aboutsummaryrefslogtreecommitdiff
path: root/libc/benchmarks/gpu/LibcGpuBenchmark.cpp
blob: a4a0ff4ec46e5fa61478125b4fdbb3cc8d0478e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#include "LibcGpuBenchmark.h"

#include "hdr/stdint_proxy.h"
#include "src/__support/CPP/algorithm.h"
#include "src/__support/CPP/atomic.h"
#include "src/__support/CPP/string.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/NearestIntegerOperations.h"
#include "src/__support/FPUtil/sqrt.h"
#include "src/__support/GPU/utils.h"
#include "src/__support/fixedvector.h"
#include "src/__support/macros/config.h"
#include "src/__support/time/gpu/time_utils.h"
#include "src/stdio/printf.h"
#include "src/time/clock.h"

namespace LIBC_NAMESPACE_DECL {
namespace benchmarks {

FixedVector<Benchmark *, 64> benchmarks;

void Benchmark::add_benchmark(Benchmark *benchmark) {
  benchmarks.push_back(benchmark);
}

static void atomic_add_double(cpp::Atomic<uint64_t> &atomic_bits,
                              double value) {
  using FPBits = LIBC_NAMESPACE::fputil::FPBits<double>;

  uint64_t expected_bits = atomic_bits.load(cpp::MemoryOrder::RELAXED);

  while (true) {
    double current_value = FPBits(expected_bits).get_val();
    double next_value = current_value + value;

    uint64_t desired_bits = FPBits(next_value).uintval();
    if (atomic_bits.compare_exchange_strong(expected_bits, desired_bits,
                                            cpp::MemoryOrder::ACQUIRE,
                                            cpp::MemoryOrder::RELAXED))
      break;
  }
}

struct AtomicBenchmarkSums {
  cpp::Atomic<uint32_t> active_threads = 0;
  cpp::Atomic<uint64_t> iterations_sum = 0;
  cpp::Atomic<uint64_t> weighted_cycles_sum_bits = 0;
  cpp::Atomic<uint64_t> weighted_squared_cycles_sum_bits = 0;
  cpp::Atomic<uint64_t> min = UINT64_MAX;
  cpp::Atomic<uint64_t> max = 0;

  void reset() {
    cpp::atomic_thread_fence(cpp::MemoryOrder::RELEASE);
    active_threads.store(0, cpp::MemoryOrder::RELAXED);
    iterations_sum.store(0, cpp::MemoryOrder::RELAXED);
    weighted_cycles_sum_bits.store(0, cpp::MemoryOrder::RELAXED);
    weighted_squared_cycles_sum_bits.store(0, cpp::MemoryOrder::RELAXED);
    min.store(UINT64_MAX, cpp::MemoryOrder::RELAXED);
    max.store(0, cpp::MemoryOrder::RELAXED);
    cpp::atomic_thread_fence(cpp::MemoryOrder::RELEASE);
  }

  void update(const BenchmarkResult &result) {
    cpp::atomic_thread_fence(cpp::MemoryOrder::RELEASE);
    active_threads.fetch_add(1, cpp::MemoryOrder::RELAXED);
    iterations_sum.fetch_add(result.total_iterations,
                             cpp::MemoryOrder::RELAXED);

    const double n_i = static_cast<double>(result.total_iterations);
    const double mean_i = result.cycles;
    const double stddev_i = result.standard_deviation;
    const double variance_i = stddev_i * stddev_i;
    atomic_add_double(weighted_cycles_sum_bits, n_i * mean_i);
    atomic_add_double(weighted_squared_cycles_sum_bits,
                      n_i * (variance_i + mean_i * mean_i));

    // Perform a CAS loop to atomically update the min
    uint64_t orig_min = min.load(cpp::MemoryOrder::RELAXED);
    while (!min.compare_exchange_strong(
        orig_min, cpp::min(orig_min, result.min), cpp::MemoryOrder::ACQUIRE,
        cpp::MemoryOrder::RELAXED))
      ;

    // Perform a CAS loop to atomically update the max
    uint64_t orig_max = max.load(cpp::MemoryOrder::RELAXED);
    while (!max.compare_exchange_strong(
        orig_max, cpp::max(orig_max, result.max), cpp::MemoryOrder::ACQUIRE,
        cpp::MemoryOrder::RELAXED))
      ;

    cpp::atomic_thread_fence(cpp::MemoryOrder::RELEASE);
  }
};

AtomicBenchmarkSums all_results;
constexpr auto GREEN = "\033[32m";
constexpr auto RESET = "\033[0m";

void print_results(Benchmark *b) {
  using FPBits = LIBC_NAMESPACE::fputil::FPBits<double>;

  BenchmarkResult final_result;
  cpp::atomic_thread_fence(cpp::MemoryOrder::RELEASE);

  const uint32_t num_threads =
      all_results.active_threads.load(cpp::MemoryOrder::RELAXED);
  final_result.total_iterations =
      all_results.iterations_sum.load(cpp::MemoryOrder::RELAXED);

  if (final_result.total_iterations > 0) {
    const uint64_t s1_bits =
        all_results.weighted_cycles_sum_bits.load(cpp::MemoryOrder::RELAXED);
    const uint64_t s2_bits = all_results.weighted_squared_cycles_sum_bits.load(
        cpp::MemoryOrder::RELAXED);

    const double S1 = FPBits(s1_bits).get_val();
    const double S2 = FPBits(s2_bits).get_val();
    const double N = static_cast<double>(final_result.total_iterations);

    const double global_mean = S1 / N;
    const double global_mean_of_squares = S2 / N;
    const double global_variance =
        global_mean_of_squares - (global_mean * global_mean);

    final_result.cycles = global_mean;
    final_result.standard_deviation =
        fputil::sqrt<double>(global_variance < 0.0 ? 0.0 : global_variance);
  } else {
    final_result.cycles = 0.0;
    final_result.standard_deviation = 0.0;
  }

  final_result.min = all_results.min.load(cpp::MemoryOrder::RELAXED);
  final_result.max = all_results.max.load(cpp::MemoryOrder::RELAXED);
  cpp::atomic_thread_fence(cpp::MemoryOrder::RELEASE);

  LIBC_NAMESPACE::printf(
      "%-24s |%15.0f |%9.0f |%8llu |%8llu |%15llu |%9u |\n",
      b->get_test_name().data(), final_result.cycles,
      final_result.standard_deviation,
      static_cast<unsigned long long>(final_result.min),
      static_cast<unsigned long long>(final_result.max),
      static_cast<unsigned long long>(final_result.total_iterations),
      static_cast<unsigned>(num_threads));
}

void print_header() {
  LIBC_NAMESPACE::printf("%s", GREEN);
  LIBC_NAMESPACE::printf("Running Suite: %-10s\n",
                         benchmarks[0]->get_suite_name().data());
  LIBC_NAMESPACE::printf("%s", RESET);
  cpp::string titles = "Benchmark                |  Cycles (Mean) |   Stddev | "
                       "    Min |     Max |     Iterations |  Threads |\n";
  LIBC_NAMESPACE::printf(titles.data());

  cpp::string separator(titles.size(), '-');
  separator[titles.size() - 1] = '\n';
  LIBC_NAMESPACE::printf(separator.data());
}

void Benchmark::run_benchmarks() {
  uint64_t id = gpu::get_thread_id();

  if (id == 0)
    print_header();

  gpu::sync_threads();

  for (Benchmark *b : benchmarks) {
    if (id == 0)
      all_results.reset();

    gpu::sync_threads();
    if (b->num_threads == static_cast<uint32_t>(-1) || id < b->num_threads) {
      auto current_result = b->run();
      all_results.update(current_result);
    }
    gpu::sync_threads();

    if (id == 0)
      print_results(b);
  }
  gpu::sync_threads();
}

BenchmarkResult benchmark(const BenchmarkOptions &options,
                          const BenchmarkTarget &target) {
  BenchmarkResult result;
  RuntimeEstimationProgression rep;
  uint32_t iterations = options.initial_iterations;

  if (iterations < 1u)
    iterations = 1;

  uint32_t samples = 0;
  uint64_t total_time = 0;
  uint64_t min = UINT64_MAX;
  uint64_t max = 0;

  uint32_t call_index = 0;

  for (int64_t time_budget = options.max_duration; time_budget >= 0;) {
    RefinableRuntimeEstimator sample_estimator;

    const clock_t start = clock();
    while (sample_estimator.get_iterations() < iterations) {
      auto current_result = target(call_index++);
      max = cpp::max(max, current_result);
      min = cpp::min(min, current_result);
      sample_estimator.update(current_result);
    }
    const clock_t end = clock();

    const clock_t duration_ns =
        ((end - start) * 1000 * 1000 * 1000) / CLOCKS_PER_SEC;
    total_time += duration_ns;
    time_budget -= duration_ns;
    samples++;

    const double change_ratio = rep.compute_improvement(sample_estimator);

    if (samples >= options.max_samples || iterations >= options.max_iterations)
      break;

    const auto total_iterations = rep.get_estimator().get_iterations();

    if (total_time >= options.min_duration && samples >= options.min_samples &&
        total_iterations >= options.min_iterations &&
        change_ratio < options.epsilon)
      break;

    iterations = static_cast<uint32_t>(
        fputil::ceil(iterations * options.scaling_factor));
  }

  const auto &estimator = rep.get_estimator();
  result.total_iterations = estimator.get_iterations();
  result.cycles = estimator.get_mean();
  result.standard_deviation = estimator.get_stddev();
  result.min = min;
  result.max = max;

  return result;
}

} // namespace benchmarks
} // namespace LIBC_NAMESPACE_DECL