1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
|
//===- LTO.cpp ------------------------------------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "LTO.h"
#include "Config.h"
#include "Driver.h"
#include "Error.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/Analysis/LoopPassManager.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/CodeGen/ParallelCG.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LTO/legacy/UpdateCompilerUsed.h"
#include "llvm/Linker/IRMover.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/StringSaver.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
using namespace llvm::object;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;
// This is for use when debugging LTO.
static void saveBuffer(StringRef Buffer, const Twine &Path) {
std::error_code EC;
raw_fd_ostream OS(Path.str(), EC, sys::fs::OpenFlags::F_None);
if (EC)
error(EC, "cannot create " + Path);
OS << Buffer;
}
// This is for use when debugging LTO.
static void saveBCFile(Module &M, const Twine &Path) {
std::error_code EC;
raw_fd_ostream OS(Path.str(), EC, sys::fs::OpenFlags::F_None);
if (EC)
error(EC, "cannot create " + Path);
WriteBitcodeToFile(&M, OS, /* ShouldPreserveUseListOrder */ true);
}
static void runNewCustomLtoPasses(Module &M, TargetMachine &TM) {
PassBuilder PB(&TM);
AAManager AA;
// Parse a custom AA pipeline if asked to.
if (!PB.parseAAPipeline(AA, Config->LtoAAPipeline)) {
error("Unable to parse AA pipeline description: " + Config->LtoAAPipeline);
return;
}
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
// Register the AA manager first so that our version is the one used.
FAM.registerPass([&] { return std::move(AA); });
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM;
if (!Config->DisableVerify)
MPM.addPass(VerifierPass());
// Now, add all the passes we've been requested to.
if (!PB.parsePassPipeline(MPM, Config->LtoNewPmPasses)) {
error("unable to parse pass pipeline description: " +
Config->LtoNewPmPasses);
return;
}
if (!Config->DisableVerify)
MPM.addPass(VerifierPass());
MPM.run(M, MAM);
}
static void runOldLtoPasses(Module &M, TargetMachine &TM) {
// Note that the gold plugin has a similar piece of code, so
// it is probably better to move this code to a common place.
legacy::PassManager LtoPasses;
LtoPasses.add(createTargetTransformInfoWrapperPass(TM.getTargetIRAnalysis()));
PassManagerBuilder PMB;
PMB.LibraryInfo = new TargetLibraryInfoImpl(Triple(TM.getTargetTriple()));
PMB.Inliner = createFunctionInliningPass();
PMB.VerifyInput = PMB.VerifyOutput = !Config->DisableVerify;
PMB.LoopVectorize = true;
PMB.SLPVectorize = true;
PMB.OptLevel = Config->LtoO;
PMB.populateLTOPassManager(LtoPasses);
LtoPasses.run(M);
}
static void runLTOPasses(Module &M, TargetMachine &TM) {
if (!Config->LtoNewPmPasses.empty()) {
// The user explicitly asked for a set of passes to be run.
// This needs the new PM to work as there's no clean way to
// pass a set of passes to run in the legacy PM.
runNewCustomLtoPasses(M, TM);
if (HasError)
return;
} else {
// Run the 'default' set of LTO passes. This code still uses
// the legacy PM as the new one is not the default.
runOldLtoPasses(M, TM);
}
if (Config->SaveTemps)
saveBCFile(M, Config->OutputFile + ".lto.opt.bc");
}
static bool shouldInternalize(const SmallPtrSet<GlobalValue *, 8> &Used,
Symbol *S, GlobalValue *GV) {
if (S->IsUsedInRegularObj || Used.count(GV))
return false;
return !S->includeInDynsym();
}
BitcodeCompiler::BitcodeCompiler()
: Combined(new Module("ld-temp.o", Driver->Context)) {}
static void undefine(Symbol *S) {
replaceBody<Undefined>(S, S->body()->getName(), STV_DEFAULT, S->body()->Type,
nullptr);
}
static void handleUndefinedAsmRefs(const BasicSymbolRef &Sym, GlobalValue *GV,
StringSet<> &AsmUndefinedRefs) {
// GV associated => not an assembly symbol, bail out.
if (GV)
return;
// This is an undefined reference to a symbol in asm. We put that in
// compiler.used, so that we can preserve it from being dropped from
// the output, without necessarily preventing its internalization.
SmallString<64> Name;
raw_svector_ostream OS(Name);
Sym.printName(OS);
AsmUndefinedRefs.insert(Name.str());
}
void BitcodeCompiler::add(BitcodeFile &F) {
std::unique_ptr<IRObjectFile> Obj = std::move(F.Obj);
std::vector<GlobalValue *> Keep;
unsigned BodyIndex = 0;
ArrayRef<Symbol *> Syms = F.getSymbols();
Module &M = Obj->getModule();
if (M.getDataLayoutStr().empty())
fatal("invalid bitcode file: " + F.getName() + " has no datalayout");
// Discard non-compatible debug infos if necessary.
M.materializeMetadata();
UpgradeDebugInfo(M);
// If a symbol appears in @llvm.used, the linker is required
// to treat the symbol as there is a reference to the symbol
// that it cannot see. Therefore, we can't internalize.
SmallPtrSet<GlobalValue *, 8> Used;
collectUsedGlobalVariables(M, Used, /* CompilerUsed */ false);
for (const BasicSymbolRef &Sym : Obj->symbols()) {
uint32_t Flags = Sym.getFlags();
GlobalValue *GV = Obj->getSymbolGV(Sym.getRawDataRefImpl());
if (GV && GV->hasAppendingLinkage())
Keep.push_back(GV);
if (BitcodeFile::shouldSkip(Flags))
continue;
Symbol *S = Syms[BodyIndex++];
if (GV)
GV->setUnnamedAddr(S->HasUnnamedAddr ? GlobalValue::UnnamedAddr::Global
: GlobalValue::UnnamedAddr::None);
if (Flags & BasicSymbolRef::SF_Undefined) {
handleUndefinedAsmRefs(Sym, GV, AsmUndefinedRefs);
continue;
}
SymbolBody *B = S->body();
if (B->File != &F)
continue;
// We collect the set of symbols we want to internalize here
// and change the linkage after the IRMover executed, i.e. after
// we imported the symbols and satisfied undefined references
// to it. We can't just change linkage here because otherwise
// the IRMover will just rename the symbol.
if (GV && shouldInternalize(Used, S, GV))
InternalizedSyms.insert(GV->getName());
// At this point we know that either the combined LTO object will provide a
// definition of a symbol, or we will internalize it. In either case, we
// need to undefine the symbol. In the former case, the real definition
// needs to be able to replace the original definition without conflicting.
// In the latter case, we need to allow the combined LTO object to provide a
// definition with the same name, for example when doing parallel codegen.
if (auto *C = dyn_cast<DefinedCommon>(B)) {
if (auto *GO = dyn_cast<GlobalObject>(GV))
GO->setAlignment(C->Alignment);
} else {
undefine(S);
}
if (!GV)
// Module asm symbol.
continue;
switch (GV->getLinkage()) {
default:
break;
case GlobalValue::LinkOnceAnyLinkage:
GV->setLinkage(GlobalValue::WeakAnyLinkage);
break;
case GlobalValue::LinkOnceODRLinkage:
GV->setLinkage(GlobalValue::WeakODRLinkage);
break;
}
Keep.push_back(GV);
}
IRMover Mover(*Combined);
if (Error E = Mover.move(Obj->takeModule(), Keep,
[](GlobalValue &, IRMover::ValueAdder) {})) {
handleAllErrors(std::move(E), [&](const ErrorInfoBase &EIB) {
fatal("failed to link module " + F.getName() + ": " + EIB.message());
});
}
}
static void internalize(GlobalValue &GV) {
assert(!GV.hasLocalLinkage() &&
"Trying to internalize a symbol with local linkage!");
GV.setLinkage(GlobalValue::InternalLinkage);
}
std::vector<std::unique_ptr<InputFile>> BitcodeCompiler::runSplitCodegen(
const std::function<std::unique_ptr<TargetMachine>()> &TMFactory) {
unsigned NumThreads = Config->LtoJobs;
OwningData.resize(NumThreads);
std::list<raw_svector_ostream> OSs;
std::vector<raw_pwrite_stream *> OSPtrs;
for (SmallString<0> &Obj : OwningData) {
OSs.emplace_back(Obj);
OSPtrs.push_back(&OSs.back());
}
splitCodeGen(std::move(Combined), OSPtrs, {}, TMFactory);
std::vector<std::unique_ptr<InputFile>> ObjFiles;
for (SmallString<0> &Obj : OwningData)
ObjFiles.push_back(createObjectFile(
MemoryBufferRef(Obj, "LLD-INTERNAL-combined-lto-object")));
// If -save-temps is given, we need to save temporary objects to files.
// This is for debugging.
if (Config->SaveTemps) {
if (NumThreads == 1) {
saveBuffer(OwningData[0], Config->OutputFile + ".lto.o");
} else {
for (unsigned I = 0; I < NumThreads; ++I)
saveBuffer(OwningData[I], Config->OutputFile + Twine(I) + ".lto.o");
}
}
return ObjFiles;
}
// Merge all the bitcode files we have seen, codegen the result
// and return the resulting ObjectFile.
std::vector<std::unique_ptr<InputFile>> BitcodeCompiler::compile() {
for (const auto &Name : InternalizedSyms) {
GlobalValue *GV = Combined->getNamedValue(Name.first());
assert(GV);
internalize(*GV);
}
std::string TheTriple = Combined->getTargetTriple();
std::string Msg;
const Target *T = TargetRegistry::lookupTarget(TheTriple, Msg);
if (!T)
fatal("target not found: " + Msg);
// LLD supports the new relocations.
TargetOptions Options = InitTargetOptionsFromCodeGenFlags();
Options.RelaxELFRelocations = true;
auto CreateTargetMachine = [&]() {
return std::unique_ptr<TargetMachine>(T->createTargetMachine(
TheTriple, "", "", Options, Config->Pic ? Reloc::PIC_ : Reloc::Static));
};
std::unique_ptr<TargetMachine> TM = CreateTargetMachine();
// Update llvm.compiler.used so that optimizations won't strip
// off AsmUndefinedReferences.
updateCompilerUsed(*Combined, *TM, AsmUndefinedRefs);
if (Config->SaveTemps)
saveBCFile(*Combined, Config->OutputFile + ".lto.bc");
runLTOPasses(*Combined, *TM);
if (HasError)
return {};
return runSplitCodegen(CreateTargetMachine);
}
|