  };

  // Initialize register operand embeddings sections
  std::vector<Embedding> PhyRegEmbeddings = createRegisterEmbeddings(PhyRegMap);
  std::vector<Embedding> VirtRegEmbeddings =
      createRegisterEmbeddings(VirtRegMap);

  // Scale the vocabulary sections based on the provided weights
  auto scaleVocabSection = [](std::vector<Embedding> &Embeddings,
                              double Weight) {
    for (auto &Embedding : Embeddings)
      Embedding *= Weight;
  };
  scaleVocabSection(OpcodeEmbeddings, OpcWeight);
  scaleVocabSection(CommonOperandEmbeddings, CommonOperandWeight);
  scaleVocabSection(PhyRegEmbeddings, RegOperandWeight);
  scaleVocabSection(VirtRegEmbeddings, RegOperandWeight);

  std::vector<std::vector<Embedding>> Sections(
      static_cast<unsigned>(Section::MaxSections));
  Sections[static_cast<unsigned>(Section::Opcodes)] =
      std::move(OpcodeEmbeddings);
  Sections[static_cast<unsigned>(Section::CommonOperands)] =
      std::move(CommonOperandEmbeddings);
  Sections[static_cast<unsigned>(Section::PhyRegisters)] =
      std::move(PhyRegEmbeddings);
  Sections[static_cast<unsigned>(Section::VirtRegisters)] =
      std::move(VirtRegEmbeddings);

  Storage = ir2vec::VocabStorage(std::move(Sections));
}

void MIRVocabulary::buildCanonicalOpcodeMapping() {
  // Check if already built
  if (!UniqueBaseOpcodeNames.empty())
    return;

  // Build mapping from opcodes to canonical base opcode indices
  for (unsigned Opcode = 0; Opcode < TII.getNumOpcodes(); ++Opcode) {
    std::string BaseOpcode = extractBaseOpcodeName(TII.getName(Opcode));
    UniqueBaseOpcodeNames.insert(BaseOpcode);
  }

  LLVM_DEBUG(dbgs() << "MIR2Vec: Built canonical mapping for target with "
                    << UniqueBaseOpcodeNames.size()
                    << " unique base opcodes\n");
}

void MIRVocabulary::buildRegisterOperandMapping() {
  // Check if already built
  if (!RegisterOperandNames.empty())
    return;

  for (unsigned RC = 0; RC < TRI.getNumRegClasses(); ++RC) {
    const TargetRegisterClass *RegClass = TRI.getRegClass(RC);
    if (!RegClass)
      continue;

    // Get the register class name
    StringRef ClassName = TRI.getRegClassName(RegClass);
    RegisterOperandNames.push_back(ClassName.str());
  }
}

unsigned MIRVocabulary::getCommonOperandIndex(
    MachineOperand::MachineOperandType OperandType) const {
  assert(OperandType != MachineOperand::MO_Register &&
         "Expected non-register operand type");
  assert(OperandType > MachineOperand::MO_Register &&
         OperandType < MachineOperand::MO_Last && "Operand type out of bounds");
  return static_cast<unsigned>(OperandType) - 1;
}

unsigned MIRVocabulary::getRegisterOperandIndex(Register Reg) const {
  assert(!RegisterOperandNames.empty() && "Register operand mapping not built");
  assert(Reg.isValid() && "Invalid register; not expected here");
  assert((Reg.isPhysical() || Reg.isVirtual()) &&
         "Expected a physical or virtual register");

  const TargetRegisterClass *RegClass = nullptr;

  // For physical registers, use TRI to get minimal register class as a
  // physical register can belong to multiple classes. For virtual
  // registers, use MRI to uniquely identify the assigned register class.
  if (Reg.isPhysical())
    RegClass = TRI.getMinimalPhysRegClass(Reg);
  else
    RegClass = MRI.getRegClass(Reg);

  if (RegClass)
    return RegClass->getID();
  // Fallback for registers without a class (shouldn't happen)
  llvm_unreachable("Register operand without a valid register class");
  return 0;
}

Expected<MIRVocabulary> MIRVocabulary::createDummyVocabForTest(
    const TargetInstrInfo &TII, const TargetRegisterInfo &TRI,
    const MachineRegisterInfo &MRI, unsigned Dim) {
  assert(Dim > 0 && "Dimension must be greater than zero");

  float DummyVal = 0.1f;

  VocabMap DummyOpcMap, DummyOperandMap, DummyPhyRegMap, DummyVirtRegMap;

  // Process opcodes directly without creating temporary vocabulary
  for (unsigned Opcode = 0; Opcode < TII.getNumOpcodes(); ++Opcode) {
    std::string BaseOpcode = extractBaseOpcodeName(TII.getName(Opcode));
    if (DummyOpcMap.count(BaseOpcode) == 0) { // Only add if not already present
      DummyOpcMap[BaseOpcode] = Embedding(Dim, DummyVal);
      DummyVal += 0.1f;
    }
  }

  // Add common operands
  for (const auto &CommonOperandName : CommonOperandNames) {
    DummyOperandMap[CommonOperandName.str()] = Embedding(Dim, DummyVal);
    DummyVal += 0.1f;
  }

  // Process register classes directly
  for (unsigned RC = 0; RC < TRI.getNumRegClasses(); ++RC) {
    const TargetRegisterClass *RegClass = TRI.getRegClass(RC);
    if (!RegClass)
      continue;

    std::string ClassName = TRI.getRegClassName(RegClass);
    DummyPhyRegMap[ClassName] = Embedding(Dim, DummyVal);
    DummyVirtRegMap[ClassName] = Embedding(Dim, DummyVal);
    DummyVal += 0.1f;
  }

  // Create vocabulary directly without temporary instance
  return MIRVocabulary::create(
      std::move(DummyOpcMap), std::move(DummyOperandMap),
      std::move(DummyPhyRegMap), std::move(DummyVirtRegMap), TII, TRI, MRI);
}

//===----------------------------------------------------------------------===//
// MIR2VecVocabProvider and MIR2VecVocabLegacyAnalysis
//===----------------------------------------------------------------------===//

Expected<mir2vec::MIRVocabulary>
MIR2VecVocabProvider::getVocabulary(const Module &M) {
  VocabMap OpcVocab, CommonOperandVocab, PhyRegVocabMap, VirtRegVocabMap;

  if (Error Err = readVocabulary(OpcVocab, CommonOperandVocab, PhyRegVocabMap,
                                 VirtRegVocabMap))
    return std::move(Err);

  for (const auto &F : M) {
    if (F.isDeclaration())
      continue;

    if (auto *MF = MMI.getMachineFunction(F)) {
      auto &Subtarget = MF->getSubtarget();
      if (const auto *TII = Subtarget.getInstrInfo())
        if (const auto *TRI = Subtarget.getRegisterInfo())
          return mir2vec::MIRVocabulary::create(
              std::move(OpcVocab), std::move(CommonOperandVocab),
              std::move(PhyRegVocabMap), std::move(VirtRegVocabMap), *TII, *TRI,
              MF->getRegInfo());
    }
  }
  return createStringError(errc::invalid_argument,
                           "No machine functions found in module");
}

Error MIR2VecVocabProvider::readVocabulary(VocabMap &OpcodeVocab,
                                           VocabMap &CommonOperandVocab,
                                           VocabMap &PhyRegVocabMap,
                                           VocabMap &VirtRegVocabMap) {
  if (VocabFile.empty())
    return createStringError(
        errc::invalid_argument,
        "MIR2Vec vocabulary file path not specified; set it "
        "using --mir2vec-vocab-path");

  auto BufOrError = MemoryBuffer::getFileOrSTDIN(VocabFile, /*IsText=*/true);
  if (!BufOrError)
    return createFileError(VocabFile, BufOrError.getError());

  auto Content = BufOrError.get()->getBuffer();

  Expected<json::Value> ParsedVocabValue = json::parse(Content);
  if (!ParsedVocabValue)
    return ParsedVocabValue.takeError();

  unsigned OpcodeDim = 0, CommonOperandDim = 0, PhyRegOperandDim = 0,
           VirtRegOperandDim = 0;
  if (auto Err = ir2vec::VocabStorage::parseVocabSection(
          "Opcodes", *ParsedVocabValue, OpcodeVocab, OpcodeDim))
    return Err;

  if (auto Err = ir2vec::VocabStorage::parseVocabSection(
          "CommonOperands", *ParsedVocabValue, CommonOperandVocab,
          CommonOperandDim))
    return Err;

  if (auto Err = ir2vec::VocabStorage::parseVocabSection(
          "PhysicalRegisters", *ParsedVocabValue, PhyRegVocabMap,
          PhyRegOperandDim))
    return Err;

  if (auto Err = ir2vec::VocabStorage::parseVocabSection(
          "VirtualRegisters", *ParsedVocabValue, VirtRegVocabMap,
          VirtRegOperandDim))
    return Err;

  // All sections must have the same embedding dimension
  if (!(OpcodeDim == CommonOperandDim && CommonOperandDim == PhyRegOperandDim &&
        PhyRegOperandDim == VirtRegOperandDim)) {
    return createStringError(
        errc::illegal_byte_sequence,
        "MIR2Vec vocabulary sections have different dimensions");
  }

  return Error::success();
}

char MIR2VecVocabLegacyAnalysis::ID = 0;
INITIALIZE_PASS_BEGIN(MIR2VecVocabLegacyAnalysis, "mir2vec-vocab-analysis",
                      "MIR2Vec Vocabulary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineModuleInfoWrapperPass)
INITIALIZE_PASS_END(MIR2VecVocabLegacyAnalysis, "mir2vec-vocab-analysis",
                    "MIR2Vec Vocabulary Analysis", false, true)

StringRef MIR2VecVocabLegacyAnalysis::getPassName() const {
  return "MIR2Vec Vocabulary Analysis";
}

//===----------------------------------------------------------------------===//
// MIREmbedder and its subclasses
//===----------------------------------------------------------------------===//

std::unique_ptr<MIREmbedder> MIREmbedder::create(MIR2VecKind Mode,
                                                 const MachineFunction &MF,
                                                 const MIRVocabulary &Vocab) {
  switch (Mode) {
  case MIR2VecKind::Symbolic:
    return std::make_unique<SymbolicMIREmbedder>(MF, Vocab);
  }
  return nullptr;
}

Embedding MIREmbedder::computeEmbeddings(const MachineBasicBlock &MBB) const {
  Embedding MBBVector(Dimension, 0);

  // Get instruction info for opcode name resolution
  const auto &Subtarget = MF.getSubtarget();
  const auto *TII = Subtarget.getInstrInfo();
  if (!TII) {
    MF.getFunction().getContext().emitError(
        "MIR2Vec: No TargetInstrInfo available; cannot compute embeddings");
    return MBBVector;
  }

  // Process each machine instruction in the basic block
  for (const auto &MI : MBB) {
    // Skip debug instructions and other metadata
    if (MI.isDebugInstr())
      continue;
    MBBVector += computeEmbeddings(MI);
  }

  return MBBVector;
}

Embedding MIREmbedder::computeEmbeddings() const {
  Embedding MFuncVector(Dimension, 0);

  // Consider all reachable machine basic blocks in the function
  for (const auto *MBB : depth_first(&MF))
    MFuncVector += computeEmbeddings(*MBB);
  return MFuncVector;
}

SymbolicMIREmbedder::SymbolicMIREmbedder(const MachineFunction &MF,
                                         const MIRVocabulary &Vocab)
    : MIREmbedder(MF, Vocab) {}

std::unique_ptr<SymbolicMIREmbedder>
SymbolicMIREmbedder::create(const MachineFunction &MF,
                            const MIRVocabulary &Vocab) {
  return std::make_unique<SymbolicMIREmbedder>(MF, Vocab);
}

Embedding SymbolicMIREmbedder::computeEmbeddings(const MachineInstr &MI) const {
  // Skip debug instructions and other metadata
  if (MI.isDebugInstr())
    return Embedding(Dimension, 0);

  // Opcode embedding
  Embedding InstructionEmbedding = Vocab[MI.getOpcode()];

  // Add operand contributions
  for (const MachineOperand &MO : MI.operands())
    InstructionEmbedding += Vocab[MO];

  return InstructionEmbedding;
}

//===----------------------------------------------------------------------===//
// Printer Passes
//===----------------------------------------------------------------------===//

char MIR2VecVocabPrinterLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(MIR2VecVocabPrinterLegacyPass, "print-mir2vec-vocab",
                      "MIR2Vec Vocabulary Printer Pass", false, true)
INITIALIZE_PASS_DEPENDENCY(MIR2VecVocabLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(MachineModuleInfoWrapperPass)
INITIALIZE_PASS_END(MIR2VecVocabPrinterLegacyPass, "print-mir2vec-vocab",
                    "MIR2Vec Vocabulary Printer Pass", false, true)

bool MIR2VecVocabPrinterLegacyPass::runOnMachineFunction(MachineFunction &MF) {
  return false;
}

bool MIR2VecVocabPrinterLegacyPass::doFinalization(Module &M) {
  auto &Analysis = getAnalysis<MIR2VecVocabLegacyAnalysis>();
  auto MIR2VecVocabOrErr = Analysis.getMIR2VecVocabulary(M);

  if (!MIR2VecVocabOrErr) {
    OS << "MIR2Vec Vocabulary Printer: Failed to get vocabulary - "
       << toString(MIR2VecVocabOrErr.takeError()) << "\n";
    return false;
  }

  auto &MIR2VecVocab = *MIR2VecVocabOrErr;
  unsigned Pos = 0;
  for (const auto &Entry : MIR2VecVocab) {
    OS << "Key: " << MIR2VecVocab.getStringKey(Pos++) << ": ";
    Entry.print(OS);
  }

  return false;
}

MachineFunctionPass *
llvm::createMIR2VecVocabPrinterLegacyPass(raw_ostream &OS) {
  return new MIR2VecVocabPrinterLegacyPass(OS);
}

char MIR2VecPrinterLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(MIR2VecPrinterLegacyPass, "print-mir2vec",
                      "MIR2Vec Embedder Printer Pass", false, true)
INITIALIZE_PASS_DEPENDENCY(MIR2VecVocabLegacyAnalysis)
INITIALIZE_PASS_DEPENDENCY(MachineModuleInfoWrapperPass)
INITIALIZE_PASS_END(MIR2VecPrinterLegacyPass, "print-mir2vec",
                    "MIR2Vec Embedder Printer Pass", false, true)

bool MIR2VecPrinterLegacyPass::runOnMachineFunction(MachineFunction &MF) {
  auto &Analysis = getAnalysis<MIR2VecVocabLegacyAnalysis>();
  auto VocabOrErr =
      Analysis.getMIR2VecVocabulary(*MF.getFunction().getParent());
  assert(VocabOrErr && "Failed to get MIR2Vec vocabulary");
  auto &MIRVocab = *VocabOrErr;

  auto Emb = mir2vec::MIREmbedder::create(MIR2VecEmbeddingKind, MF, MIRVocab);
  if (!Emb) {
    OS << "Error creating MIR2Vec embeddings for function " << MF.getName()
       << "\n";
    return false;
  }

  OS << "MIR2Vec embeddings for machine function " << MF.getName() << ":\n";
  OS << "Machine Function vector: ";
  Emb->getMFunctionVector().print(OS);

  OS << "Machine basic block vectors:\n";
  for (const MachineBasicBlock &MBB : MF) {
    OS << "Machine basic block: " << MBB.getFullName() << ":\n";
    Emb->getMBBVector(MBB).print(OS);
  }

  OS << "Machine instruction vectors:\n";
  for (const MachineBasicBlock &MBB : MF) {
    for (const MachineInstr &MI : MBB) {
      // Skip debug instructions as they are not
      // embedded
      if (MI.isDebugInstr())
        continue;

      OS << "Machine instruction: ";
      MI.print(OS);
      Emb->getMInstVector(MI).print(OS);
    }
  }

  return false;
}

MachineFunctionPass *llvm::createMIR2VecPrinterLegacyPass(raw_ostream &OS) {
  return new MIR2VecPrinterLegacyPass(OS);
}