1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
|
//===-- Portable SIMD library similar to stdx::simd -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides a generic interface into fixed-size SIMD instructions
// using the clang vector type. The API shares some similarities with the
// stdx::simd proposal, but instead chooses to use vectors as primitive types
// with several extra helper functions.
//
//===----------------------------------------------------------------------===//
#include "hdr/stdint_proxy.h"
#include "src/__support/CPP/algorithm.h"
#include "src/__support/CPP/limits.h"
#include "src/__support/CPP/tuple.h"
#include "src/__support/CPP/type_traits.h"
#include "src/__support/CPP/utility/integer_sequence.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include <stddef.h>
#ifndef LLVM_LIBC_SRC___SUPPORT_CPP_SIMD_H
#define LLVM_LIBC_SRC___SUPPORT_CPP_SIMD_H
#if LIBC_HAS_VECTOR_TYPE
namespace LIBC_NAMESPACE_DECL {
namespace cpp {
namespace internal {
#if defined(LIBC_TARGET_CPU_HAS_AVX512F)
template <typename T>
LIBC_INLINE_VAR constexpr size_t native_vector_size = 64 / sizeof(T);
#elif defined(LIBC_TARGET_CPU_HAS_AVX2)
template <typename T>
LIBC_INLINE_VAR constexpr size_t native_vector_size = 32 / sizeof(T);
#elif defined(LIBC_TARGET_CPU_HAS_SSE2) || defined(LIBC_TARGET_CPU_HAS_ARM_NEON)
template <typename T>
LIBC_INLINE_VAR constexpr size_t native_vector_size = 16 / sizeof(T);
#else
template <typename T> LIBC_INLINE constexpr size_t native_vector_size = 1;
#endif
} // namespace internal
// Type aliases.
template <typename T, size_t N>
using fixed_size_simd = T [[clang::ext_vector_type(N)]];
template <typename T, size_t N = internal::native_vector_size<T>>
using simd = T [[clang::ext_vector_type(N)]];
template <typename T>
using simd_mask = simd<bool, internal::native_vector_size<T>>;
// Type trait helpers.
template <typename T>
struct simd_size : cpp::integral_constant<size_t, __builtin_vectorelements(T)> {
};
template <class T> constexpr size_t simd_size_v = simd_size<T>::value;
template <typename T> struct is_simd : cpp::integral_constant<bool, false> {};
template <typename T, unsigned N>
struct is_simd<simd<T, N>> : cpp::integral_constant<bool, true> {};
template <class T> constexpr bool is_simd_v = is_simd<T>::value;
template <typename T>
struct is_simd_mask : cpp::integral_constant<bool, false> {};
template <unsigned N>
struct is_simd_mask<simd<bool, N>> : cpp::integral_constant<bool, true> {};
template <class T> constexpr bool is_simd_mask_v = is_simd_mask<T>::value;
template <typename T> struct simd_element_type;
template <typename T, size_t N> struct simd_element_type<simd<T, N>> {
using type = T;
};
template <typename T>
using simd_element_type_t = typename simd_element_type<T>::type;
namespace internal {
template <typename T>
using get_as_integer_type_t = unsigned _BitInt(sizeof(T) * CHAR_BIT);
template <typename T> LIBC_INLINE constexpr T poison() {
return __builtin_nondeterministic_value(T());
}
template <typename T, size_t N, size_t OriginalSize, size_t... Indices>
LIBC_INLINE constexpr static cpp::simd<T, sizeof...(Indices)>
extend(cpp::simd<T, N> x, cpp::index_sequence<Indices...>) {
return __builtin_shufflevector(
x, x, (Indices < OriginalSize ? static_cast<int>(Indices) : -1)...);
}
template <typename T, size_t N, size_t TargetSize, size_t OriginalSize>
LIBC_INLINE constexpr static auto extend(cpp::simd<T, N> x) {
// Recursively resize an input vector to the target size, increasing its size
// by at most double the input size each step due to shufflevector limitation.
if constexpr (N == TargetSize)
return x;
else if constexpr (TargetSize <= 2 * N)
return extend<T, N, TargetSize>(x, cpp::make_index_sequence<TargetSize>{});
else
return extend<T, 2 * N, TargetSize, OriginalSize>(
extend<T, N, 2 * N>(x, cpp::make_index_sequence<2 * N>{}));
}
template <typename T, size_t N, size_t M, size_t... Indices>
LIBC_INLINE constexpr static cpp::simd<T, N + M>
concat(cpp::simd<T, N> x, cpp::simd<T, M> y, cpp::index_sequence<Indices...>) {
constexpr size_t Size = cpp::max(N, M);
auto remap = [](size_t idx) -> int {
if (idx < N)
return static_cast<int>(idx);
if (idx < N + M)
return static_cast<int>((idx - N) + Size);
return -1;
};
// Extend the input vectors until they are the same size, then use the indices
// to shuffle in only the indices that correspond to the original values.
auto x_ext = extend<T, N, Size, N>(x);
auto y_ext = extend<T, M, Size, M>(y);
return __builtin_shufflevector(x_ext, y_ext, remap(Indices)...);
}
template <typename T, size_t N, size_t Count, size_t Offset, size_t... Indices>
LIBC_INLINE constexpr static cpp::simd<T, Count>
slice(cpp::simd<T, N> x, cpp::index_sequence<Indices...>) {
return __builtin_shufflevector(x, x, (Offset + Indices)...);
}
template <typename T, size_t N, size_t Offset, size_t Head, size_t... Tail>
LIBC_INLINE constexpr static auto split(cpp::simd<T, N> x) {
// Recursively splits the input vector by walking the variadic template list,
// increasing our current head each call.
auto result = cpp::make_tuple(
slice<T, N, Head, Offset>(x, cpp::make_index_sequence<Head>{}));
if constexpr (sizeof...(Tail) > 0)
return cpp::tuple_cat(result, split<T, N, Offset + Head, Tail...>(x));
else
return result;
}
// Helper trait
template <typename T>
using enable_if_integral_t = cpp::enable_if_t<cpp::is_integral_v<T>, T>;
template <typename T>
using enable_if_simd_t = cpp::enable_if_t<is_simd_v<T>, bool>;
} // namespace internal
// Casting.
template <typename To, typename From, size_t N>
LIBC_INLINE constexpr static simd<To, N> simd_cast(simd<From, N> v) {
return __builtin_convertvector(v, simd<To, N>);
}
// SIMD mask operations.
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static bool all_of(simd<T, N> v) {
return __builtin_reduce_and(simd_cast<bool>(v));
}
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static bool any_of(simd<T, N> v) {
return __builtin_reduce_or(simd_cast<bool>(v));
}
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static bool none_of(simd<T, N> v) {
return !any_of(v);
}
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static bool some_of(simd<T, N> v) {
return any_of(v) && !all_of(v);
}
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static int popcount(simd<T, N> v) {
return __builtin_popcountg(v);
}
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static int find_first_set(simd<T, N> v) {
return __builtin_ctzg(simd_cast<bool>(v));
}
template <typename T, size_t N, internal::enable_if_integral_t<T> = 0>
LIBC_INLINE constexpr static int find_last_set(simd<T, N> v) {
constexpr size_t size = simd_size_v<simd<T, N>>;
return size - 1 - __builtin_clzg(simd_cast<bool>(v));
}
// Elementwise operations.
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> min(simd<T, N> x, simd<T, N> y) {
return __builtin_elementwise_min(x, y);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> max(simd<T, N> x, simd<T, N> y) {
return __builtin_elementwise_max(x, y);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> abs(simd<T, N> x) {
return __builtin_elementwise_abs(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> fma(simd<T, N> x, simd<T, N> y,
simd<T, N> z) {
return __builtin_elementwise_fma(x, y, z);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> ceil(simd<T, N> x) {
return __builtin_elementwise_ceil(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> floor(simd<T, N> x) {
return __builtin_elementwise_floor(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> roundeven(simd<T, N> x) {
return __builtin_elementwise_roundeven(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> round(simd<T, N> x) {
return __builtin_elementwise_round(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> trunc(simd<T, N> x) {
return __builtin_elementwise_trunc(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> nearbyint(simd<T, N> x) {
return __builtin_elementwise_nearbyint(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> rint(simd<T, N> x) {
return __builtin_elementwise_rint(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> canonicalize(simd<T, N> x) {
return __builtin_elementwise_canonicalize(x);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> copysign(simd<T, N> x, simd<T, N> y) {
return __builtin_elementwise_copysign(x, y);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> fmod(simd<T, N> x, simd<T, N> y) {
return __builtin_elementwise_fmod(x, y);
}
// Reduction operations.
template <typename T, size_t N, typename Op = cpp::plus<>>
LIBC_INLINE constexpr static T reduce(simd<T, N> v, Op op = {}) {
return reduce(v, op);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T reduce(simd<T, N> v, cpp::plus<>) {
return __builtin_reduce_add(v);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T reduce(simd<T, N> v, cpp::multiplies<>) {
return __builtin_reduce_mul(v);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T reduce(simd<T, N> v, cpp::bit_and<>) {
return __builtin_reduce_and(v);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T reduce(simd<T, N> v, cpp::bit_or<>) {
return __builtin_reduce_or(v);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T reduce(simd<T, N> v, cpp::bit_xor<>) {
return __builtin_reduce_xor(v);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T hmin(simd<T, N> v) {
return __builtin_reduce_min(v);
}
template <typename T, size_t N>
LIBC_INLINE constexpr static T hmax(simd<T, N> v) {
return __builtin_reduce_max(v);
}
// Accessor helpers.
template <typename T>
LIBC_INLINE T constexpr static load(const void *ptr, bool aligned = false) {
if (aligned)
ptr = __builtin_assume_aligned(ptr, alignof(T));
T tmp;
__builtin_memcpy_inline(
&tmp, reinterpret_cast<const simd_element_type_t<T> *>(ptr), sizeof(T));
return tmp;
}
template <typename T, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static void store(T v, void *ptr, bool aligned = false) {
if (aligned)
ptr = __builtin_assume_aligned(ptr, alignof(T));
__builtin_memcpy_inline(ptr, &v, sizeof(T));
}
template <typename T, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static T
load_masked(simd<bool, simd_size_v<T>> mask, const void *ptr,
T passthru = internal::poison<T>(), bool aligned = false) {
if (aligned)
ptr = __builtin_assume_aligned(ptr, alignof(T));
return __builtin_masked_load(
mask, reinterpret_cast<const simd_element_type_t<T> *>(ptr), passthru);
}
template <typename T, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static void store_masked(simd<bool, simd_size_v<T>> mask,
T v, void *ptr,
bool aligned = false) {
if (aligned)
ptr = __builtin_assume_aligned(ptr, alignof(T));
__builtin_masked_store(mask, v,
reinterpret_cast<simd_element_type_t<T> *>(ptr));
}
template <typename T, typename Idx, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static T gather(simd<bool, simd_size_v<T>> mask, Idx idx,
const void *base, bool aligned = false) {
if (aligned)
base = __builtin_assume_aligned(base, alignof(T));
return __builtin_masked_gather(
mask, idx, reinterpret_cast<const simd_element_type_t<T> *>(base));
}
template <typename T, typename Idx, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static void scatter(simd<bool, simd_size_v<T>> mask,
Idx idx, T v, void *base,
bool aligned = false) {
if (aligned)
base = __builtin_assume_aligned(base, alignof(T));
__builtin_masked_scatter(mask, idx, v,
reinterpret_cast<simd_element_type_t<T> *>(base));
}
template <typename T, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static T
expand(simd<bool, simd_size_v<T>> mask, const void *ptr,
T passthru = internal::poison<T>(), bool aligned = false) {
if (aligned)
ptr = __builtin_assume_aligned(ptr, alignof(T));
return __builtin_masked_expand_load(
mask, reinterpret_cast<const simd_element_type_t<T> *>(ptr), passthru);
}
template <typename T, internal::enable_if_simd_t<T> = 0>
LIBC_INLINE constexpr static void compress(simd<bool, simd_size_v<T>> mask, T v,
void *ptr, bool aligned = false) {
if (aligned)
ptr = __builtin_assume_aligned(ptr, alignof(T));
__builtin_masked_compress_store(
mask, v, reinterpret_cast<simd_element_type_t<T> *>(ptr));
}
// Construction helpers.
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> splat(T v) {
return simd<T, N>(v);
}
template <typename T> LIBC_INLINE constexpr static simd<T> splat(T v) {
return splat<T, simd_size_v<simd<T>>>(v);
}
template <typename T, unsigned N>
LIBC_INLINE constexpr static simd<T, N> iota(T base = T(0), T step = T(1)) {
simd<T, N> v{};
for (unsigned i = 0; i < N; ++i)
v[i] = base + T(i) * step;
return v;
}
template <typename T>
LIBC_INLINE constexpr static simd<T> iota(T base = T(0), T step = T(1)) {
return iota<T, simd_size_v<simd<T>>>(base, step);
}
// Conditional helpers.
template <typename T, size_t N>
LIBC_INLINE constexpr static simd<T, N> select(simd<bool, N> m, simd<T, N> x,
simd<T, N> y) {
return m ? x : y;
}
// Shuffling helpers.
template <typename T, size_t N, size_t M>
LIBC_INLINE constexpr static auto concat(cpp::simd<T, N> x, cpp::simd<T, M> y) {
return internal::concat(x, y, make_index_sequence<N + M>{});
}
template <typename T, size_t N, size_t M, typename... Rest>
LIBC_INLINE constexpr static auto concat(cpp::simd<T, N> x, cpp::simd<T, M> y,
Rest... rest) {
auto xy = concat(x, y);
if constexpr (sizeof...(Rest))
return concat(xy, rest...);
else
return xy;
}
template <size_t... Sizes, typename T, size_t N> auto split(cpp::simd<T, N> x) {
static_assert((... + Sizes) == N, "split sizes must sum to vector size");
return internal::split<T, N, 0, Sizes...>(x);
}
// TODO: where expressions, scalar overloads, ABI types.
} // namespace cpp
} // namespace LIBC_NAMESPACE_DECL
#endif // LIBC_HAS_VECTOR_TYPE
#endif
|