aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Analysis/models/interactive_host.py
blob: 79c74ac3cd8814a13d0992ff5170bae5b27ed1dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
"""Utility for testing InteractiveModelRunner.

Use it from pass-specific tests by providing a main .py which calls this library's
`run_interactive` with an appropriate callback to provide advice.

From .ll tests, just call the above-mentioned main as a prefix to the opt/llc
invocation (with the appropriate flags enabling the interactive mode)

Examples:
test/Transforms/Inline/ML/interactive-mode.ll
test/CodeGen/MLRegalloc/interactive-mode.ll
"""

import ctypes
import log_reader
import io
import math
import os
import subprocess
from typing import Callable, List, Union


def send(f: io.BufferedWriter, value: Union[int, float],
         spec: log_reader.TensorSpec):
  """Send the `value` - currently just a scalar - formatted as per `spec`."""

  # just int64 for now
  assert (spec.element_type == ctypes.c_int64)
  to_send = ctypes.c_int64(int(value))
  assert f.write(bytes(to_send)) == ctypes.sizeof(
      spec.element_type) * math.prod(spec.shape)
  f.flush()


def run_interactive(temp_rootname: str,
                    make_response: Callable[[List[log_reader.TensorValue]],
                                            Union[int, float]],
                    process_and_args: List[str]):
  """Host the compiler.
  Args:
    temp_rootname: the base file name from which to construct the 2 pipes for
    communicating with the compiler.
    make_response: a function that, given the current tensor values, provides a
    response.
    process_and_args: the full commandline for the compiler. It it assumed it
    contains a flag poiting to `temp_rootname` so that the InteractiveModeRunner
    would attempt communication on the same pair as this function opens.

  This function sets up the communication with the compiler - via 2 files named
  `temp_rootname`.in and `temp_rootname`.out - prints out the received features,
  and sends back to the compiler an advice (which it gets from `make_response`).
  It's used for testing, and also to showcase how to set up communication in an
  interactive ML ("gym") environment.
  """
  to_compiler = temp_rootname + ".in"
  from_compiler = temp_rootname + ".out"
  try:
    os.mkfifo(to_compiler, 0o666)
    os.mkfifo(from_compiler, 0o666)
    compiler_proc = subprocess.Popen(
        process_and_args, stderr=subprocess.PIPE, stdout=subprocess.DEVNULL)
    with io.BufferedWriter(io.FileIO(to_compiler, 'wb')) as tc:
      with io.BufferedReader(io.FileIO(from_compiler, 'rb')) as fc:
        tensor_specs, _, advice_spec = log_reader.read_header(fc)
        context = None
        while compiler_proc.poll() is None:
          next_event = fc.readline()
          if not next_event:
            break
          last_context, observation_id, features, _ = log_reader.read_one_observation(
              context, next_event, fc, tensor_specs, None)
          if last_context != context:
            print(f'context: {last_context}')
          context = last_context
          print(f'observation: {observation_id}')
          tensor_values = []
          for fv in features:
            log_reader.pretty_print_tensor_value(fv)
            tensor_values.append(fv)
          send(tc, make_response(tensor_values), advice_spec)
    _, err = compiler_proc.communicate()
    print(err.decode('utf-8'))
    compiler_proc.wait()

  finally:
    os.unlink(to_compiler)
    os.unlink(from_compiler)