1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
// RUN: %clang_builtins %s %librt -o %t && %run %t
// REQUIRES: librt_has_divtf3
#include "int_lib.h"
#include <stdio.h>
// The testcase currently assumes IEEE TF format, once that has been
// fixed the defined(CRT_HAS_IEEE_TF) guard can be removed to enable it for
// IBM 128 floats as well.
#if defined(CRT_HAS_IEEE_TF)
# include "fp_test.h"
// Returns: a / b
COMPILER_RT_ABI tf_float __divtf3(tf_float a, tf_float b);
int test__divtf3(tf_float a, tf_float b, uint64_t expectedHi,
uint64_t expectedLo) {
tf_float x = __divtf3(a, b);
int ret = compareResultF128(x, expectedHi, expectedLo);
if (ret) {
printf("error in test__divtf3(%.20Le, %.20Le) = %.20Le, "
"expected %.20Le\n",
a, b, x, fromRep128(expectedHi, expectedLo));
}
return ret;
}
char assumption_1[sizeof(tf_float) * CHAR_BIT == 128] = {0};
#endif
int main() {
#if defined(CRT_HAS_IEEE_TF)
// Returned NaNs are assumed to be qNaN by default
// qNaN / any = qNaN
if (test__divtf3(makeQNaN128(), TF_C(0x1.23456789abcdefp+5),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// NaN / any = NaN
if (test__divtf3(makeNaN128(UINT64_C(0x30000000)),
TF_C(0x1.23456789abcdefp+5), UINT64_C(0x7fff800000000000),
UINT64_C(0x0)))
return 1;
// any / qNaN = qNaN
if (test__divtf3(TF_C(0x1.23456789abcdefp+5), makeQNaN128(),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// any / NaN = NaN
if (test__divtf3(TF_C(0x1.23456789abcdefp+5),
makeNaN128(UINT64_C(0x30000000)),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// +Inf / positive = +Inf
if (test__divtf3(makeInf128(), TF_C(3.), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// +Inf / negative = -Inf
if (test__divtf3(makeInf128(), -TF_C(3.), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// -Inf / positive = -Inf
if (test__divtf3(makeNegativeInf128(), TF_C(3.), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// -Inf / negative = +Inf
if (test__divtf3(makeNegativeInf128(), -TF_C(3.),
UINT64_C(0x7fff000000000000), UINT64_C(0x0)))
return 1;
// Inf / Inf = NaN
if (test__divtf3(makeInf128(), makeInf128(), UINT64_C(0x7fff800000000000),
UINT64_C(0x0)))
return 1;
// 0.0 / 0.0 = NaN
if (test__divtf3(+TF_C(0x0.0p+0), +TF_C(0x0.0p+0),
UINT64_C(0x7fff800000000000), UINT64_C(0x0)))
return 1;
// +0.0 / +Inf = +0.0
if (test__divtf3(+TF_C(0x0.0p+0), makeInf128(), UINT64_C(0x0), UINT64_C(0x0)))
return 1;
// +Inf / +0.0 = +Inf
if (test__divtf3(makeInf128(), +TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// positive / +0.0 = +Inf
if (test__divtf3(+TF_C(1.0), +TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// positive / -0.0 = -Inf
if (test__divtf3(+1.0L, -TF_C(0x0.0p+0), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// negative / +0.0 = -Inf
if (test__divtf3(-1.0L, +TF_C(0x0.0p+0), UINT64_C(0xffff000000000000),
UINT64_C(0x0)))
return 1;
// negative / -0.0 = +Inf
if (test__divtf3(TF_C(-1.0), -TF_C(0x0.0p+0), UINT64_C(0x7fff000000000000),
UINT64_C(0x0)))
return 1;
// 1/3
if (test__divtf3(TF_C(1.), TF_C(3.), UINT64_C(0x3ffd555555555555),
UINT64_C(0x5555555555555555)))
return 1;
// smallest normal result
if (test__divtf3(TF_C(0x1.0p-16381), TF_C(2.), UINT64_C(0x0001000000000000),
UINT64_C(0x0)))
return 1;
// divisor is exactly 1.0
if (test__divtf3(TF_C(0x1.0p+0), TF_C(0x1.0p+0), UINT64_C(0x3fff000000000000),
UINT64_C(0x0)))
return 1;
// divisor is truncated to exactly 1.0 in UQ1.63
if (test__divtf3(TF_C(0x1.0p+0), TF_C(0x1.0000000000000001p+0),
UINT64_C(0x3ffeffffffffffff), UINT64_C(0xfffe000000000000)))
return 1;
// smallest normal value divided by 2.0
if (test__divtf3(TF_C(0x1.0p-16382), 2.L, UINT64_C(0x0000800000000000),
UINT64_C(0x0)))
return 1;
// smallest subnormal result
if (test__divtf3(TF_C(0x1.0p-16382), TF_C(0x1p+112), UINT64_C(0x0),
UINT64_C(0x1)))
return 1;
// any / any
if (test__divtf3(TF_C(0x1.a23b45362464523375893ab4cdefp+5),
TF_C(0x1.eedcbaba3a94546558237654321fp-1),
UINT64_C(0x4004b0b72924d407), UINT64_C(0x0717e84356c6eba2)))
return 1;
if (test__divtf3(TF_C(0x1.a2b34c56d745382f9abf2c3dfeffp-50),
TF_C(0x1.ed2c3ba15935332532287654321fp-9),
UINT64_C(0x3fd5b2af3f828c9b), UINT64_C(0x40e51f64cde8b1f2)))
return 15;
if (test__divtf3(TF_C(0x1.2345f6aaaa786555f42432abcdefp+456),
TF_C(0x1.edacbba9874f765463544dd3621fp+6400),
UINT64_C(0x28c62e15dc464466), UINT64_C(0xb5a07586348557ac)))
return 1;
if (test__divtf3(TF_C(0x1.2d3456f789ba6322bc665544edefp-234),
TF_C(0x1.eddcdba39f3c8b7a36564354321fp-4455),
UINT64_C(0x507b38442b539266), UINT64_C(0x22ce0f1d024e1252)))
return 1;
if (test__divtf3(TF_C(0x1.2345f6b77b7a8953365433abcdefp+234),
TF_C(0x1.edcba987d6bb3aa467754354321fp-4055),
UINT64_C(0x50bf2e02f0798d36), UINT64_C(0x5e6fcb6b60044078)))
return 1;
if (test__divtf3(TF_C(6.72420628622418701252535563464350521E-4932), TF_C(2.),
UINT64_C(0x0001000000000000), UINT64_C(0)))
return 1;
// test 1 / (1 - eps(0.5)) = 1 + eps(1).
if (test__divtf3(1.0L, TF_C(0x1.ffffffffffffffffffffffffffffp-1),
UINT64_C(0x3FFF000000000000), UINT64_C(1)))
return 1;
#else
printf("skipped\n");
#endif
return 0;
}
|