1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
//===-- Unittests for hash ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/__support/CPP/new.h"
#include "src/__support/alloc-checker.h"
#include "src/__support/hash.h"
#include "src/stdlib/rand.h"
#include "src/stdlib/srand.h"
#include "src/string/memset.h"
#include "test/UnitTest/Test.h"
template <class T> struct AlignedMemory {
T *data;
size_t offset;
std::align_val_t alignment;
AlignedMemory(size_t size, size_t alignment, size_t offset)
: offset(offset), alignment{alignment} {
size_t sz = size * sizeof(T);
size_t aligned = sz + ((-sz) & (alignment - 1)) + alignment;
LIBC_NAMESPACE::AllocChecker ac;
data = static_cast<T *>(operator new(aligned, this->alignment, ac));
data += offset % alignment;
}
~AlignedMemory() { operator delete(data - offset, alignment); }
};
size_t sizes[] = {0, 1, 23, 59, 1024, 5261};
uint8_t values[] = {0, 1, 23, 59, 102, 255};
// Hash value should not change with different alignments.
TEST(LlvmLibcHashTest, SanityCheck) {
for (size_t sz : sizes) {
for (uint8_t val : values) {
uint64_t hash;
{
AlignedMemory<char> mem(sz, 64, 0);
LIBC_NAMESPACE::memset(mem.data, val, sz);
LIBC_NAMESPACE::internal::HashState state{0x1234567890abcdef};
state.update(mem.data, sz);
hash = state.finish();
}
for (size_t offset = 1; offset < 64; ++offset) {
AlignedMemory<char> mem(sz, 64, offset);
LIBC_NAMESPACE::memset(mem.data, val, sz);
LIBC_NAMESPACE::internal::HashState state{0x1234567890abcdef};
state.update(mem.data, sz);
ASSERT_EQ(hash, state.finish());
}
}
}
}
static inline size_t popcnt(uint64_t x) {
size_t count = 0;
while (x) {
count += x & 1;
x >>= 1;
}
return count;
}
// Mutate a single bit in a rather large input. The hash should change
// significantly. At least one fifth of the bits should not match.
TEST(LlvmLibcHashTest, Avalanche) {
for (size_t sz : sizes) {
for (uint8_t val : values) {
uint64_t hash;
AlignedMemory<char> mem(sz, 64, 0);
LIBC_NAMESPACE::memset(mem.data, val, sz);
{
LIBC_NAMESPACE::internal::HashState state{0xabcdef1234567890};
state.update(mem.data, sz);
hash = state.finish();
}
for (size_t i = 0; i < sz; ++i) {
for (size_t j = 0; j < 8; ++j) {
uint8_t mask = static_cast<uint8_t>(1 << j);
mem.data[i] ^= mask;
{
LIBC_NAMESPACE::internal::HashState state{0xabcdef1234567890};
state.update(mem.data, sz);
uint64_t new_hash = state.finish();
ASSERT_GE(popcnt(hash ^ new_hash), size_t{13});
}
mem.data[i] ^= mask;
}
}
}
}
}
// Hash a random sequence of input. The LSB should be uniform enough such that
// values spread across the entire range.
TEST(LlvmLibcHashTest, UniformLSB) {
LIBC_NAMESPACE::srand(0xffffffff);
for (size_t sz : sizes) {
AlignedMemory<size_t> counters(sz, sizeof(size_t), 0);
LIBC_NAMESPACE::memset(counters.data, 0, sz * sizeof(size_t));
for (size_t i = 0; i < 200 * sz; ++i) {
int randomness[8] = {LIBC_NAMESPACE::rand(), LIBC_NAMESPACE::rand(),
LIBC_NAMESPACE::rand(), LIBC_NAMESPACE::rand(),
LIBC_NAMESPACE::rand(), LIBC_NAMESPACE::rand(),
LIBC_NAMESPACE::rand(), LIBC_NAMESPACE::rand()};
{
LIBC_NAMESPACE::internal::HashState state{0x1a2b3c4d5e6f7a8b};
state.update(randomness, sizeof(randomness));
uint64_t hash = state.finish();
counters.data[hash % sz]++;
}
}
for (size_t i = 0; i < sz; ++i) {
ASSERT_GE(counters.data[i], size_t{140});
ASSERT_LE(counters.data[i], size_t{260});
}
}
}
// Hash a low entropy sequence. The MSB should be uniform enough such that
// there is no significant bias even if the value range is small.
// Top 7 bits is examined because it will be used as a secondary key in
// the hash table.
TEST(LlvmLibcHashTest, UniformMSB) {
size_t sz = 1 << 7;
AlignedMemory<size_t> counters(sz, sizeof(size_t), 0);
LIBC_NAMESPACE::memset(counters.data, 0, sz * sizeof(size_t));
for (size_t i = 0; i < 200 * sz; ++i) {
LIBC_NAMESPACE::internal::HashState state{0xa1b2c3d4e5f6a7b8};
state.update(&i, sizeof(i));
uint64_t hash = state.finish();
counters.data[hash >> 57]++;
}
for (size_t i = 0; i < sz; ++i) {
ASSERT_GE(counters.data[i], size_t{140});
ASSERT_LE(counters.data[i], size_t{260});
}
}
|