1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
|
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code to compute the layout of a record.
//
//===----------------------------------------------------------------------===//
#include "CIRGenBuilder.h"
#include "CIRGenModule.h"
#include "CIRGenTypes.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/RecordLayout.h"
#include "clang/CIR/Dialect/IR/CIRAttrs.h"
#include "clang/CIR/Dialect/IR/CIRDataLayout.h"
#include "clang/CIR/MissingFeatures.h"
#include "llvm/Support/Casting.h"
#include <memory>
using namespace llvm;
using namespace clang;
using namespace clang::CIRGen;
namespace {
/// The CIRRecordLowering is responsible for lowering an ASTRecordLayout to an
/// mlir::Type. Some of the lowering is straightforward, some is not.
// TODO: Detail some of the complexities and weirdnesses?
// (See CGRecordLayoutBuilder.cpp)
struct CIRRecordLowering final {
// MemberInfo is a helper structure that contains information about a record
// member. In addition to the standard member types, there exists a sentinel
// member type that ensures correct rounding.
struct MemberInfo final {
CharUnits offset;
enum class InfoKind { VFPtr, Field, Base, VBase } kind;
mlir::Type data;
union {
const FieldDecl *fieldDecl;
const CXXRecordDecl *cxxRecordDecl;
};
MemberInfo(CharUnits offset, InfoKind kind, mlir::Type data,
const FieldDecl *fieldDecl = nullptr)
: offset{offset}, kind{kind}, data{data}, fieldDecl{fieldDecl} {}
MemberInfo(CharUnits offset, InfoKind kind, mlir::Type data,
const CXXRecordDecl *rd)
: offset{offset}, kind{kind}, data{data}, cxxRecordDecl{rd} {}
// MemberInfos are sorted so we define a < operator.
bool operator<(const MemberInfo &other) const {
return offset < other.offset;
}
};
// The constructor.
CIRRecordLowering(CIRGenTypes &cirGenTypes, const RecordDecl *recordDecl,
bool packed);
/// Constructs a MemberInfo instance from an offset and mlir::Type.
MemberInfo makeStorageInfo(CharUnits offset, mlir::Type data) {
return MemberInfo(offset, MemberInfo::InfoKind::Field, data);
}
// Layout routines.
void setBitFieldInfo(const FieldDecl *fd, CharUnits startOffset,
mlir::Type storageType);
void lower(bool NonVirtualBaseType);
void lowerUnion();
/// Determines if we need a packed llvm struct.
void determinePacked(bool nvBaseType);
/// Inserts padding everywhere it's needed.
void insertPadding();
void computeVolatileBitfields();
void accumulateBases();
void accumulateVPtrs();
void accumulateVBases();
void accumulateFields();
RecordDecl::field_iterator
accumulateBitFields(RecordDecl::field_iterator field,
RecordDecl::field_iterator fieldEnd);
mlir::Type getVFPtrType();
bool isAAPCS() const {
return astContext.getTargetInfo().getABI().starts_with("aapcs");
}
/// Helper function to check if the target machine is BigEndian.
bool isBigEndian() const { return astContext.getTargetInfo().isBigEndian(); }
// The Itanium base layout rule allows virtual bases to overlap
// other bases, which complicates layout in specific ways.
//
// Note specifically that the ms_struct attribute doesn't change this.
bool isOverlappingVBaseABI() {
return !astContext.getTargetInfo().getCXXABI().isMicrosoft();
}
// Recursively searches all of the bases to find out if a vbase is
// not the primary vbase of some base class.
bool hasOwnStorage(const CXXRecordDecl *decl, const CXXRecordDecl *query);
/// The Microsoft bitfield layout rule allocates discrete storage
/// units of the field's formal type and only combines adjacent
/// fields of the same formal type. We want to emit a layout with
/// these discrete storage units instead of combining them into a
/// continuous run.
bool isDiscreteBitFieldABI() {
return astContext.getTargetInfo().getCXXABI().isMicrosoft() ||
recordDecl->isMsStruct(astContext);
}
CharUnits bitsToCharUnits(uint64_t bitOffset) {
return astContext.toCharUnitsFromBits(bitOffset);
}
void calculateZeroInit();
CharUnits getSize(mlir::Type Ty) {
return CharUnits::fromQuantity(dataLayout.layout.getTypeSize(Ty));
}
CharUnits getSizeInBits(mlir::Type ty) {
return CharUnits::fromQuantity(dataLayout.layout.getTypeSizeInBits(ty));
}
CharUnits getAlignment(mlir::Type Ty) {
return CharUnits::fromQuantity(dataLayout.layout.getTypeABIAlignment(Ty));
}
bool isZeroInitializable(const FieldDecl *fd) {
return cirGenTypes.isZeroInitializable(fd->getType());
}
bool isZeroInitializable(const RecordDecl *rd) {
return cirGenTypes.isZeroInitializable(rd);
}
/// Wraps cir::IntType with some implicit arguments.
mlir::Type getUIntNType(uint64_t numBits) {
unsigned alignedBits = llvm::PowerOf2Ceil(numBits);
alignedBits = std::max(8u, alignedBits);
return cir::IntType::get(&cirGenTypes.getMLIRContext(), alignedBits,
/*isSigned=*/false);
}
mlir::Type getCharType() {
return cir::IntType::get(&cirGenTypes.getMLIRContext(),
astContext.getCharWidth(),
/*isSigned=*/false);
}
mlir::Type getByteArrayType(CharUnits numberOfChars) {
assert(!numberOfChars.isZero() && "Empty byte arrays aren't allowed.");
mlir::Type type = getCharType();
return numberOfChars == CharUnits::One()
? type
: cir::ArrayType::get(type, numberOfChars.getQuantity());
}
// Gets the CIR BaseSubobject type from a CXXRecordDecl.
mlir::Type getStorageType(const CXXRecordDecl *RD) {
return cirGenTypes.getCIRGenRecordLayout(RD).getBaseSubobjectCIRType();
}
// This is different from LLVM traditional codegen because CIRGen uses arrays
// of bytes instead of arbitrary-sized integers. This is important for packed
// structures support.
mlir::Type getBitfieldStorageType(unsigned numBits) {
unsigned alignedBits = llvm::alignTo(numBits, astContext.getCharWidth());
if (cir::isValidFundamentalIntWidth(alignedBits))
return builder.getUIntNTy(alignedBits);
mlir::Type type = getCharType();
return cir::ArrayType::get(type, alignedBits / astContext.getCharWidth());
}
mlir::Type getStorageType(const FieldDecl *fieldDecl) {
mlir::Type type = cirGenTypes.convertTypeForMem(fieldDecl->getType());
if (fieldDecl->isBitField()) {
cirGenTypes.getCGModule().errorNYI(recordDecl->getSourceRange(),
"getStorageType for bitfields");
}
return type;
}
uint64_t getFieldBitOffset(const FieldDecl *fieldDecl) {
return astRecordLayout.getFieldOffset(fieldDecl->getFieldIndex());
}
/// Fills out the structures that are ultimately consumed.
void fillOutputFields();
void appendPaddingBytes(CharUnits size) {
if (!size.isZero()) {
fieldTypes.push_back(getByteArrayType(size));
padded = true;
}
}
CIRGenTypes &cirGenTypes;
CIRGenBuilderTy &builder;
const ASTContext &astContext;
const RecordDecl *recordDecl;
const CXXRecordDecl *cxxRecordDecl;
const ASTRecordLayout &astRecordLayout;
// Helpful intermediate data-structures
std::vector<MemberInfo> members;
// Output fields, consumed by CIRGenTypes::computeRecordLayout
llvm::SmallVector<mlir::Type, 16> fieldTypes;
llvm::DenseMap<const FieldDecl *, CIRGenBitFieldInfo> bitFields;
llvm::DenseMap<const FieldDecl *, unsigned> fieldIdxMap;
llvm::DenseMap<const CXXRecordDecl *, unsigned> nonVirtualBases;
llvm::DenseMap<const CXXRecordDecl *, unsigned> virtualBases;
cir::CIRDataLayout dataLayout;
LLVM_PREFERRED_TYPE(bool)
unsigned zeroInitializable : 1;
LLVM_PREFERRED_TYPE(bool)
unsigned zeroInitializableAsBase : 1;
LLVM_PREFERRED_TYPE(bool)
unsigned packed : 1;
LLVM_PREFERRED_TYPE(bool)
unsigned padded : 1;
private:
CIRRecordLowering(const CIRRecordLowering &) = delete;
void operator=(const CIRRecordLowering &) = delete;
}; // CIRRecordLowering
} // namespace
CIRRecordLowering::CIRRecordLowering(CIRGenTypes &cirGenTypes,
const RecordDecl *recordDecl, bool packed)
: cirGenTypes{cirGenTypes}, builder{cirGenTypes.getBuilder()},
astContext{cirGenTypes.getASTContext()}, recordDecl{recordDecl},
cxxRecordDecl{llvm::dyn_cast<CXXRecordDecl>(recordDecl)},
astRecordLayout{
cirGenTypes.getASTContext().getASTRecordLayout(recordDecl)},
dataLayout{cirGenTypes.getCGModule().getModule()},
zeroInitializable{true}, zeroInitializableAsBase{true}, packed{packed},
padded{false} {}
void CIRRecordLowering::setBitFieldInfo(const FieldDecl *fd,
CharUnits startOffset,
mlir::Type storageType) {
CIRGenBitFieldInfo &info = bitFields[fd->getCanonicalDecl()];
info.isSigned = fd->getType()->isSignedIntegerOrEnumerationType();
info.offset =
(unsigned)(getFieldBitOffset(fd) - astContext.toBits(startOffset));
info.size = fd->getBitWidthValue();
info.storageSize = getSizeInBits(storageType).getQuantity();
info.storageOffset = startOffset;
info.storageType = storageType;
info.name = fd->getName();
if (info.size > info.storageSize)
info.size = info.storageSize;
// Reverse the bit offsets for big endian machines. Since bitfields are laid
// out as packed bits within an integer-sized unit, we can imagine the bits
// counting from the most-significant-bit instead of the
// least-significant-bit.
if (dataLayout.isBigEndian())
info.offset = info.storageSize - (info.offset + info.size);
info.volatileStorageSize = 0;
info.volatileOffset = 0;
info.volatileStorageOffset = CharUnits::Zero();
}
void CIRRecordLowering::lower(bool nonVirtualBaseType) {
if (recordDecl->isUnion()) {
lowerUnion();
computeVolatileBitfields();
return;
}
CharUnits size = nonVirtualBaseType ? astRecordLayout.getNonVirtualSize()
: astRecordLayout.getSize();
accumulateFields();
if (cxxRecordDecl) {
accumulateVPtrs();
accumulateBases();
if (members.empty()) {
appendPaddingBytes(size);
computeVolatileBitfields();
return;
}
if (!nonVirtualBaseType)
accumulateVBases();
}
llvm::stable_sort(members);
// TODO: implement clipTailPadding once bitfields are implemented
assert(!cir::MissingFeatures::bitfields());
assert(!cir::MissingFeatures::recordZeroInit());
members.push_back(makeStorageInfo(size, getUIntNType(8)));
determinePacked(nonVirtualBaseType);
insertPadding();
members.pop_back();
calculateZeroInit();
fillOutputFields();
computeVolatileBitfields();
}
void CIRRecordLowering::fillOutputFields() {
for (const MemberInfo &member : members) {
if (member.data)
fieldTypes.push_back(member.data);
if (member.kind == MemberInfo::InfoKind::Field) {
if (member.fieldDecl)
fieldIdxMap[member.fieldDecl->getCanonicalDecl()] =
fieldTypes.size() - 1;
// A field without storage must be a bitfield.
assert(!cir::MissingFeatures::bitfields());
if (!member.data)
setBitFieldInfo(member.fieldDecl, member.offset, fieldTypes.back());
} else if (member.kind == MemberInfo::InfoKind::Base) {
nonVirtualBases[member.cxxRecordDecl] = fieldTypes.size() - 1;
} else if (member.kind == MemberInfo::InfoKind::VBase) {
virtualBases[member.cxxRecordDecl] = fieldTypes.size() - 1;
}
}
}
RecordDecl::field_iterator
CIRRecordLowering::accumulateBitFields(RecordDecl::field_iterator field,
RecordDecl::field_iterator fieldEnd) {
if (isDiscreteBitFieldABI()) {
// run stores the first element of the current run of bitfields. fieldEnd is
// used as a special value to note that we don't have a current run. A
// bitfield run is a contiguous collection of bitfields that can be stored
// in the same storage block. Zero-sized bitfields and bitfields that would
// cross an alignment boundary break a run and start a new one.
RecordDecl::field_iterator run = fieldEnd;
// tail is the offset of the first bit off the end of the current run. It's
// used to determine if the ASTRecordLayout is treating these two bitfields
// as contiguous. StartBitOffset is offset of the beginning of the Run.
uint64_t startBitOffset, tail = 0;
for (; field != fieldEnd && field->isBitField(); ++field) {
// Zero-width bitfields end runs.
if (field->isZeroLengthBitField()) {
run = fieldEnd;
continue;
}
uint64_t bitOffset = getFieldBitOffset(*field);
mlir::Type type = cirGenTypes.convertTypeForMem(field->getType());
// If we don't have a run yet, or don't live within the previous run's
// allocated storage then we allocate some storage and start a new run.
if (run == fieldEnd || bitOffset >= tail) {
run = field;
startBitOffset = bitOffset;
tail = startBitOffset + dataLayout.getTypeAllocSizeInBits(type);
// Add the storage member to the record. This must be added to the
// record before the bitfield members so that it gets laid out before
// the bitfields it contains get laid out.
members.push_back(
makeStorageInfo(bitsToCharUnits(startBitOffset), type));
}
// Bitfields get the offset of their storage but come afterward and remain
// there after a stable sort.
members.push_back(MemberInfo(bitsToCharUnits(startBitOffset),
MemberInfo::InfoKind::Field, nullptr,
*field));
}
return field;
}
CharUnits regSize =
bitsToCharUnits(astContext.getTargetInfo().getRegisterWidth());
unsigned charBits = astContext.getCharWidth();
// Data about the start of the span we're accumulating to create an access
// unit from. 'Begin' is the first bitfield of the span. If 'begin' is
// 'fieldEnd', we've not got a current span. The span starts at the
// 'beginOffset' character boundary. 'bitSizeSinceBegin' is the size (in bits)
// of the span -- this might include padding when we've advanced to a
// subsequent bitfield run.
RecordDecl::field_iterator begin = fieldEnd;
CharUnits beginOffset;
uint64_t bitSizeSinceBegin;
// The (non-inclusive) end of the largest acceptable access unit we've found
// since 'begin'. If this is 'begin', we're gathering the initial set of
// bitfields of a new span. 'bestEndOffset' is the end of that acceptable
// access unit -- it might extend beyond the last character of the bitfield
// run, using available padding characters.
RecordDecl::field_iterator bestEnd = begin;
CharUnits bestEndOffset;
bool bestClipped; // Whether the representation must be in a byte array.
for (;;) {
// atAlignedBoundary is true if 'field' is the (potential) start of a new
// span (or the end of the bitfields). When true, limitOffset is the
// character offset of that span and barrier indicates whether the new
// span cannot be merged into the current one.
bool atAlignedBoundary = false;
bool barrier = false; // a barrier can be a zero Bit Width or non bit member
if (field != fieldEnd && field->isBitField()) {
uint64_t bitOffset = getFieldBitOffset(*field);
if (begin == fieldEnd) {
// Beginning a new span.
begin = field;
bestEnd = begin;
assert((bitOffset % charBits) == 0 && "Not at start of char");
beginOffset = bitsToCharUnits(bitOffset);
bitSizeSinceBegin = 0;
} else if ((bitOffset % charBits) != 0) {
// Bitfield occupies the same character as previous bitfield, it must be
// part of the same span. This can include zero-length bitfields, should
// the target not align them to character boundaries. Such non-alignment
// is at variance with the standards, which require zero-length
// bitfields be a barrier between access units. But of course we can't
// achieve that in the middle of a character.
assert(bitOffset ==
astContext.toBits(beginOffset) + bitSizeSinceBegin &&
"Concatenating non-contiguous bitfields");
} else {
// Bitfield potentially begins a new span. This includes zero-length
// bitfields on non-aligning targets that lie at character boundaries
// (those are barriers to merging).
if (field->isZeroLengthBitField())
barrier = true;
atAlignedBoundary = true;
}
} else {
// We've reached the end of the bitfield run. Either we're done, or this
// is a barrier for the current span.
if (begin == fieldEnd)
break;
barrier = true;
atAlignedBoundary = true;
}
// 'installBest' indicates whether we should create an access unit for the
// current best span: fields ['begin', 'bestEnd') occupying characters
// ['beginOffset', 'bestEndOffset').
bool installBest = false;
if (atAlignedBoundary) {
// 'field' is the start of a new span or the end of the bitfields. The
// just-seen span now extends to 'bitSizeSinceBegin'.
// Determine if we can accumulate that just-seen span into the current
// accumulation.
CharUnits accessSize = bitsToCharUnits(bitSizeSinceBegin + charBits - 1);
if (bestEnd == begin) {
// This is the initial run at the start of a new span. By definition,
// this is the best seen so far.
bestEnd = field;
bestEndOffset = beginOffset + accessSize;
// Assume clipped until proven not below.
bestClipped = true;
if (!bitSizeSinceBegin)
// A zero-sized initial span -- this will install nothing and reset
// for another.
installBest = true;
} else if (accessSize > regSize) {
// Accumulating the just-seen span would create a multi-register access
// unit, which would increase register pressure.
installBest = true;
}
if (!installBest) {
// Determine if accumulating the just-seen span will create an expensive
// access unit or not.
mlir::Type type = getUIntNType(astContext.toBits(accessSize));
if (!astContext.getTargetInfo().hasCheapUnalignedBitFieldAccess())
cirGenTypes.getCGModule().errorNYI(
field->getSourceRange(), "NYI CheapUnalignedBitFieldAccess");
if (!installBest) {
// Find the next used storage offset to determine what the limit of
// the current span is. That's either the offset of the next field
// with storage (which might be field itself) or the end of the
// non-reusable tail padding.
CharUnits limitOffset;
for (auto probe = field; probe != fieldEnd; ++probe)
if (!isEmptyFieldForLayout(astContext, *probe)) {
// A member with storage sets the limit.
assert((getFieldBitOffset(*probe) % charBits) == 0 &&
"Next storage is not byte-aligned");
limitOffset = bitsToCharUnits(getFieldBitOffset(*probe));
goto FoundLimit;
}
limitOffset = cxxRecordDecl ? astRecordLayout.getNonVirtualSize()
: astRecordLayout.getDataSize();
FoundLimit:
CharUnits typeSize = getSize(type);
if (beginOffset + typeSize <= limitOffset) {
// There is space before limitOffset to create a naturally-sized
// access unit.
bestEndOffset = beginOffset + typeSize;
bestEnd = field;
bestClipped = false;
}
if (barrier) {
// The next field is a barrier that we cannot merge across.
installBest = true;
} else if (cirGenTypes.getCGModule()
.getCodeGenOpts()
.FineGrainedBitfieldAccesses) {
installBest = true;
} else {
// Otherwise, we're not installing. Update the bit size
// of the current span to go all the way to limitOffset, which is
// the (aligned) offset of next bitfield to consider.
bitSizeSinceBegin = astContext.toBits(limitOffset - beginOffset);
}
}
}
}
if (installBest) {
assert((field == fieldEnd || !field->isBitField() ||
(getFieldBitOffset(*field) % charBits) == 0) &&
"Installing but not at an aligned bitfield or limit");
CharUnits accessSize = bestEndOffset - beginOffset;
if (!accessSize.isZero()) {
// Add the storage member for the access unit to the record. The
// bitfields get the offset of their storage but come afterward and
// remain there after a stable sort.
mlir::Type type;
if (bestClipped) {
assert(getSize(getUIntNType(astContext.toBits(accessSize))) >
accessSize &&
"Clipped access need not be clipped");
type = getByteArrayType(accessSize);
} else {
type = getUIntNType(astContext.toBits(accessSize));
assert(getSize(type) == accessSize &&
"Unclipped access must be clipped");
}
members.push_back(makeStorageInfo(beginOffset, type));
for (; begin != bestEnd; ++begin)
if (!begin->isZeroLengthBitField())
members.push_back(MemberInfo(
beginOffset, MemberInfo::InfoKind::Field, nullptr, *begin));
}
// Reset to start a new span.
field = bestEnd;
begin = fieldEnd;
} else {
assert(field != fieldEnd && field->isBitField() &&
"Accumulating past end of bitfields");
assert(!barrier && "Accumulating across barrier");
// Accumulate this bitfield into the current (potential) span.
bitSizeSinceBegin += field->getBitWidthValue();
++field;
}
}
return field;
}
void CIRRecordLowering::accumulateFields() {
for (RecordDecl::field_iterator field = recordDecl->field_begin(),
fieldEnd = recordDecl->field_end();
field != fieldEnd;) {
if (field->isBitField()) {
field = accumulateBitFields(field, fieldEnd);
assert((field == fieldEnd || !field->isBitField()) &&
"Failed to accumulate all the bitfields");
} else if (!field->isZeroSize(astContext)) {
members.push_back(MemberInfo(bitsToCharUnits(getFieldBitOffset(*field)),
MemberInfo::InfoKind::Field,
getStorageType(*field), *field));
++field;
} else {
// TODO(cir): do we want to do anything special about zero size members?
assert(!cir::MissingFeatures::zeroSizeRecordMembers());
++field;
}
}
}
void CIRRecordLowering::calculateZeroInit() {
for (const MemberInfo &member : members) {
if (member.kind == MemberInfo::InfoKind::Field) {
if (!member.fieldDecl || isZeroInitializable(member.fieldDecl))
continue;
zeroInitializable = zeroInitializableAsBase = false;
return;
} else if (member.kind == MemberInfo::InfoKind::Base ||
member.kind == MemberInfo::InfoKind::VBase) {
if (isZeroInitializable(member.cxxRecordDecl))
continue;
zeroInitializable = false;
if (member.kind == MemberInfo::InfoKind::Base)
zeroInitializableAsBase = false;
}
}
}
void CIRRecordLowering::determinePacked(bool nvBaseType) {
if (packed)
return;
CharUnits alignment = CharUnits::One();
CharUnits nvAlignment = CharUnits::One();
CharUnits nvSize = !nvBaseType && cxxRecordDecl
? astRecordLayout.getNonVirtualSize()
: CharUnits::Zero();
for (const MemberInfo &member : members) {
if (!member.data)
continue;
// If any member falls at an offset that it not a multiple of its alignment,
// then the entire record must be packed.
if (member.offset % getAlignment(member.data))
packed = true;
if (member.offset < nvSize)
nvAlignment = std::max(nvAlignment, getAlignment(member.data));
alignment = std::max(alignment, getAlignment(member.data));
}
// If the size of the record (the capstone's offset) is not a multiple of the
// record's alignment, it must be packed.
if (members.back().offset % alignment)
packed = true;
// If the non-virtual sub-object is not a multiple of the non-virtual
// sub-object's alignment, it must be packed. We cannot have a packed
// non-virtual sub-object and an unpacked complete object or vise versa.
if (nvSize % nvAlignment)
packed = true;
// Update the alignment of the sentinel.
if (!packed)
members.back().data = getUIntNType(astContext.toBits(alignment));
}
void CIRRecordLowering::insertPadding() {
std::vector<std::pair<CharUnits, CharUnits>> padding;
CharUnits size = CharUnits::Zero();
for (const MemberInfo &member : members) {
if (!member.data)
continue;
CharUnits offset = member.offset;
assert(offset >= size);
// Insert padding if we need to.
if (offset !=
size.alignTo(packed ? CharUnits::One() : getAlignment(member.data)))
padding.push_back(std::make_pair(size, offset - size));
size = offset + getSize(member.data);
}
if (padding.empty())
return;
padded = true;
// Add the padding to the Members list and sort it.
for (const std::pair<CharUnits, CharUnits> &paddingPair : padding)
members.push_back(makeStorageInfo(paddingPair.first,
getByteArrayType(paddingPair.second)));
llvm::stable_sort(members);
}
std::unique_ptr<CIRGenRecordLayout>
CIRGenTypes::computeRecordLayout(const RecordDecl *rd, cir::RecordType *ty) {
CIRRecordLowering lowering(*this, rd, /*packed=*/false);
assert(ty->isIncomplete() && "recomputing record layout?");
lowering.lower(/*nonVirtualBaseType=*/false);
// If we're in C++, compute the base subobject type.
cir::RecordType baseTy;
if (llvm::isa<CXXRecordDecl>(rd) && !rd->isUnion() &&
!rd->hasAttr<FinalAttr>()) {
baseTy = *ty;
if (lowering.astRecordLayout.getNonVirtualSize() !=
lowering.astRecordLayout.getSize()) {
CIRRecordLowering baseLowering(*this, rd, /*Packed=*/lowering.packed);
baseLowering.lower(/*NonVirtualBaseType=*/true);
std::string baseIdentifier = getRecordTypeName(rd, ".base");
baseTy = builder.getCompleteNamedRecordType(
baseLowering.fieldTypes, baseLowering.packed, baseLowering.padded,
baseIdentifier);
// TODO(cir): add something like addRecordTypeName
// BaseTy and Ty must agree on their packedness for getCIRFieldNo to work
// on both of them with the same index.
assert(lowering.packed == baseLowering.packed &&
"Non-virtual and complete types must agree on packedness");
}
}
// Fill in the record *after* computing the base type. Filling in the body
// signifies that the type is no longer opaque and record layout is complete,
// but we may need to recursively layout rd while laying D out as a base type.
assert(!cir::MissingFeatures::astRecordDeclAttr());
ty->complete(lowering.fieldTypes, lowering.packed, lowering.padded);
auto rl = std::make_unique<CIRGenRecordLayout>(
ty ? *ty : cir::RecordType{}, baseTy ? baseTy : cir::RecordType{},
(bool)lowering.zeroInitializable, (bool)lowering.zeroInitializableAsBase);
assert(!cir::MissingFeatures::recordZeroInit());
rl->nonVirtualBases.swap(lowering.nonVirtualBases);
rl->completeObjectVirtualBases.swap(lowering.virtualBases);
assert(!cir::MissingFeatures::bitfields());
// Add all the field numbers.
rl->fieldIdxMap.swap(lowering.fieldIdxMap);
rl->bitFields.swap(lowering.bitFields);
// Dump the layout, if requested.
if (getASTContext().getLangOpts().DumpRecordLayouts) {
llvm::outs() << "\n*** Dumping CIRgen Record Layout\n";
llvm::outs() << "Record: ";
rd->dump(llvm::outs());
llvm::outs() << "\nLayout: ";
rl->print(llvm::outs());
}
// TODO: implement verification
return rl;
}
void CIRGenRecordLayout::print(raw_ostream &os) const {
os << "<CIRecordLayout\n";
os << " CIR Type:" << completeObjectType << "\n";
if (baseSubobjectType)
os << " NonVirtualBaseCIRType:" << baseSubobjectType << "\n";
os << " IsZeroInitializable:" << zeroInitializable << "\n";
os << " BitFields:[\n";
std::vector<std::pair<unsigned, const CIRGenBitFieldInfo *>> bitInfo;
for (auto &[decl, info] : bitFields) {
const RecordDecl *rd = decl->getParent();
unsigned index = 0;
for (RecordDecl::field_iterator it = rd->field_begin(); *it != decl; ++it)
++index;
bitInfo.push_back(std::make_pair(index, &info));
}
llvm::array_pod_sort(bitInfo.begin(), bitInfo.end());
for (std::pair<unsigned, const CIRGenBitFieldInfo *> &info : bitInfo) {
os.indent(4);
info.second->print(os);
os << "\n";
}
os << " ]>\n";
}
void CIRGenBitFieldInfo::print(raw_ostream &os) const {
os << "<CIRBitFieldInfo" << " name:" << name << " offset:" << offset
<< " size:" << size << " isSigned:" << isSigned
<< " storageSize:" << storageSize
<< " storageOffset:" << storageOffset.getQuantity()
<< " volatileOffset:" << volatileOffset
<< " volatileStorageSize:" << volatileStorageSize
<< " volatileStorageOffset:" << volatileStorageOffset.getQuantity() << ">";
}
void CIRGenRecordLayout::dump() const { print(llvm::errs()); }
void CIRGenBitFieldInfo::dump() const { print(llvm::errs()); }
void CIRRecordLowering::lowerUnion() {
CharUnits layoutSize = astRecordLayout.getSize();
mlir::Type storageType = nullptr;
bool seenNamedMember = false;
// Iterate through the fields setting bitFieldInfo and the Fields array. Also
// locate the "most appropriate" storage type.
for (const FieldDecl *field : recordDecl->fields()) {
mlir::Type fieldType;
if (field->isBitField()) {
if (field->isZeroLengthBitField())
continue;
fieldType = getBitfieldStorageType(field->getBitWidthValue());
setBitFieldInfo(field, CharUnits::Zero(), fieldType);
} else {
fieldType = getStorageType(field);
}
// This maps a field to its index. For unions, the index is always 0.
fieldIdxMap[field->getCanonicalDecl()] = 0;
// Compute zero-initializable status.
// This union might not be zero initialized: it may contain a pointer to
// data member which might have some exotic initialization sequence.
// If this is the case, then we ought not to try and come up with a "better"
// type, it might not be very easy to come up with a Constant which
// correctly initializes it.
if (!seenNamedMember) {
seenNamedMember = field->getIdentifier();
if (!seenNamedMember)
if (const RecordDecl *fieldRD = field->getType()->getAsRecordDecl())
seenNamedMember = fieldRD->findFirstNamedDataMember();
if (seenNamedMember && !isZeroInitializable(field)) {
zeroInitializable = zeroInitializableAsBase = false;
storageType = fieldType;
}
}
// Because our union isn't zero initializable, we won't be getting a better
// storage type.
if (!zeroInitializable)
continue;
// Conditionally update our storage type if we've got a new "better" one.
if (!storageType || getAlignment(fieldType) > getAlignment(storageType) ||
(getAlignment(fieldType) == getAlignment(storageType) &&
getSize(fieldType) > getSize(storageType)))
storageType = fieldType;
// NOTE(cir): Track all union member's types, not just the largest one. It
// allows for proper type-checking and retain more info for analisys.
fieldTypes.push_back(fieldType);
}
if (!storageType)
cirGenTypes.getCGModule().errorNYI(recordDecl->getSourceRange(),
"No-storage Union NYI");
if (layoutSize < getSize(storageType))
storageType = getByteArrayType(layoutSize);
else
appendPaddingBytes(layoutSize - getSize(storageType));
// Set packed if we need it.
if (layoutSize % getAlignment(storageType))
packed = true;
}
bool CIRRecordLowering::hasOwnStorage(const CXXRecordDecl *decl,
const CXXRecordDecl *query) {
const ASTRecordLayout &declLayout = astContext.getASTRecordLayout(decl);
if (declLayout.isPrimaryBaseVirtual() && declLayout.getPrimaryBase() == query)
return false;
for (const auto &base : decl->bases())
if (!hasOwnStorage(base.getType()->getAsCXXRecordDecl(), query))
return false;
return true;
}
/// The AAPCS that defines that, when possible, bit-fields should
/// be accessed using containers of the declared type width:
/// When a volatile bit-field is read, and its container does not overlap with
/// any non-bit-field member or any zero length bit-field member, its container
/// must be read exactly once using the access width appropriate to the type of
/// the container. When a volatile bit-field is written, and its container does
/// not overlap with any non-bit-field member or any zero-length bit-field
/// member, its container must be read exactly once and written exactly once
/// using the access width appropriate to the type of the container. The two
/// accesses are not atomic.
///
/// Enforcing the width restriction can be disabled using
/// -fno-aapcs-bitfield-width.
void CIRRecordLowering::computeVolatileBitfields() {
if (!isAAPCS() ||
!cirGenTypes.getCGModule().getCodeGenOpts().AAPCSBitfieldWidth)
return;
for (auto &[field, info] : bitFields) {
mlir::Type resLTy = cirGenTypes.convertTypeForMem(field->getType());
if (astContext.toBits(astRecordLayout.getAlignment()) <
getSizeInBits(resLTy).getQuantity())
continue;
// CIRRecordLowering::setBitFieldInfo() pre-adjusts the bit-field offsets
// for big-endian targets, but it assumes a container of width
// info.storageSize. Since AAPCS uses a different container size (width
// of the type), we first undo that calculation here and redo it once
// the bit-field offset within the new container is calculated.
const unsigned oldOffset =
isBigEndian() ? info.storageSize - (info.offset + info.size)
: info.offset;
// Offset to the bit-field from the beginning of the struct.
const unsigned absoluteOffset =
astContext.toBits(info.storageOffset) + oldOffset;
// Container size is the width of the bit-field type.
const unsigned storageSize = getSizeInBits(resLTy).getQuantity();
// Nothing to do if the access uses the desired
// container width and is naturally aligned.
if (info.storageSize == storageSize && (oldOffset % storageSize == 0))
continue;
// Offset within the container.
unsigned offset = absoluteOffset & (storageSize - 1);
// Bail out if an aligned load of the container cannot cover the entire
// bit-field. This can happen for example, if the bit-field is part of a
// packed struct. AAPCS does not define access rules for such cases, we let
// clang to follow its own rules.
if (offset + info.size > storageSize)
continue;
// Re-adjust offsets for big-endian targets.
if (isBigEndian())
offset = storageSize - (offset + info.size);
const CharUnits storageOffset =
astContext.toCharUnitsFromBits(absoluteOffset & ~(storageSize - 1));
const CharUnits end = storageOffset +
astContext.toCharUnitsFromBits(storageSize) -
CharUnits::One();
const ASTRecordLayout &layout =
astContext.getASTRecordLayout(field->getParent());
// If we access outside memory outside the record, than bail out.
const CharUnits recordSize = layout.getSize();
if (end >= recordSize)
continue;
// Bail out if performing this load would access non-bit-fields members.
bool conflict = false;
for (const auto *f : recordDecl->fields()) {
// Allow sized bit-fields overlaps.
if (f->isBitField() && !f->isZeroLengthBitField())
continue;
const CharUnits fOffset = astContext.toCharUnitsFromBits(
layout.getFieldOffset(f->getFieldIndex()));
// As C11 defines, a zero sized bit-field defines a barrier, so
// fields after and before it should be race condition free.
// The AAPCS acknowledges it and imposes no restritions when the
// natural container overlaps a zero-length bit-field.
if (f->isZeroLengthBitField()) {
if (end > fOffset && storageOffset < fOffset) {
conflict = true;
break;
}
}
const CharUnits fEnd =
fOffset +
astContext.toCharUnitsFromBits(
getSizeInBits(cirGenTypes.convertTypeForMem(f->getType()))
.getQuantity()) -
CharUnits::One();
// If no overlap, continue.
if (end < fOffset || fEnd < storageOffset)
continue;
// The desired load overlaps a non-bit-field member, bail out.
conflict = true;
break;
}
if (conflict)
continue;
// Write the new bit-field access parameters.
// As the storage offset now is defined as the number of elements from the
// start of the structure, we should divide the Offset by the element size.
info.volatileStorageOffset =
storageOffset /
astContext.toCharUnitsFromBits(storageSize).getQuantity();
info.volatileStorageSize = storageSize;
info.volatileOffset = offset;
}
}
void CIRRecordLowering::accumulateBases() {
// If we've got a primary virtual base, we need to add it with the bases.
if (astRecordLayout.isPrimaryBaseVirtual()) {
const CXXRecordDecl *baseDecl = astRecordLayout.getPrimaryBase();
members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::InfoKind::Base,
getStorageType(baseDecl), baseDecl));
}
// Accumulate the non-virtual bases.
for (const auto &base : cxxRecordDecl->bases()) {
if (base.isVirtual())
continue;
// Bases can be zero-sized even if not technically empty if they
// contain only a trailing array member.
const CXXRecordDecl *baseDecl = base.getType()->getAsCXXRecordDecl();
if (!baseDecl->isEmpty() &&
!astContext.getASTRecordLayout(baseDecl).getNonVirtualSize().isZero()) {
members.push_back(MemberInfo(astRecordLayout.getBaseClassOffset(baseDecl),
MemberInfo::InfoKind::Base,
getStorageType(baseDecl), baseDecl));
}
}
}
void CIRRecordLowering::accumulateVBases() {
for (const auto &base : cxxRecordDecl->vbases()) {
const CXXRecordDecl *baseDecl = base.getType()->getAsCXXRecordDecl();
if (isEmptyRecordForLayout(astContext, base.getType()))
continue;
CharUnits offset = astRecordLayout.getVBaseClassOffset(baseDecl);
// If the vbase is a primary virtual base of some base, then it doesn't
// get its own storage location but instead lives inside of that base.
if (isOverlappingVBaseABI() && astContext.isNearlyEmpty(baseDecl) &&
!hasOwnStorage(cxxRecordDecl, baseDecl)) {
members.push_back(
MemberInfo(offset, MemberInfo::InfoKind::VBase, nullptr, baseDecl));
continue;
}
// If we've got a vtordisp, add it as a storage type.
if (astRecordLayout.getVBaseOffsetsMap()
.find(baseDecl)
->second.hasVtorDisp())
members.push_back(makeStorageInfo(offset - CharUnits::fromQuantity(4),
getUIntNType(32)));
members.push_back(MemberInfo(offset, MemberInfo::InfoKind::VBase,
getStorageType(baseDecl), baseDecl));
}
}
void CIRRecordLowering::accumulateVPtrs() {
if (astRecordLayout.hasOwnVFPtr())
members.push_back(MemberInfo(CharUnits::Zero(), MemberInfo::InfoKind::VFPtr,
getVFPtrType()));
if (astRecordLayout.hasOwnVBPtr())
cirGenTypes.getCGModule().errorNYI(recordDecl->getSourceRange(),
"accumulateVPtrs: hasOwnVBPtr");
}
mlir::Type CIRRecordLowering::getVFPtrType() {
return cir::VPtrType::get(builder.getContext());
}
|