1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
|
//=== BuiltinFunctionChecker.cpp --------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This checker evaluates "standalone" clang builtin functions that are not
// just special-cased variants of well-known non-builtin functions.
// Builtin functions like __builtin_memcpy and __builtin_alloca should be
// evaluated by the same checker that handles their non-builtin variant to
// ensure that the two variants are handled consistently.
//
//===----------------------------------------------------------------------===//
#include "clang/Basic/Builtins.h"
#include "clang/StaticAnalyzer/Checkers/BuiltinCheckerRegistration.h"
#include "clang/StaticAnalyzer/Checkers/Taint.h"
#include "clang/StaticAnalyzer/Core/Checker.h"
#include "clang/StaticAnalyzer/Core/CheckerManager.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
using namespace clang;
using namespace ento;
using namespace taint;
namespace {
QualType getSufficientTypeForOverflowOp(CheckerContext &C, const QualType &T) {
// Calling a builtin with a non-integer type result produces compiler error.
assert(T->isIntegerType());
ASTContext &ACtx = C.getASTContext();
unsigned BitWidth = ACtx.getIntWidth(T);
return ACtx.getIntTypeForBitwidth(BitWidth * 2, T->isSignedIntegerType());
}
QualType getOverflowBuiltinResultType(const CallEvent &Call) {
// Calling a builtin with an incorrect argument count produces compiler error.
assert(Call.getNumArgs() == 3);
return Call.getArgExpr(2)->getType()->getPointeeType();
}
QualType getOverflowBuiltinResultType(const CallEvent &Call, CheckerContext &C,
unsigned BI) {
// Calling a builtin with an incorrect argument count produces compiler error.
assert(Call.getNumArgs() == 3);
ASTContext &ACtx = C.getASTContext();
switch (BI) {
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_sadd_overflow:
return ACtx.IntTy;
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_saddl_overflow:
return ACtx.LongTy;
case Builtin::BI__builtin_smulll_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_saddll_overflow:
return ACtx.LongLongTy;
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_uadd_overflow:
return ACtx.UnsignedIntTy;
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_uaddl_overflow:
return ACtx.UnsignedLongTy;
case Builtin::BI__builtin_umulll_overflow:
case Builtin::BI__builtin_usubll_overflow:
case Builtin::BI__builtin_uaddll_overflow:
return ACtx.UnsignedLongLongTy;
case Builtin::BI__builtin_mul_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_add_overflow:
return getOverflowBuiltinResultType(Call);
default:
assert(false && "Unknown overflow builtin");
return ACtx.IntTy;
}
}
class BuiltinFunctionChecker : public Checker<eval::Call> {
public:
bool evalCall(const CallEvent &Call, CheckerContext &C) const;
void handleOverflowBuiltin(const CallEvent &Call, CheckerContext &C,
BinaryOperator::Opcode Op,
QualType ResultType) const;
const NoteTag *createBuiltinOverflowNoteTag(CheckerContext &C,
bool BothFeasible, SVal Arg1,
SVal Arg2, SVal Result) const;
ProgramStateRef initStateAftetBuiltinOverflow(CheckerContext &C,
ProgramStateRef State,
const CallEvent &Call,
SVal RetCal,
bool IsOverflow) const;
std::pair<bool, bool> checkOverflow(CheckerContext &C, SVal RetVal,
QualType Res) const;
private:
// From: clang/include/clang/Basic/Builtins.def
// C++ standard library builtins in namespace 'std'.
const CallDescriptionSet BuiltinLikeStdFunctions{
{CDM::SimpleFunc, {"std", "addressof"}}, //
{CDM::SimpleFunc, {"std", "__addressof"}}, //
{CDM::SimpleFunc, {"std", "as_const"}}, //
{CDM::SimpleFunc, {"std", "forward"}}, //
{CDM::SimpleFunc, {"std", "forward_like"}}, //
{CDM::SimpleFunc, {"std", "move"}}, //
{CDM::SimpleFunc, {"std", "move_if_noexcept"}}, //
};
bool isBuiltinLikeFunction(const CallEvent &Call) const;
};
} // namespace
const NoteTag *BuiltinFunctionChecker::createBuiltinOverflowNoteTag(
CheckerContext &C, bool overflow, SVal Arg1, SVal Arg2, SVal Result) const {
return C.getNoteTag([Result, Arg1, Arg2, overflow](PathSensitiveBugReport &BR,
llvm::raw_ostream &OS) {
if (!BR.isInteresting(Result))
return;
// Propagate interestingness to input arguments if result is interesting.
BR.markInteresting(Arg1);
BR.markInteresting(Arg2);
if (overflow)
OS << "Assuming overflow";
else
OS << "Assuming no overflow";
});
}
std::pair<bool, bool>
BuiltinFunctionChecker::checkOverflow(CheckerContext &C, SVal RetVal,
QualType Res) const {
// Calling a builtin with a non-integer type result produces compiler error.
assert(Res->isIntegerType());
unsigned BitWidth = C.getASTContext().getIntWidth(Res);
bool IsUnsigned = Res->isUnsignedIntegerType();
SValBuilder &SVB = C.getSValBuilder();
BasicValueFactory &VF = SVB.getBasicValueFactory();
auto MinValType = llvm::APSInt::getMinValue(BitWidth, IsUnsigned);
auto MaxValType = llvm::APSInt::getMaxValue(BitWidth, IsUnsigned);
nonloc::ConcreteInt MinVal{VF.getValue(MinValType)};
nonloc::ConcreteInt MaxVal{VF.getValue(MaxValType)};
ProgramStateRef State = C.getState();
SVal IsLeMax = SVB.evalBinOp(State, BO_LE, RetVal, MaxVal, Res);
SVal IsGeMin = SVB.evalBinOp(State, BO_GE, RetVal, MinVal, Res);
auto [MayNotOverflow, MayOverflow] =
State->assume(IsLeMax.castAs<DefinedOrUnknownSVal>());
auto [MayNotUnderflow, MayUnderflow] =
State->assume(IsGeMin.castAs<DefinedOrUnknownSVal>());
return {MayOverflow || MayUnderflow, MayNotOverflow && MayNotUnderflow};
}
ProgramStateRef BuiltinFunctionChecker::initStateAftetBuiltinOverflow(
CheckerContext &C, ProgramStateRef State, const CallEvent &Call,
SVal RetVal, bool IsOverflow) const {
SValBuilder &SVB = C.getSValBuilder();
SVal Arg1 = Call.getArgSVal(0);
SVal Arg2 = Call.getArgSVal(1);
auto BoolTy = C.getASTContext().BoolTy;
ProgramStateRef NewState =
State->BindExpr(Call.getOriginExpr(), C.getLocationContext(),
SVB.makeTruthVal(IsOverflow, BoolTy));
if (auto L = Call.getArgSVal(2).getAs<Loc>()) {
NewState = NewState->bindLoc(*L, RetVal, C.getLocationContext());
// Propagate taint if any of the arguments were tainted
if (isTainted(State, Arg1) || isTainted(State, Arg2))
NewState = addTaint(NewState, *L);
}
return NewState;
}
void BuiltinFunctionChecker::handleOverflowBuiltin(const CallEvent &Call,
CheckerContext &C,
BinaryOperator::Opcode Op,
QualType ResultType) const {
// Calling a builtin with an incorrect argument count produces compiler error.
assert(Call.getNumArgs() == 3);
ProgramStateRef State = C.getState();
SValBuilder &SVB = C.getSValBuilder();
SVal Arg1 = Call.getArgSVal(0);
SVal Arg2 = Call.getArgSVal(1);
SVal RetValMax = SVB.evalBinOp(State, Op, Arg1, Arg2,
getSufficientTypeForOverflowOp(C, ResultType));
SVal RetVal = SVB.evalBinOp(State, Op, Arg1, Arg2, ResultType);
auto [Overflow, NotOverflow] = checkOverflow(C, RetValMax, ResultType);
if (NotOverflow) {
auto NewState =
initStateAftetBuiltinOverflow(C, State, Call, RetVal, false);
C.addTransition(NewState, createBuiltinOverflowNoteTag(
C, /*overflow=*/false, Arg1, Arg2, RetVal));
}
if (Overflow) {
auto NewState = initStateAftetBuiltinOverflow(C, State, Call, RetVal, true);
C.addTransition(NewState, createBuiltinOverflowNoteTag(C, /*overflow=*/true,
Arg1, Arg2, RetVal));
}
}
bool BuiltinFunctionChecker::isBuiltinLikeFunction(
const CallEvent &Call) const {
const auto *FD = llvm::dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!FD || FD->getNumParams() != 1)
return false;
if (QualType RetTy = FD->getReturnType();
!RetTy->isPointerType() && !RetTy->isReferenceType())
return false;
if (QualType ParmTy = FD->getParamDecl(0)->getType();
!ParmTy->isPointerType() && !ParmTy->isReferenceType())
return false;
return BuiltinLikeStdFunctions.contains(Call);
}
bool BuiltinFunctionChecker::evalCall(const CallEvent &Call,
CheckerContext &C) const {
ProgramStateRef state = C.getState();
const auto *FD = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
if (!FD)
return false;
const LocationContext *LCtx = C.getLocationContext();
const Expr *CE = Call.getOriginExpr();
if (isBuiltinLikeFunction(Call)) {
C.addTransition(state->BindExpr(CE, LCtx, Call.getArgSVal(0)));
return true;
}
unsigned BI = FD->getBuiltinID();
switch (BI) {
default:
return false;
case Builtin::BI__builtin_mul_overflow:
case Builtin::BI__builtin_smul_overflow:
case Builtin::BI__builtin_smull_overflow:
case Builtin::BI__builtin_smulll_overflow:
case Builtin::BI__builtin_umul_overflow:
case Builtin::BI__builtin_umull_overflow:
case Builtin::BI__builtin_umulll_overflow:
handleOverflowBuiltin(Call, C, BO_Mul,
getOverflowBuiltinResultType(Call, C, BI));
return true;
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_ssub_overflow:
case Builtin::BI__builtin_ssubl_overflow:
case Builtin::BI__builtin_ssubll_overflow:
case Builtin::BI__builtin_usub_overflow:
case Builtin::BI__builtin_usubl_overflow:
case Builtin::BI__builtin_usubll_overflow:
handleOverflowBuiltin(Call, C, BO_Sub,
getOverflowBuiltinResultType(Call, C, BI));
return true;
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sadd_overflow:
case Builtin::BI__builtin_saddl_overflow:
case Builtin::BI__builtin_saddll_overflow:
case Builtin::BI__builtin_uadd_overflow:
case Builtin::BI__builtin_uaddl_overflow:
case Builtin::BI__builtin_uaddll_overflow:
handleOverflowBuiltin(Call, C, BO_Add,
getOverflowBuiltinResultType(Call, C, BI));
return true;
case Builtin::BI__builtin_unpredictable:
case Builtin::BI__builtin_expect:
case Builtin::BI__builtin_expect_with_probability:
case Builtin::BI__builtin_assume_aligned:
case Builtin::BI__builtin_addressof:
case Builtin::BI__builtin_function_start: {
// For __builtin_unpredictable, __builtin_expect,
// __builtin_expect_with_probability and __builtin_assume_aligned,
// just return the value of the subexpression.
// __builtin_addressof is going from a reference to a pointer, but those
// are represented the same way in the analyzer.
assert (Call.getNumArgs() > 0);
SVal Arg = Call.getArgSVal(0);
C.addTransition(state->BindExpr(CE, LCtx, Arg));
return true;
}
case Builtin::BI__builtin_dynamic_object_size:
case Builtin::BI__builtin_object_size:
case Builtin::BI__builtin_constant_p: {
// This must be resolvable at compile time, so we defer to the constant
// evaluator for a value.
SValBuilder &SVB = C.getSValBuilder();
SVal V = UnknownVal();
Expr::EvalResult EVResult;
if (CE->EvaluateAsInt(EVResult, C.getASTContext(), Expr::SE_NoSideEffects)) {
// Make sure the result has the correct type.
llvm::APSInt Result = EVResult.Val.getInt();
BasicValueFactory &BVF = SVB.getBasicValueFactory();
BVF.getAPSIntType(CE->getType()).apply(Result);
V = SVB.makeIntVal(Result);
}
if (FD->getBuiltinID() == Builtin::BI__builtin_constant_p) {
// If we didn't manage to figure out if the value is constant or not,
// it is safe to assume that it's not constant and unsafe to assume
// that it's constant.
if (V.isUnknown())
V = SVB.makeIntVal(0, CE->getType());
}
C.addTransition(state->BindExpr(CE, LCtx, V));
return true;
}
}
}
void ento::registerBuiltinFunctionChecker(CheckerManager &mgr) {
mgr.registerChecker<BuiltinFunctionChecker>();
}
bool ento::shouldRegisterBuiltinFunctionChecker(const CheckerManager &mgr) {
return true;
}
|