1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
//===- llvm/CodeGen/BasicBlockMatchingAndInference.cpp ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// In Propeller's profile, we have already read the hash values of basic blocks,
// as well as the weights of basic blocks and edges in the CFG. In this file,
// we first match the basic blocks in the profile with those in the current
// MachineFunction using the basic block hash, thereby obtaining the weights of
// some basic blocks and edges. Subsequently, we infer the weights of all basic
// blocks using an inference algorithm.
//
// TODO: Integrate part of the code in this file with BOLT's implementation into
// the LLVM infrastructure, enabling both BOLT and Propeller to reuse it.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/BasicBlockMatchingAndInference.h"
#include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
#include "llvm/CodeGen/MachineBlockHashInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/InitializePasses.h"
#include <llvm/Support/CommandLine.h>
#include <unordered_map>
using namespace llvm;
static cl::opt<float>
PropellerInferThreshold("propeller-infer-threshold",
cl::desc("Threshold for infer stale profile"),
cl::init(0.6), cl::Optional);
/// The object is used to identify and match basic blocks given their hashes.
class StaleMatcher {
public:
/// Initialize stale matcher.
void init(const std::vector<MachineBasicBlock *> &Blocks,
const std::vector<BlendedBlockHash> &Hashes) {
assert(Blocks.size() == Hashes.size() &&
"incorrect matcher initialization");
for (size_t I = 0; I < Blocks.size(); I++) {
MachineBasicBlock *Block = Blocks[I];
uint16_t OpHash = Hashes[I].getOpcodeHash();
OpHashToBlocks[OpHash].push_back(std::make_pair(Hashes[I], Block));
}
}
/// Find the most similar block for a given hash.
MachineBasicBlock *matchBlock(BlendedBlockHash BlendedHash) const {
auto BlockIt = OpHashToBlocks.find(BlendedHash.getOpcodeHash());
if (BlockIt == OpHashToBlocks.end()) {
return nullptr;
}
MachineBasicBlock *BestBlock = nullptr;
uint64_t BestDist = std::numeric_limits<uint64_t>::max();
for (auto It : BlockIt->second) {
MachineBasicBlock *Block = It.second;
BlendedBlockHash Hash = It.first;
uint64_t Dist = Hash.distance(BlendedHash);
if (BestBlock == nullptr || Dist < BestDist) {
BestDist = Dist;
BestBlock = Block;
}
}
return BestBlock;
}
private:
using HashBlockPairType = std::pair<BlendedBlockHash, MachineBasicBlock *>;
std::unordered_map<uint16_t, std::vector<HashBlockPairType>> OpHashToBlocks;
};
INITIALIZE_PASS_BEGIN(BasicBlockMatchingAndInference,
"machine-block-match-infer",
"Machine Block Matching and Inference Analysis", true,
true)
INITIALIZE_PASS_DEPENDENCY(MachineBlockHashInfo)
INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
INITIALIZE_PASS_END(BasicBlockMatchingAndInference, "machine-block-match-infer",
"Machine Block Matching and Inference Analysis", true, true)
char BasicBlockMatchingAndInference::ID = 0;
BasicBlockMatchingAndInference::BasicBlockMatchingAndInference()
: MachineFunctionPass(ID) {
initializeBasicBlockMatchingAndInferencePass(
*PassRegistry::getPassRegistry());
}
void BasicBlockMatchingAndInference::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineBlockHashInfo>();
AU.addRequired<BasicBlockSectionsProfileReaderWrapperPass>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
std::optional<BasicBlockMatchingAndInference::WeightInfo>
BasicBlockMatchingAndInference::getWeightInfo(StringRef FuncName) const {
auto It = ProgramWeightInfo.find(FuncName);
if (It == ProgramWeightInfo.end()) {
return std::nullopt;
}
return It->second;
}
BasicBlockMatchingAndInference::WeightInfo
BasicBlockMatchingAndInference::initWeightInfoByMatching(MachineFunction &MF) {
std::vector<MachineBasicBlock *> Blocks;
std::vector<BlendedBlockHash> Hashes;
auto BSPR = &getAnalysis<BasicBlockSectionsProfileReaderWrapperPass>();
auto MBHI = &getAnalysis<MachineBlockHashInfo>();
for (auto &Block : MF) {
Blocks.push_back(&Block);
Hashes.push_back(BlendedBlockHash(MBHI->getMBBHash(Block)));
}
StaleMatcher Matcher;
Matcher.init(Blocks, Hashes);
BasicBlockMatchingAndInference::WeightInfo MatchWeight;
auto [IsValid, PathAndClusterInfo] =
BSPR->getFunctionPathAndClusterInfo(MF.getName());
if (!IsValid)
return MatchWeight;
for (auto &BlockCount : PathAndClusterInfo.NodeCounts) {
if (PathAndClusterInfo.BBHashes.count(BlockCount.first.BaseID)) {
auto Hash = PathAndClusterInfo.BBHashes[BlockCount.first.BaseID];
MachineBasicBlock *Block = Matcher.matchBlock(BlendedBlockHash(Hash));
// When a basic block has clone copies, sum their counts.
if (Block != nullptr)
MatchWeight.BlockWeights[Block] += BlockCount.second;
}
}
for (auto &PredItem : PathAndClusterInfo.EdgeCounts) {
auto PredID = PredItem.first.BaseID;
if (!PathAndClusterInfo.BBHashes.count(PredID))
continue;
auto PredHash = PathAndClusterInfo.BBHashes[PredID];
MachineBasicBlock *PredBlock =
Matcher.matchBlock(BlendedBlockHash(PredHash));
if (PredBlock == nullptr)
continue;
for (auto &SuccItem : PredItem.second) {
auto SuccID = SuccItem.first.BaseID;
auto EdgeWeight = SuccItem.second;
if (PathAndClusterInfo.BBHashes.count(SuccID)) {
auto SuccHash = PathAndClusterInfo.BBHashes[SuccID];
MachineBasicBlock *SuccBlock =
Matcher.matchBlock(BlendedBlockHash(SuccHash));
// When an edge has clone copies, sum their counts.
if (SuccBlock != nullptr)
MatchWeight.EdgeWeights[std::make_pair(PredBlock, SuccBlock)] +=
EdgeWeight;
}
}
}
return MatchWeight;
}
void BasicBlockMatchingAndInference::generateWeightInfoByInference(
MachineFunction &MF,
BasicBlockMatchingAndInference::WeightInfo &MatchWeight) {
BlockEdgeMap Successors;
for (auto &Block : MF) {
for (auto *Succ : Block.successors())
Successors[&Block].push_back(Succ);
}
SampleProfileInference<MachineFunction> SPI(
MF, Successors, MatchWeight.BlockWeights, MatchWeight.EdgeWeights);
BlockWeightMap BlockWeights;
EdgeWeightMap EdgeWeights;
SPI.apply(BlockWeights, EdgeWeights);
ProgramWeightInfo.try_emplace(
MF.getName(), BasicBlockMatchingAndInference::WeightInfo{
std::move(BlockWeights), std::move(EdgeWeights)});
}
bool BasicBlockMatchingAndInference::runOnMachineFunction(MachineFunction &MF) {
if (MF.empty())
return false;
auto MatchWeight = initWeightInfoByMatching(MF);
// If the ratio of the number of MBBs in matching to the total number of MBBs
// in the function is less than the threshold value, the processing should be
// abandoned.
if (static_cast<float>(MatchWeight.BlockWeights.size()) / MF.size() <
PropellerInferThreshold) {
return false;
}
generateWeightInfoByInference(MF, MatchWeight);
return false;
}
MachineFunctionPass *llvm::createBasicBlockMatchingAndInferencePass() {
return new BasicBlockMatchingAndInference();
}
|