aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/CIR/CodeGen/CIRGenClass.cpp
blob: 9d12a13dd79c09e557d31350e1903a996aff7a3b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This contains code dealing with C++ code generation of classes
//
//===----------------------------------------------------------------------===//

#include "CIRGenCXXABI.h"
#include "CIRGenFunction.h"
#include "CIRGenValue.h"

#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/CIR/MissingFeatures.h"

using namespace clang;
using namespace clang::CIRGen;

/// Checks whether the given constructor is a valid subject for the
/// complete-to-base constructor delegation optimization, i.e. emitting the
/// complete constructor as a simple call to the base constructor.
bool CIRGenFunction::isConstructorDelegationValid(
    const CXXConstructorDecl *ctor) {
  // Currently we disable the optimization for classes with virtual bases
  // because (1) the address of parameter variables need to be consistent across
  // all initializers but (2) the delegate function call necessarily creates a
  // second copy of the parameter variable.
  //
  // The limiting example (purely theoretical AFAIK):
  //   struct A { A(int &c) { c++; } };
  //   struct A : virtual A {
  //     B(int count) : A(count) { printf("%d\n", count); }
  //   };
  // ...although even this example could in principle be emitted as a delegation
  // since the address of the parameter doesn't escape.
  if (ctor->getParent()->getNumVBases())
    return false;

  // We also disable the optimization for variadic functions because it's
  // impossible to "re-pass" varargs.
  if (ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
    return false;

  // FIXME: Decide if we can do a delegation of a delegating constructor.
  if (ctor->isDelegatingConstructor())
    return false;

  return true;
}

static void emitLValueForAnyFieldInitialization(CIRGenFunction &cgf,
                                                CXXCtorInitializer *memberInit,
                                                LValue &lhs) {
  FieldDecl *field = memberInit->getAnyMember();
  if (memberInit->isIndirectMemberInitializer()) {
    // If we are initializing an anonymous union field, drill down to the field.
    IndirectFieldDecl *indirectField = memberInit->getIndirectMember();
    for (const auto *nd : indirectField->chain()) {
      auto *fd = cast<clang::FieldDecl>(nd);
      lhs = cgf.emitLValueForFieldInitialization(lhs, fd, fd->getName());
    }
  } else {
    lhs = cgf.emitLValueForFieldInitialization(lhs, field, field->getName());
  }
}

static void emitMemberInitializer(CIRGenFunction &cgf,
                                  const CXXRecordDecl *classDecl,
                                  CXXCtorInitializer *memberInit,
                                  const CXXConstructorDecl *constructor,
                                  FunctionArgList &args) {
  assert(memberInit->isAnyMemberInitializer() &&
         "Must have member initializer!");
  assert(memberInit->getInit() && "Must have initializer!");

  assert(!cir::MissingFeatures::generateDebugInfo());

  // non-static data member initializers
  FieldDecl *field = memberInit->getAnyMember();
  QualType fieldType = field->getType();

  mlir::Value thisPtr = cgf.loadCXXThis();
  CanQualType recordTy = cgf.getContext().getCanonicalTagType(classDecl);

  // If a base constructor is being emitted, create an LValue that has the
  // non-virtual alignment.
  LValue lhs = (cgf.curGD.getCtorType() == Ctor_Base)
                   ? cgf.makeNaturalAlignPointeeAddrLValue(thisPtr, recordTy)
                   : cgf.makeNaturalAlignAddrLValue(thisPtr, recordTy);

  emitLValueForAnyFieldInitialization(cgf, memberInit, lhs);

  // Special case: If we are in a copy or move constructor, and we are copying
  // an array off PODs or classes with trivial copy constructors, ignore the AST
  // and perform the copy we know is equivalent.
  // FIXME: This is hacky at best... if we had a bit more explicit information
  // in the AST, we could generalize it more easily.
  const ConstantArrayType *array =
      cgf.getContext().getAsConstantArrayType(fieldType);
  if (array && constructor->isDefaulted() &&
      constructor->isCopyOrMoveConstructor()) {
    QualType baseElementTy = cgf.getContext().getBaseElementType(array);
    // NOTE(cir): CodeGen allows record types to be memcpy'd if applicable,
    // whereas ClangIR wants to represent all object construction explicitly.
    if (!baseElementTy->isRecordType()) {
      cgf.cgm.errorNYI(memberInit->getSourceRange(),
                       "emitMemberInitializer: array of non-record type");
      return;
    }
  }

  cgf.emitInitializerForField(field, lhs, memberInit->getInit());
}

static bool isInitializerOfDynamicClass(const CXXCtorInitializer *baseInit) {
  const Type *baseType = baseInit->getBaseClass();
  const auto *baseClassDecl = baseType->castAsCXXRecordDecl();
  return baseClassDecl->isDynamicClass();
}

namespace {
/// A visitor which checks whether an initializer uses 'this' in a
/// way which requires the vtable to be properly set.
struct DynamicThisUseChecker
    : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
  using super = ConstEvaluatedExprVisitor<DynamicThisUseChecker>;

  bool usesThis = false;

  DynamicThisUseChecker(const ASTContext &c) : super(c) {}

  // Black-list all explicit and implicit references to 'this'.
  //
  // Do we need to worry about external references to 'this' derived
  // from arbitrary code? If so, then anything which runs arbitrary
  // external code might potentially access the vtable.
  void VisitCXXThisExpr(const CXXThisExpr *e) { usesThis = true; }
};
} // end anonymous namespace

static bool baseInitializerUsesThis(ASTContext &c, const Expr *init) {
  DynamicThisUseChecker checker(c);
  checker.Visit(init);
  return checker.usesThis;
}

/// Gets the address of a direct base class within a complete object.
/// This should only be used for (1) non-virtual bases or (2) virtual bases
/// when the type is known to be complete (e.g. in complete destructors).
///
/// The object pointed to by 'thisAddr' is assumed to be non-null.
Address CIRGenFunction::getAddressOfDirectBaseInCompleteClass(
    mlir::Location loc, Address thisAddr, const CXXRecordDecl *derived,
    const CXXRecordDecl *base, bool baseIsVirtual) {
  // 'thisAddr' must be a pointer (in some address space) to Derived.
  assert(thisAddr.getElementType() == convertType(derived));

  // Compute the offset of the virtual base.
  CharUnits offset;
  const ASTRecordLayout &layout = getContext().getASTRecordLayout(derived);
  if (baseIsVirtual)
    offset = layout.getVBaseClassOffset(base);
  else
    offset = layout.getBaseClassOffset(base);

  return builder.createBaseClassAddr(loc, thisAddr, convertType(base),
                                     offset.getQuantity(),
                                     /*assumeNotNull=*/true);
}

void CIRGenFunction::emitBaseInitializer(mlir::Location loc,
                                         const CXXRecordDecl *classDecl,
                                         CXXCtorInitializer *baseInit) {
  assert(curFuncDecl && "loading 'this' without a func declaration?");
  assert(isa<CXXMethodDecl>(curFuncDecl));

  assert(baseInit->isBaseInitializer() && "Must have base initializer!");

  Address thisPtr = loadCXXThisAddress();

  const Type *baseType = baseInit->getBaseClass();
  const auto *baseClassDecl = baseType->castAsCXXRecordDecl();

  bool isBaseVirtual = baseInit->isBaseVirtual();

  // If the initializer for the base (other than the constructor
  // itself) accesses 'this' in any way, we need to initialize the
  // vtables.
  if (baseInitializerUsesThis(getContext(), baseInit->getInit()))
    initializeVTablePointers(loc, classDecl);

  // We can pretend to be a complete class because it only matters for
  // virtual bases, and we only do virtual bases for complete ctors.
  Address v = getAddressOfDirectBaseInCompleteClass(
      loc, thisPtr, classDecl, baseClassDecl, isBaseVirtual);
  assert(!cir::MissingFeatures::aggValueSlotGC());
  AggValueSlot aggSlot = AggValueSlot::forAddr(
      v, Qualifiers(), AggValueSlot::IsDestructed, AggValueSlot::IsNotAliased,
      getOverlapForBaseInit(classDecl, baseClassDecl, isBaseVirtual));

  emitAggExpr(baseInit->getInit(), aggSlot);

  assert(!cir::MissingFeatures::requiresCleanups());
}

/// This routine generates necessary code to initialize base classes and
/// non-static data members belonging to this constructor.
void CIRGenFunction::emitCtorPrologue(const CXXConstructorDecl *cd,
                                      CXXCtorType ctorType,
                                      FunctionArgList &args) {
  if (cd->isDelegatingConstructor()) {
    emitDelegatingCXXConstructorCall(cd, args);
    return;
  }

  const CXXRecordDecl *classDecl = cd->getParent();

  // Virtual base initializers aren't needed if:
  // - This is a base ctor variant
  // - There are no vbases
  // - The class is abstract, so a complete object of it cannot be constructed
  //
  // The check for an abstract class is necessary because sema may not have
  // marked virtual base destructors referenced.
  bool constructVBases = ctorType != Ctor_Base &&
                         classDecl->getNumVBases() != 0 &&
                         !classDecl->isAbstract();
  if (constructVBases &&
      !cgm.getTarget().getCXXABI().hasConstructorVariants()) {
    cgm.errorNYI(cd->getSourceRange(),
                 "emitCtorPrologue: virtual base without variants");
    return;
  }

  // Create three separate ranges for the different types of initializers.
  auto allInits = cd->inits();

  // Find the boundaries between the three groups.
  auto virtualBaseEnd = std::find_if(
      allInits.begin(), allInits.end(), [](const CXXCtorInitializer *Init) {
        return !(Init->isBaseInitializer() && Init->isBaseVirtual());
      });

  auto nonVirtualBaseEnd = std::find_if(virtualBaseEnd, allInits.end(),
                                        [](const CXXCtorInitializer *Init) {
                                          return !Init->isBaseInitializer();
                                        });

  // Create the three ranges.
  auto virtualBaseInits = llvm::make_range(allInits.begin(), virtualBaseEnd);
  auto nonVirtualBaseInits =
      llvm::make_range(virtualBaseEnd, nonVirtualBaseEnd);
  auto memberInits = llvm::make_range(nonVirtualBaseEnd, allInits.end());

  const mlir::Value oldThisValue = cxxThisValue;

  auto emitInitializer = [&](CXXCtorInitializer *baseInit) {
    if (cgm.getCodeGenOpts().StrictVTablePointers &&
        cgm.getCodeGenOpts().OptimizationLevel > 0 &&
        isInitializerOfDynamicClass(baseInit)) {
      // It's OK to continue after emitting the error here. The missing code
      // just "launders" the 'this' pointer.
      cgm.errorNYI(cd->getSourceRange(),
                   "emitCtorPrologue: strict vtable pointers for vbase");
    }
    emitBaseInitializer(getLoc(cd->getBeginLoc()), classDecl, baseInit);
  };

  // Process virtual base initializers.
  for (CXXCtorInitializer *virtualBaseInit : virtualBaseInits) {
    if (!constructVBases)
      continue;
    emitInitializer(virtualBaseInit);
  }

  assert(!cir::MissingFeatures::msabi());

  // Then, non-virtual base initializers.
  for (CXXCtorInitializer *nonVirtualBaseInit : nonVirtualBaseInits) {
    assert(!nonVirtualBaseInit->isBaseVirtual());
    emitInitializer(nonVirtualBaseInit);
  }

  cxxThisValue = oldThisValue;

  initializeVTablePointers(getLoc(cd->getBeginLoc()), classDecl);

  // Finally, initialize class members.
  FieldConstructionScope fcs(*this, loadCXXThisAddress());
  // Classic codegen uses a special class to attempt to replace member
  // initializers with memcpy. We could possibly defer that to the
  // lowering or optimization phases to keep the memory accesses more
  // explicit. For now, we don't insert memcpy at all.
  assert(!cir::MissingFeatures::ctorMemcpyizer());
  for (CXXCtorInitializer *member : memberInits) {
    assert(!member->isBaseInitializer());
    assert(member->isAnyMemberInitializer() &&
           "Delegating initializer on non-delegating constructor");
    emitMemberInitializer(*this, cd->getParent(), member, cd, args);
  }
}

static Address applyNonVirtualAndVirtualOffset(
    mlir::Location loc, CIRGenFunction &cgf, Address addr,
    CharUnits nonVirtualOffset, mlir::Value virtualOffset,
    const CXXRecordDecl *derivedClass, const CXXRecordDecl *nearestVBase,
    mlir::Type baseValueTy = {}, bool assumeNotNull = true) {
  // Assert that we have something to do.
  assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);

  // Compute the offset from the static and dynamic components.
  mlir::Value baseOffset;
  if (!nonVirtualOffset.isZero()) {
    if (virtualOffset) {
      cgf.cgm.errorNYI(
          loc,
          "applyNonVirtualAndVirtualOffset: virtual and non-virtual offset");
      return Address::invalid();
    } else {
      assert(baseValueTy && "expected base type");
      // If no virtualOffset is present this is the final stop.
      return cgf.getBuilder().createBaseClassAddr(
          loc, addr, baseValueTy, nonVirtualOffset.getQuantity(),
          assumeNotNull);
    }
  } else {
    baseOffset = virtualOffset;
  }

  // Apply the base offset.  cir.ptr_stride adjusts by a number of elements,
  // not bytes.  So the pointer must be cast to a byte pointer and back.

  mlir::Value ptr = addr.getPointer();
  mlir::Type charPtrType = cgf.cgm.UInt8PtrTy;
  mlir::Value charPtr = cgf.getBuilder().createBitcast(ptr, charPtrType);
  mlir::Value adjusted = cir::PtrStrideOp::create(
      cgf.getBuilder(), loc, charPtrType, charPtr, baseOffset);
  ptr = cgf.getBuilder().createBitcast(adjusted, ptr.getType());

  // If we have a virtual component, the alignment of the result will
  // be relative only to the known alignment of that vbase.
  CharUnits alignment;
  if (virtualOffset) {
    assert(nearestVBase && "virtual offset without vbase?");
    alignment = cgf.cgm.getVBaseAlignment(addr.getAlignment(), derivedClass,
                                          nearestVBase);
  } else {
    alignment = addr.getAlignment();
  }
  alignment = alignment.alignmentAtOffset(nonVirtualOffset);

  return Address(ptr, alignment);
}

void CIRGenFunction::initializeVTablePointer(mlir::Location loc,
                                             const VPtr &vptr) {
  // Compute the address point.
  mlir::Value vtableAddressPoint =
      cgm.getCXXABI().getVTableAddressPointInStructor(
          *this, vptr.vtableClass, vptr.base, vptr.nearestVBase);

  if (!vtableAddressPoint)
    return;

  // Compute where to store the address point.
  mlir::Value virtualOffset{};
  CharUnits nonVirtualOffset = CharUnits::Zero();

  mlir::Type baseValueTy;
  if (cgm.getCXXABI().isVirtualOffsetNeededForVTableField(*this, vptr)) {
    // We need to use the virtual base offset offset because the virtual base
    // might have a different offset in the most derived class.
    virtualOffset = cgm.getCXXABI().getVirtualBaseClassOffset(
        loc, *this, loadCXXThisAddress(), vptr.vtableClass, vptr.nearestVBase);
    nonVirtualOffset = vptr.offsetFromNearestVBase;
  } else {
    // We can just use the base offset in the complete class.
    nonVirtualOffset = vptr.base.getBaseOffset();
    baseValueTy =
        convertType(getContext().getCanonicalTagType(vptr.base.getBase()));
  }

  // Apply the offsets.
  Address classAddr = loadCXXThisAddress();
  if (!nonVirtualOffset.isZero() || virtualOffset) {
    classAddr = applyNonVirtualAndVirtualOffset(
        loc, *this, classAddr, nonVirtualOffset, virtualOffset,
        vptr.vtableClass, vptr.nearestVBase, baseValueTy);
  }

  // Finally, store the address point. Use the same CIR types as the field.
  //
  // vtable field is derived from `this` pointer, therefore they should be in
  // the same addr space.
  assert(!cir::MissingFeatures::addressSpace());
  auto vtablePtr = cir::VTableGetVPtrOp::create(
      builder, loc, builder.getPtrToVPtrType(), classAddr.getPointer());
  Address vtableField = Address(vtablePtr, classAddr.getAlignment());
  builder.createStore(loc, vtableAddressPoint, vtableField);
  assert(!cir::MissingFeatures::opTBAA());
  assert(!cir::MissingFeatures::createInvariantGroup());
}

void CIRGenFunction::initializeVTablePointers(mlir::Location loc,
                                              const CXXRecordDecl *rd) {
  // Ignore classes without a vtable.
  if (!rd->isDynamicClass())
    return;

  // Initialize the vtable pointers for this class and all of its bases.
  if (cgm.getCXXABI().doStructorsInitializeVPtrs(rd))
    for (const auto &vptr : getVTablePointers(rd))
      initializeVTablePointer(loc, vptr);

  if (rd->getNumVBases())
    cgm.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, rd);
}

CIRGenFunction::VPtrsVector
CIRGenFunction::getVTablePointers(const CXXRecordDecl *vtableClass) {
  CIRGenFunction::VPtrsVector vptrsResult;
  VisitedVirtualBasesSetTy vbases;
  getVTablePointers(BaseSubobject(vtableClass, CharUnits::Zero()),
                    /*NearestVBase=*/nullptr,
                    /*OffsetFromNearestVBase=*/CharUnits::Zero(),
                    /*BaseIsNonVirtualPrimaryBase=*/false, vtableClass, vbases,
                    vptrsResult);
  return vptrsResult;
}

void CIRGenFunction::getVTablePointers(BaseSubobject base,
                                       const CXXRecordDecl *nearestVBase,
                                       CharUnits offsetFromNearestVBase,
                                       bool baseIsNonVirtualPrimaryBase,
                                       const CXXRecordDecl *vtableClass,
                                       VisitedVirtualBasesSetTy &vbases,
                                       VPtrsVector &vptrs) {
  // If this base is a non-virtual primary base the address point has already
  // been set.
  if (!baseIsNonVirtualPrimaryBase) {
    // Initialize the vtable pointer for this base.
    VPtr vptr = {base, nearestVBase, offsetFromNearestVBase, vtableClass};
    vptrs.push_back(vptr);
  }

  const CXXRecordDecl *rd = base.getBase();

  for (const auto &nextBase : rd->bases()) {
    const auto *baseDecl =
        cast<CXXRecordDecl>(
            nextBase.getType()->castAs<RecordType>()->getOriginalDecl())
            ->getDefinitionOrSelf();

    // Ignore classes without a vtable.
    if (!baseDecl->isDynamicClass())
      continue;

    CharUnits baseOffset;
    CharUnits baseOffsetFromNearestVBase;
    bool baseDeclIsNonVirtualPrimaryBase;
    const CXXRecordDecl *nextBaseDecl;

    if (nextBase.isVirtual()) {
      // Check if we've visited this virtual base before.
      if (!vbases.insert(baseDecl).second)
        continue;

      const ASTRecordLayout &layout =
          getContext().getASTRecordLayout(vtableClass);

      nextBaseDecl = baseDecl;
      baseOffset = layout.getVBaseClassOffset(baseDecl);
      baseOffsetFromNearestVBase = CharUnits::Zero();
      baseDeclIsNonVirtualPrimaryBase = false;
    } else {
      const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd);

      nextBaseDecl = nearestVBase;
      baseOffset = base.getBaseOffset() + layout.getBaseClassOffset(baseDecl);
      baseOffsetFromNearestVBase =
          offsetFromNearestVBase + layout.getBaseClassOffset(baseDecl);
      baseDeclIsNonVirtualPrimaryBase = layout.getPrimaryBase() == baseDecl;
    }

    getVTablePointers(BaseSubobject(baseDecl, baseOffset), nextBaseDecl,
                      baseOffsetFromNearestVBase,
                      baseDeclIsNonVirtualPrimaryBase, vtableClass, vbases,
                      vptrs);
  }
}

Address CIRGenFunction::loadCXXThisAddress() {
  assert(curFuncDecl && "loading 'this' without a func declaration?");
  assert(isa<CXXMethodDecl>(curFuncDecl));

  // Lazily compute CXXThisAlignment.
  if (cxxThisAlignment.isZero()) {
    // Just use the best known alignment for the parent.
    // TODO: if we're currently emitting a complete-object ctor/dtor, we can
    // always use the complete-object alignment.
    auto rd = cast<CXXMethodDecl>(curFuncDecl)->getParent();
    cxxThisAlignment = cgm.getClassPointerAlignment(rd);
  }

  return Address(loadCXXThis(), cxxThisAlignment);
}

void CIRGenFunction::emitInitializerForField(FieldDecl *field, LValue lhs,
                                             Expr *init) {
  QualType fieldType = field->getType();
  switch (getEvaluationKind(fieldType)) {
  case cir::TEK_Scalar:
    if (lhs.isSimple()) {
      emitExprAsInit(init, field, lhs, false);
    } else {
      RValue rhs = RValue::get(emitScalarExpr(init));
      emitStoreThroughLValue(rhs, lhs);
    }
    break;
  case cir::TEK_Complex:
    emitComplexExprIntoLValue(init, lhs, /*isInit=*/true);
    break;
  case cir::TEK_Aggregate: {
    assert(!cir::MissingFeatures::aggValueSlotGC());
    assert(!cir::MissingFeatures::sanitizers());
    AggValueSlot slot = AggValueSlot::forLValue(
        lhs, AggValueSlot::IsDestructed, AggValueSlot::IsNotAliased,
        getOverlapForFieldInit(field), AggValueSlot::IsNotZeroed);
    emitAggExpr(init, slot);
    break;
  }
  }

  // Ensure that we destroy this object if an exception is thrown later in the
  // constructor.
  QualType::DestructionKind dtorKind = fieldType.isDestructedType();
  (void)dtorKind;
  assert(!cir::MissingFeatures::requiresCleanups());
}

CharUnits
CIRGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
                                        const CXXRecordDecl *baseDecl,
                                        CharUnits expectedTargetAlign) {
  // If the base is an incomplete type (which is, alas, possible with
  // member pointers), be pessimistic.
  if (!baseDecl->isCompleteDefinition())
    return std::min(actualBaseAlign, expectedTargetAlign);

  const ASTRecordLayout &baseLayout =
      getASTContext().getASTRecordLayout(baseDecl);
  CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();

  // If the class is properly aligned, assume the target offset is, too.
  //
  // This actually isn't necessarily the right thing to do --- if the
  // class is a complete object, but it's only properly aligned for a
  // base subobject, then the alignments of things relative to it are
  // probably off as well.  (Note that this requires the alignment of
  // the target to be greater than the NV alignment of the derived
  // class.)
  //
  // However, our approach to this kind of under-alignment can only
  // ever be best effort; after all, we're never going to propagate
  // alignments through variables or parameters.  Note, in particular,
  // that constructing a polymorphic type in an address that's less
  // than pointer-aligned will generally trap in the constructor,
  // unless we someday add some sort of attribute to change the
  // assumed alignment of 'this'.  So our goal here is pretty much
  // just to allow the user to explicitly say that a pointer is
  // under-aligned and then safely access its fields and vtables.
  if (actualBaseAlign >= expectedBaseAlign)
    return expectedTargetAlign;

  // Otherwise, we might be offset by an arbitrary multiple of the
  // actual alignment.  The correct adjustment is to take the min of
  // the two alignments.
  return std::min(actualBaseAlign, expectedTargetAlign);
}

/// Return the best known alignment for a pointer to a virtual base,
/// given the alignment of a pointer to the derived class.
clang::CharUnits
CIRGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
                                const CXXRecordDecl *derivedClass,
                                const CXXRecordDecl *vbaseClass) {
  // The basic idea here is that an underaligned derived pointer might
  // indicate an underaligned base pointer.

  assert(vbaseClass->isCompleteDefinition());
  const ASTRecordLayout &baseLayout =
      getASTContext().getASTRecordLayout(vbaseClass);
  CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();

  return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
                                   expectedVBaseAlign);
}

/// Emit a loop to call a particular constructor for each of several members
/// of an array.
///
/// \param ctor the constructor to call for each element
/// \param arrayType the type of the array to initialize
/// \param arrayBegin an arrayType*
/// \param zeroInitialize true if each element should be
///   zero-initialized before it is constructed
void CIRGenFunction::emitCXXAggrConstructorCall(
    const CXXConstructorDecl *ctor, const clang::ArrayType *arrayType,
    Address arrayBegin, const CXXConstructExpr *e, bool newPointerIsChecked,
    bool zeroInitialize) {
  QualType elementType;
  mlir::Value numElements = emitArrayLength(arrayType, elementType, arrayBegin);
  emitCXXAggrConstructorCall(ctor, numElements, arrayBegin, e,
                             newPointerIsChecked, zeroInitialize);
}

/// Emit a loop to call a particular constructor for each of several members
/// of an array.
///
/// \param ctor the constructor to call for each element
/// \param numElements the number of elements in the array;
///   may be zero
/// \param arrayBase a T*, where T is the type constructed by ctor
/// \param zeroInitialize true if each element should be
///   zero-initialized before it is constructed
void CIRGenFunction::emitCXXAggrConstructorCall(
    const CXXConstructorDecl *ctor, mlir::Value numElements, Address arrayBase,
    const CXXConstructExpr *e, bool newPointerIsChecked, bool zeroInitialize) {
  // It's legal for numElements to be zero.  This can happen both
  // dynamically, because x can be zero in 'new A[x]', and statically,
  // because of GCC extensions that permit zero-length arrays.  There
  // are probably legitimate places where we could assume that this
  // doesn't happen, but it's not clear that it's worth it.

  auto arrayTy = mlir::cast<cir::ArrayType>(arrayBase.getElementType());
  mlir::Type elementType = arrayTy.getElementType();

  // This might be a multi-dimensional array. Find the innermost element type.
  while (auto maybeArrayTy = mlir::dyn_cast<cir::ArrayType>(elementType))
    elementType = maybeArrayTy.getElementType();
  cir::PointerType ptrToElmType = builder.getPointerTo(elementType);

  // Optimize for a constant count.
  if (auto constantCount = numElements.getDefiningOp<cir::ConstantOp>()) {
    if (auto constIntAttr = constantCount.getValueAttr<cir::IntAttr>()) {
      // Just skip out if the constant count is zero.
      if (constIntAttr.getUInt() == 0)
        return;

      arrayTy = cir::ArrayType::get(elementType, constIntAttr.getUInt());
      // Otherwise, emit the check.
    }

    if (constantCount.use_empty())
      constantCount.erase();
  } else {
    // Otherwise, emit the check.
    cgm.errorNYI(e->getSourceRange(), "dynamic-length array expression");
  }

  // Tradional LLVM codegen emits a loop here. CIR lowers to a loop as part of
  // LoweringPrepare.

  // The alignment of the base, adjusted by the size of a single element,
  // provides a conservative estimate of the alignment of every element.
  // (This assumes we never start tracking offsetted alignments.)
  //
  // Note that these are complete objects and so we don't need to
  // use the non-virtual size or alignment.
  CanQualType type = getContext().getCanonicalTagType(ctor->getParent());
  CharUnits eltAlignment = arrayBase.getAlignment().alignmentOfArrayElement(
      getContext().getTypeSizeInChars(type));

  // Zero initialize the storage, if requested.
  if (zeroInitialize)
    emitNullInitialization(*currSrcLoc, arrayBase, type);

  // C++ [class.temporary]p4:
  // There are two contexts in which temporaries are destroyed at a different
  // point than the end of the full-expression. The first context is when a
  // default constructor is called to initialize an element of an array.
  // If the constructor has one or more default arguments, the destruction of
  // every temporary created in a default argument expression is sequenced
  // before the construction of the next array element, if any.
  {
    assert(!cir::MissingFeatures::runCleanupsScope());

    // Evaluate the constructor and its arguments in a regular
    // partial-destroy cleanup.
    if (getLangOpts().Exceptions &&
        !ctor->getParent()->hasTrivialDestructor()) {
      cgm.errorNYI(e->getSourceRange(), "partial array cleanups");
    }

    // Emit the constructor call that will execute for every array element.
    mlir::Value arrayOp =
        builder.createPtrBitcast(arrayBase.getPointer(), arrayTy);
    builder.create<cir::ArrayCtor>(
        *currSrcLoc, arrayOp, [&](mlir::OpBuilder &b, mlir::Location loc) {
          mlir::BlockArgument arg =
              b.getInsertionBlock()->addArgument(ptrToElmType, loc);
          Address curAddr = Address(arg, elementType, eltAlignment);
          assert(!cir::MissingFeatures::sanitizers());
          auto currAVS = AggValueSlot::forAddr(
              curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
              AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap,
              AggValueSlot::IsNotZeroed);
          emitCXXConstructorCall(ctor, Ctor_Complete,
                                 /*ForVirtualBase=*/false,
                                 /*Delegating=*/false, currAVS, e);
          builder.create<cir::YieldOp>(loc);
        });
  }
}

void CIRGenFunction::emitDelegateCXXConstructorCall(
    const CXXConstructorDecl *ctor, CXXCtorType ctorType,
    const FunctionArgList &args, SourceLocation loc) {
  CallArgList delegateArgs;

  FunctionArgList::const_iterator i = args.begin(), e = args.end();
  assert(i != e && "no parameters to constructor");

  // this
  Address thisAddr = loadCXXThisAddress();
  delegateArgs.add(RValue::get(thisAddr.getPointer()), (*i)->getType());
  ++i;

  // FIXME: The location of the VTT parameter in the parameter list is specific
  // to the Itanium ABI and shouldn't be hardcoded here.
  if (cgm.getCXXABI().needsVTTParameter(curGD)) {
    cgm.errorNYI(loc, "emitDelegateCXXConstructorCall: VTT parameter");
    return;
  }

  // Explicit arguments.
  for (; i != e; ++i) {
    const VarDecl *param = *i;
    // FIXME: per-argument source location
    emitDelegateCallArg(delegateArgs, param, loc);
  }

  assert(!cir::MissingFeatures::sanitizers());

  emitCXXConstructorCall(ctor, ctorType, /*ForVirtualBase=*/false,
                         /*Delegating=*/true, thisAddr, delegateArgs, loc);
}

void CIRGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &args) {
  const auto *assignOp = cast<CXXMethodDecl>(curGD.getDecl());
  assert(assignOp->isCopyAssignmentOperator() ||
         assignOp->isMoveAssignmentOperator());
  const Stmt *rootS = assignOp->getBody();
  assert(isa<CompoundStmt>(rootS) &&
         "Body of an implicit assignment operator should be compound stmt.");
  const auto *rootCS = cast<CompoundStmt>(rootS);

  assert(!cir::MissingFeatures::incrementProfileCounter());
  assert(!cir::MissingFeatures::runCleanupsScope());

  // Classic codegen uses a special class to attempt to replace member
  // initializers with memcpy. We could possibly defer that to the
  // lowering or optimization phases to keep the memory accesses more
  // explicit. For now, we don't insert memcpy at all, though in some
  // cases the AST contains a call to memcpy.
  assert(!cir::MissingFeatures::assignMemcpyizer());
  for (Stmt *s : rootCS->body())
    if (emitStmt(s, /*useCurrentScope=*/true).failed())
      cgm.errorNYI(s->getSourceRange(),
                   std::string("emitImplicitAssignmentOperatorBody: ") +
                       s->getStmtClassName());
}

void CIRGenFunction::emitForwardingCallToLambda(
    const CXXMethodDecl *callOperator, CallArgList &callArgs) {
  // Get the address of the call operator.
  const CIRGenFunctionInfo &calleeFnInfo =
      cgm.getTypes().arrangeCXXMethodDeclaration(callOperator);
  cir::FuncOp calleePtr = cgm.getAddrOfFunction(
      GlobalDecl(callOperator), cgm.getTypes().getFunctionType(calleeFnInfo));

  // Prepare the return slot.
  const FunctionProtoType *fpt =
      callOperator->getType()->castAs<FunctionProtoType>();
  QualType resultType = fpt->getReturnType();
  ReturnValueSlot returnSlot;

  // We don't need to separately arrange the call arguments because
  // the call can't be variadic anyway --- it's impossible to forward
  // variadic arguments.

  // Now emit our call.
  CIRGenCallee callee =
      CIRGenCallee::forDirect(calleePtr, GlobalDecl(callOperator));
  RValue rv = emitCall(calleeFnInfo, callee, returnSlot, callArgs);

  // If necessary, copy the returned value into the slot.
  if (!resultType->isVoidType() && returnSlot.isNull()) {
    if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType())
      cgm.errorNYI(callOperator->getSourceRange(),
                   "emitForwardingCallToLambda: ObjCAutoRefCount");
    emitReturnOfRValue(*currSrcLoc, rv, resultType);
  } else {
    cgm.errorNYI(callOperator->getSourceRange(),
                 "emitForwardingCallToLambda: return slot is not null");
  }
}

void CIRGenFunction::emitLambdaDelegatingInvokeBody(const CXXMethodDecl *md) {
  const CXXRecordDecl *lambda = md->getParent();

  // Start building arguments for forwarding call
  CallArgList callArgs;

  QualType lambdaType = getContext().getCanonicalTagType(lambda);
  QualType thisType = getContext().getPointerType(lambdaType);
  Address thisPtr =
      createMemTemp(lambdaType, getLoc(md->getSourceRange()), "unused.capture");
  callArgs.add(RValue::get(thisPtr.getPointer()), thisType);

  // Add the rest of the parameters.
  for (auto *param : md->parameters())
    emitDelegateCallArg(callArgs, param, param->getBeginLoc());

  const CXXMethodDecl *callOp = lambda->getLambdaCallOperator();
  // For a generic lambda, find the corresponding call operator specialization
  // to which the call to the static-invoker shall be forwarded.
  if (lambda->isGenericLambda()) {
    assert(md->isFunctionTemplateSpecialization());
    const TemplateArgumentList *tal = md->getTemplateSpecializationArgs();
    FunctionTemplateDecl *callOpTemplate =
        callOp->getDescribedFunctionTemplate();
    void *InsertPos = nullptr;
    FunctionDecl *correspondingCallOpSpecialization =
        callOpTemplate->findSpecialization(tal->asArray(), InsertPos);
    assert(correspondingCallOpSpecialization);
    callOp = cast<CXXMethodDecl>(correspondingCallOpSpecialization);
  }
  emitForwardingCallToLambda(callOp, callArgs);
}

void CIRGenFunction::emitLambdaStaticInvokeBody(const CXXMethodDecl *md) {
  if (md->isVariadic()) {
    // Codgen for LLVM doesn't emit code for this as well, it says:
    // FIXME: Making this work correctly is nasty because it requires either
    // cloning the body of the call operator or making the call operator
    // forward.
    cgm.errorNYI(md->getSourceRange(), "emitLambdaStaticInvokeBody: variadic");
  }

  emitLambdaDelegatingInvokeBody(md);
}

void CIRGenFunction::destroyCXXObject(CIRGenFunction &cgf, Address addr,
                                      QualType type) {
  const auto *record = type->castAsCXXRecordDecl();
  const CXXDestructorDecl *dtor = record->getDestructor();
  // TODO(cir): Unlike traditional codegen, CIRGen should actually emit trivial
  // dtors which shall be removed on later CIR passes. However, only remove this
  // assertion after we have a test case to exercise this path.
  assert(!dtor->isTrivial());
  cgf.emitCXXDestructorCall(dtor, Dtor_Complete, /*forVirtualBase*/ false,
                            /*delegating=*/false, addr, type);
}

void CIRGenFunction::emitDelegatingCXXConstructorCall(
    const CXXConstructorDecl *ctor, const FunctionArgList &args) {
  assert(ctor->isDelegatingConstructor());

  Address thisPtr = loadCXXThisAddress();

  assert(!cir::MissingFeatures::objCGC());
  assert(!cir::MissingFeatures::sanitizers());
  AggValueSlot aggSlot = AggValueSlot::forAddr(
      thisPtr, Qualifiers(), AggValueSlot::IsDestructed,
      AggValueSlot::IsNotAliased, AggValueSlot::MayOverlap,
      AggValueSlot::IsNotZeroed);

  emitAggExpr(ctor->init_begin()[0]->getInit(), aggSlot);

  const CXXRecordDecl *classDecl = ctor->getParent();
  if (cgm.getLangOpts().Exceptions && !classDecl->hasTrivialDestructor()) {
    cgm.errorNYI(ctor->getSourceRange(),
                 "emitDelegatingCXXConstructorCall: exception");
    return;
  }
}

void CIRGenFunction::emitCXXDestructorCall(const CXXDestructorDecl *dd,
                                           CXXDtorType type,
                                           bool forVirtualBase, bool delegating,
                                           Address thisAddr, QualType thisTy) {
  cgm.getCXXABI().emitDestructorCall(*this, dd, type, forVirtualBase,
                                     delegating, thisAddr, thisTy);
}

mlir::Value CIRGenFunction::getVTTParameter(GlobalDecl gd, bool forVirtualBase,
                                            bool delegating) {
  if (!cgm.getCXXABI().needsVTTParameter(gd))
    return nullptr;

  const CXXRecordDecl *rd = cast<CXXMethodDecl>(curCodeDecl)->getParent();
  const CXXRecordDecl *base = cast<CXXMethodDecl>(gd.getDecl())->getParent();

  uint64_t subVTTIndex;

  if (delegating) {
    // If this is a delegating constructor call, just load the VTT.
    return loadCXXVTT();
  } else if (rd == base) {
    // If the record matches the base, this is the complete ctor/dtor
    // variant calling the base variant in a class with virtual bases.
    assert(!cgm.getCXXABI().needsVTTParameter(curGD) &&
           "doing no-op VTT offset in base dtor/ctor?");
    assert(!forVirtualBase && "Can't have same class as virtual base!");
    subVTTIndex = 0;
  } else {
    const ASTRecordLayout &layout = getContext().getASTRecordLayout(rd);
    CharUnits baseOffset = forVirtualBase ? layout.getVBaseClassOffset(base)
                                          : layout.getBaseClassOffset(base);

    subVTTIndex =
        cgm.getVTables().getSubVTTIndex(rd, BaseSubobject(base, baseOffset));
    assert(subVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
  }

  mlir::Location loc = cgm.getLoc(rd->getBeginLoc());
  if (cgm.getCXXABI().needsVTTParameter(curGD)) {
    // A VTT parameter was passed to the constructor, use it.
    mlir::Value vtt = loadCXXVTT();
    return builder.createVTTAddrPoint(loc, vtt.getType(), vtt, subVTTIndex);
  } else {
    // We're the complete constructor, so get the VTT by name.
    cir::GlobalOp vtt = cgm.getVTables().getAddrOfVTT(rd);
    return builder.createVTTAddrPoint(
        loc, builder.getPointerTo(cgm.VoidPtrTy),
        mlir::FlatSymbolRefAttr::get(vtt.getSymNameAttr()), subVTTIndex);
  }
}

Address CIRGenFunction::getAddressOfBaseClass(
    Address value, const CXXRecordDecl *derived,
    llvm::iterator_range<CastExpr::path_const_iterator> path,
    bool nullCheckValue, SourceLocation loc) {
  assert(!path.empty() && "Base path should not be empty!");

  CastExpr::path_const_iterator start = path.begin();
  const CXXRecordDecl *vBase = nullptr;

  if ((*path.begin())->isVirtual()) {
    vBase = (*start)->getType()->castAsCXXRecordDecl();
    ++start;
  }

  // Compute the static offset of the ultimate destination within its
  // allocating subobject (the virtual base, if there is one, or else
  // the "complete" object that we see).
  CharUnits nonVirtualOffset = cgm.computeNonVirtualBaseClassOffset(
      vBase ? vBase : derived, {start, path.end()});

  // If there's a virtual step, we can sometimes "devirtualize" it.
  // For now, that's limited to when the derived type is final.
  // TODO: "devirtualize" this for accesses to known-complete objects.
  if (vBase && derived->hasAttr<FinalAttr>()) {
    const ASTRecordLayout &layout = getContext().getASTRecordLayout(derived);
    CharUnits vBaseOffset = layout.getVBaseClassOffset(vBase);
    nonVirtualOffset += vBaseOffset;
    vBase = nullptr; // we no longer have a virtual step
  }

  // Get the base pointer type.
  mlir::Type baseValueTy = convertType((path.end()[-1])->getType());
  assert(!cir::MissingFeatures::addressSpace());

  // If there is no virtual base, use cir.base_class_addr.  It takes care of
  // the adjustment and the null pointer check.
  if (nonVirtualOffset.isZero() && !vBase) {
    assert(!cir::MissingFeatures::sanitizers());
    return builder.createBaseClassAddr(getLoc(loc), value, baseValueTy, 0,
                                       /*assumeNotNull=*/true);
  }

  assert(!cir::MissingFeatures::sanitizers());

  // Compute the virtual offset.
  mlir::Value virtualOffset = nullptr;
  if (vBase) {
    virtualOffset = cgm.getCXXABI().getVirtualBaseClassOffset(
        getLoc(loc), *this, value, derived, vBase);
  }

  // Apply both offsets.
  value = applyNonVirtualAndVirtualOffset(
      getLoc(loc), *this, value, nonVirtualOffset, virtualOffset, derived,
      vBase, baseValueTy, not nullCheckValue);

  // Cast to the destination type.
  value = value.withElementType(builder, baseValueTy);

  return value;
}

// TODO(cir): this can be shared with LLVM codegen.
bool CIRGenFunction::shouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *rd) {
  assert(!cir::MissingFeatures::hiddenVisibility());
  if (!cgm.getCodeGenOpts().WholeProgramVTables)
    return false;

  if (cgm.getCodeGenOpts().VirtualFunctionElimination)
    return true;

  assert(!cir::MissingFeatures::sanitizers());

  return false;
}

mlir::Value CIRGenFunction::getVTablePtr(mlir::Location loc, Address thisAddr,
                                         const CXXRecordDecl *rd) {
  auto vtablePtr = cir::VTableGetVPtrOp::create(
      builder, loc, builder.getPtrToVPtrType(), thisAddr.getPointer());
  Address vtablePtrAddr = Address(vtablePtr, thisAddr.getAlignment());

  auto vtable = builder.createLoad(loc, vtablePtrAddr);
  assert(!cir::MissingFeatures::opTBAA());

  if (cgm.getCodeGenOpts().OptimizationLevel > 0 &&
      cgm.getCodeGenOpts().StrictVTablePointers) {
    assert(!cir::MissingFeatures::createInvariantGroup());
  }

  return vtable;
}

void CIRGenFunction::emitCXXConstructorCall(const clang::CXXConstructorDecl *d,
                                            clang::CXXCtorType type,
                                            bool forVirtualBase,
                                            bool delegating,
                                            AggValueSlot thisAVS,
                                            const clang::CXXConstructExpr *e) {
  CallArgList args;
  Address thisAddr = thisAVS.getAddress();
  QualType thisType = d->getThisType();
  mlir::Value thisPtr = thisAddr.getPointer();

  assert(!cir::MissingFeatures::addressSpace());

  args.add(RValue::get(thisPtr), thisType);

  // In LLVM Codegen: If this is a trivial constructor, just emit what's needed.
  // If this is a union copy constructor, we must emit a memcpy, because the AST
  // does not model that copy.
  assert(!cir::MissingFeatures::isMemcpyEquivalentSpecialMember());

  const FunctionProtoType *fpt = d->getType()->castAs<FunctionProtoType>();

  assert(!cir::MissingFeatures::opCallArgEvaluationOrder());

  emitCallArgs(args, fpt, e->arguments(), e->getConstructor(),
               /*ParamsToSkip=*/0);

  assert(!cir::MissingFeatures::sanitizers());
  emitCXXConstructorCall(d, type, forVirtualBase, delegating, thisAddr, args,
                         e->getExprLoc());
}

void CIRGenFunction::emitCXXConstructorCall(
    const CXXConstructorDecl *d, CXXCtorType type, bool forVirtualBase,
    bool delegating, Address thisAddr, CallArgList &args, SourceLocation loc) {

  const CXXRecordDecl *crd = d->getParent();

  // If this is a call to a trivial default constructor:
  // In LLVM: do nothing.
  // In CIR: emit as a regular call, other later passes should lower the
  // ctor call into trivial initialization.
  assert(!cir::MissingFeatures::isTrivialCtorOrDtor());

  assert(!cir::MissingFeatures::isMemcpyEquivalentSpecialMember());

  bool passPrototypeArgs = true;

  // Check whether we can actually emit the constructor before trying to do so.
  if (d->getInheritedConstructor()) {
    cgm.errorNYI(d->getSourceRange(),
                 "emitCXXConstructorCall: inherited constructor");
    return;
  }

  // Insert any ABI-specific implicit constructor arguments.
  CIRGenCXXABI::AddedStructorArgCounts extraArgs =
      cgm.getCXXABI().addImplicitConstructorArgs(*this, d, type, forVirtualBase,
                                                 delegating, args);

  // Emit the call.
  auto calleePtr = cgm.getAddrOfCXXStructor(GlobalDecl(d, type));
  const CIRGenFunctionInfo &info = cgm.getTypes().arrangeCXXConstructorCall(
      args, d, type, extraArgs.prefix, extraArgs.suffix, passPrototypeArgs);
  CIRGenCallee callee = CIRGenCallee::forDirect(calleePtr, GlobalDecl(d, type));
  cir::CIRCallOpInterface c;
  emitCall(info, callee, ReturnValueSlot(), args, &c, getLoc(loc));

  if (cgm.getCodeGenOpts().OptimizationLevel != 0 && !crd->isDynamicClass() &&
      type != Ctor_Base && cgm.getCodeGenOpts().StrictVTablePointers)
    cgm.errorNYI(d->getSourceRange(), "vtable assumption loads");
}