1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
//===-- A simple equivalent of std::atomic ----------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_SRC___SUPPORT_CPP_ATOMIC_H
#define LLVM_LIBC_SRC___SUPPORT_CPP_ATOMIC_H
#include "src/__support/CPP/type_traits/has_unique_object_representations.h"
#include "src/__support/macros/attributes.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/properties/architectures.h"
#include "type_traits.h"
namespace LIBC_NAMESPACE_DECL {
namespace cpp {
enum class MemoryOrder : int {
RELAXED = __ATOMIC_RELAXED,
CONSUME = __ATOMIC_CONSUME,
ACQUIRE = __ATOMIC_ACQUIRE,
RELEASE = __ATOMIC_RELEASE,
ACQ_REL = __ATOMIC_ACQ_REL,
SEQ_CST = __ATOMIC_SEQ_CST
};
// These are a clang extension, see the clang documentation for more
// information:
// https://clang.llvm.org/docs/LanguageExtensions.html#scoped-atomic-builtins.
enum class MemoryScope : int {
#if defined(__MEMORY_SCOPE_SYSTEM) && defined(__MEMORY_SCOPE_DEVICE)
SYSTEM = __MEMORY_SCOPE_SYSTEM,
DEVICE = __MEMORY_SCOPE_DEVICE,
#else
SYSTEM = 0,
DEVICE = 0,
#endif
};
namespace impl {
LIBC_INLINE constexpr int order(MemoryOrder mem_ord) {
return static_cast<int>(mem_ord);
}
LIBC_INLINE constexpr int scope(MemoryScope mem_scope) {
return static_cast<int>(mem_scope);
}
template <class T> LIBC_INLINE T *addressof(T &ref) {
return __builtin_addressof(ref);
}
LIBC_INLINE constexpr int infer_failure_order(MemoryOrder mem_ord) {
if (mem_ord == MemoryOrder::RELEASE)
return order(MemoryOrder::RELAXED);
if (mem_ord == MemoryOrder::ACQ_REL)
return order(MemoryOrder::ACQUIRE);
return order(mem_ord);
}
} // namespace impl
template <typename T> struct Atomic {
static_assert(is_trivially_copyable_v<T> && is_copy_constructible_v<T> &&
is_move_constructible_v<T> && is_copy_assignable_v<T> &&
is_move_assignable_v<T>,
"atomic<T> requires T to be trivially copyable, copy "
"constructible, move constructible, copy assignable, "
"and move assignable.");
static_assert(cpp::has_unique_object_representations_v<T>,
"atomic<T> in libc only support types whose values has unique "
"object representations.");
private:
// type conversion helper to avoid long c++ style casts
// Require types that are 1, 2, 4, 8, or 16 bytes in length to be aligned to
// at least their size to be potentially used lock-free.
LIBC_INLINE_VAR static constexpr size_t MIN_ALIGNMENT =
(sizeof(T) & (sizeof(T) - 1)) || (sizeof(T) > 16) ? 0 : sizeof(T);
LIBC_INLINE_VAR static constexpr size_t ALIGNMENT = alignof(T) > MIN_ALIGNMENT
? alignof(T)
: MIN_ALIGNMENT;
public:
using value_type = T;
// We keep the internal value public so that it can be addressable.
// This is useful in places like the Linux futex operations where
// we need pointers to the memory of the atomic values. Load and store
// operations should be performed using the atomic methods however.
alignas(ALIGNMENT) value_type val;
LIBC_INLINE constexpr Atomic() = default;
// Initializes the value without using atomic operations.
LIBC_INLINE constexpr Atomic(value_type v) : val(v) {}
LIBC_INLINE Atomic(const Atomic &) = delete;
LIBC_INLINE Atomic &operator=(const Atomic &) = delete;
// Atomic load.
LIBC_INLINE operator T() { return load(); }
LIBC_INLINE T
load(MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
T res;
#if __has_builtin(__scoped_atomic_load)
__scoped_atomic_load(impl::addressof(val), impl::addressof(res),
impl::order(mem_ord), impl::scope(mem_scope));
#else
__atomic_load(impl::addressof(val), impl::addressof(res),
impl::order(mem_ord));
#endif
return res;
}
// Atomic store.
LIBC_INLINE T operator=(T rhs) {
store(rhs);
return rhs;
}
LIBC_INLINE void
store(T rhs, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
#if __has_builtin(__scoped_atomic_store)
__scoped_atomic_store(impl::addressof(val), impl::addressof(rhs),
impl::order(mem_ord), impl::scope(mem_scope));
#else
__atomic_store(impl::addressof(val), impl::addressof(rhs),
impl::order(mem_ord));
#endif
}
// Atomic compare exchange
LIBC_INLINE bool compare_exchange_strong(
T &expected, T desired, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
return __atomic_compare_exchange(
impl::addressof(val), impl::addressof(expected),
impl::addressof(desired), false, impl::order(mem_ord),
impl::infer_failure_order(mem_ord));
}
// Atomic compare exchange (separate success and failure memory orders)
LIBC_INLINE bool compare_exchange_strong(
T &expected, T desired, MemoryOrder success_order,
MemoryOrder failure_order,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
return __atomic_compare_exchange(
impl::addressof(val), impl::addressof(expected),
impl::addressof(desired), false, impl::order(success_order),
impl::order(failure_order));
}
// Atomic compare exchange (weak version)
LIBC_INLINE bool compare_exchange_weak(
T &expected, T desired, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
return __atomic_compare_exchange(
impl::addressof(val), impl::addressof(expected),
impl::addressof(desired), true, impl::order(mem_ord),
impl::infer_failure_order(mem_ord));
}
// Atomic compare exchange (weak version with separate success and failure
// memory orders)
LIBC_INLINE bool compare_exchange_weak(
T &expected, T desired, MemoryOrder success_order,
MemoryOrder failure_order,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
return __atomic_compare_exchange(
impl::addressof(val), impl::addressof(expected),
impl::addressof(desired), true, impl::order(success_order),
impl::order(failure_order));
}
LIBC_INLINE T
exchange(T desired, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
T ret;
#if __has_builtin(__scoped_atomic_exchange)
__scoped_atomic_exchange(impl::addressof(val), impl::addressof(desired),
impl::addressof(ret), impl::order(mem_ord),
impl::scope(mem_scope));
#else
__atomic_exchange(impl::addressof(val), impl::addressof(desired),
impl::addressof(ret), impl::order(mem_ord));
#endif
return ret;
}
LIBC_INLINE T
fetch_add(T increment, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_add)
return __scoped_atomic_fetch_add(impl::addressof(val), increment,
impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_add(impl::addressof(val), increment,
impl::order(mem_ord));
#endif
}
LIBC_INLINE T
fetch_or(T mask, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_or)
return __scoped_atomic_fetch_or(impl::addressof(val), mask,
impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_or(impl::addressof(val), mask, impl::order(mem_ord));
#endif
}
LIBC_INLINE T
fetch_and(T mask, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_and)
return __scoped_atomic_fetch_and(impl::addressof(val), mask,
impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_and(impl::addressof(val), mask, impl::order(mem_ord));
#endif
}
LIBC_INLINE T
fetch_sub(T decrement, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_sub)
return __scoped_atomic_fetch_sub(impl::addressof(val), decrement,
impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_sub(impl::addressof(val), decrement,
impl::order(mem_ord));
#endif
}
// Set the value without using an atomic operation. This is useful
// in initializing atomic values without a constructor.
LIBC_INLINE void set(T rhs) { val = rhs; }
};
template <typename T> struct AtomicRef {
static_assert(is_trivially_copyable_v<T> && is_copy_constructible_v<T> &&
is_move_constructible_v<T> && is_copy_assignable_v<T> &&
is_move_assignable_v<T>,
"AtomicRef<T> requires T to be trivially copyable, copy "
"constructible, move constructible, copy assignable, "
"and move assignable.");
static_assert(cpp::has_unique_object_representations_v<T>,
"AtomicRef<T> only supports types with unique object "
"representations.");
private:
T *ptr;
public:
// Constructor from T reference
LIBC_INLINE explicit constexpr AtomicRef(T &obj) : ptr(&obj) {}
// Non-standard Implicit conversion from T*
LIBC_INLINE constexpr AtomicRef(T *obj) : ptr(obj) {}
LIBC_INLINE AtomicRef(const AtomicRef &) = default;
LIBC_INLINE AtomicRef &operator=(const AtomicRef &) = default;
// Atomic load
LIBC_INLINE operator T() const { return load(); }
LIBC_INLINE T
load(MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
T res;
#if __has_builtin(__scoped_atomic_load)
__scoped_atomic_load(ptr, &res, impl::order(mem_ord),
impl::scope(mem_scope));
#else
__atomic_load(ptr, &res, impl::order(mem_ord));
#endif
return res;
}
// Atomic store
LIBC_INLINE T operator=(T rhs) const {
store(rhs);
return rhs;
}
LIBC_INLINE void
store(T rhs, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
#if __has_builtin(__scoped_atomic_store)
__scoped_atomic_store(ptr, &rhs, impl::order(mem_ord),
impl::scope(mem_scope));
#else
__atomic_store(ptr, &rhs, impl::order(mem_ord));
#endif
}
// Atomic compare exchange (strong)
LIBC_INLINE bool compare_exchange_strong(
T &expected, T desired, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
return __atomic_compare_exchange(ptr, &expected, &desired, false,
impl::order(mem_ord),
impl::infer_failure_order(mem_ord));
}
// Atomic compare exchange (strong, separate success/failure memory orders)
LIBC_INLINE bool compare_exchange_strong(
T &expected, T desired, MemoryOrder success_order,
MemoryOrder failure_order,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
return __atomic_compare_exchange(ptr, &expected, &desired, false,
impl::order(success_order),
impl::order(failure_order));
}
// Atomic exchange
LIBC_INLINE T
exchange(T desired, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
T ret;
#if __has_builtin(__scoped_atomic_exchange)
__scoped_atomic_exchange(ptr, &desired, &ret, impl::order(mem_ord),
impl::scope(mem_scope));
#else
__atomic_exchange(ptr, &desired, &ret, impl::order(mem_ord));
#endif
return ret;
}
LIBC_INLINE T fetch_add(
T increment, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_add)
return __scoped_atomic_fetch_add(ptr, increment, impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_add(ptr, increment, impl::order(mem_ord));
#endif
}
LIBC_INLINE T
fetch_or(T mask, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_or)
return __scoped_atomic_fetch_or(ptr, mask, impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_or(ptr, mask, impl::order(mem_ord));
#endif
}
LIBC_INLINE T fetch_and(
T mask, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_and)
return __scoped_atomic_fetch_and(ptr, mask, impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_and(ptr, mask, impl::order(mem_ord));
#endif
}
LIBC_INLINE T fetch_sub(
T decrement, MemoryOrder mem_ord = MemoryOrder::SEQ_CST,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) const {
static_assert(cpp::is_integral_v<T>, "T must be an integral type.");
#if __has_builtin(__scoped_atomic_fetch_sub)
return __scoped_atomic_fetch_sub(ptr, decrement, impl::order(mem_ord),
impl::scope(mem_scope));
#else
return __atomic_fetch_sub(ptr, decrement, impl::order(mem_ord));
#endif
}
};
// Permit CTAD when generating an atomic reference.
template <typename T> AtomicRef(T &) -> AtomicRef<T>;
// Issue a thread fence with the given memory ordering.
LIBC_INLINE void atomic_thread_fence(
MemoryOrder mem_ord,
[[maybe_unused]] MemoryScope mem_scope = MemoryScope::DEVICE) {
#if __has_builtin(__scoped_atomic_thread_fence)
__scoped_atomic_thread_fence(static_cast<int>(mem_ord),
static_cast<int>(mem_scope));
#else
__atomic_thread_fence(static_cast<int>(mem_ord));
#endif
}
// Establishes memory synchronization ordering of non-atomic and relaxed atomic
// accesses, as instructed by order, between a thread and a signal handler
// executed on the same thread. This is equivalent to atomic_thread_fence,
// except no instructions for memory ordering are issued. Only reordering of
// the instructions by the compiler is suppressed as order instructs.
LIBC_INLINE void atomic_signal_fence([[maybe_unused]] MemoryOrder mem_ord) {
#if __has_builtin(__atomic_signal_fence)
__atomic_signal_fence(static_cast<int>(mem_ord));
#else
// if the builtin is not ready, use asm as a full compiler barrier.
asm volatile("" ::: "memory");
#endif
}
} // namespace cpp
} // namespace LIBC_NAMESPACE_DECL
#endif // LLVM_LIBC_SRC___SUPPORT_CPP_ATOMIC_H
|